One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer

Abstract

Stimulation of the glucagon-like peptide-1 (GLP1) receptor is a useful treatment strategy for type 2 diabetes due to pleiotropic effects, such as the regulation of islet hormones and the induction of satiety. However, the native ligand for the GLP1 receptor has a short half-life owing to enzymatic inactivation and rapid clearance. Here, we show that a subcutaneous depot formed after a single injection of GLP1 recombinantly fused to a thermosensitive elastin-like polypeptide results in zero-order release kinetics and circulation times of up to 10 days in mice and 17 days in monkeys. The optimized pharmacokinetics lead to 10 days of glycaemic control in three different mouse models of diabetes, as well as the reduction of glycosylated haemoglobin levels and weight gain in ob/ob mice treated once weekly for 8 weeks. Our results suggest that the optimized GLP1 formulation could enhance therapeutic outcomes by eliminating peak-and-valley pharmacokinetics and improving overall safety and tolerability. The design principles that we established should be broadly applicable for improving the pharmacological performance of other peptide and protein therapeutics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A set of GLP1–ELP fusions with constant number of repeats but varied Tt was characterized and tested in vivo.
Figure 2: A set of GLP1–ELP fusions with constant Tt at the injected concentration but varied Mw was characterized and tested in vivo.
Figure 3: GLP1–ELP fusions were effective at controlling blood glucose levels for up to 10 days in three murine models of diabetes.
Figure 4: GLP1–ELP opt depots persist in the SC space and enhance the drug’s pharmacokinetics.
Figure 5: Injectable SC depots of GLP1–ELPopt release drug into circulation that can be quantified up to 1721 days in non-human primates.

References

  1. 1

    National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States, 2014 (Centers for Disease Control and Prevention, 2014).

  2. 2

    Bailey, C. J. The current drug treatment landscape for diabetes and perspectives for the future. Clin. Pharmacol. Therap. 98, 170–184 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Inzucchi, S. E. et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 58, 429–442 (2015).

    Article  Google Scholar 

  4. 4

    Bell, G. I., Santerre, R. F. & Mullenbach, G. T. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302, 716–718 (1983).

    CAS  Article  Google Scholar 

  5. 5

    Mojsov, S. et al. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J. Biol. Chem. 261, 11880–11889 (1986).

    CAS  PubMed  Google Scholar 

  6. 6

    Mortensen, K., Christensen, L. L., Holst, J. J. & Orskov, C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Reg. Pept. 114, 189–196 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Meeran, K. et al. Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat. Endocrinology 140, 244–250 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Drucker, D. J. Glucagon-like peptide-1 and the islet beta-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology 144, 5145–5148 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Qualmann, C., Nauck, M. A., Holst, J. J., Orskov, C. & Creutzfeldt, W. Insulinotropic actions of intravenous glucagon-like peptide-1 (GLP-1) [7-36 amide] in the fasting state in healthy subjects. Acta Diabet. 32, 13–16 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Meloni, A. R., DeYoung, M. B., Lowe, C. & Parkes, D. G. GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence. Diabet. Obes. Metab. 15, 15–27 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Rachman, J. et al. Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7-36) amide in patients with NIDDM. Diabetes 45, 1524–1530 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Rachman, J., Barrow, B. A., Levy, J. C. & Turner, R. C. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 40, 205–211 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Quddusi, S., Vahl, T. P., Hanson, K., Prigeon, R. L. & D'Alessio, D. A. Differential effects of acute and extended infusions of glucagon-like peptide-1 on first- and second-phase insulin secretion in diabetic and nondiabetic humans. Diabet. Care 26, 791–798 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Nauck, M. A. et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Vilsboll, T., Agerso, H., Krarup, T. & Holst, J. J. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J. Clin. Endocrinol. Metab. 88, 220–224 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Deacon, C. F., Johnsen, A. H. & Holst, J. J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J. Clin. Endocrinol. Metab. 80, 952–957 (1995).

    CAS  PubMed  Google Scholar 

  18. 18

    Gilroy, C. A., Luginbuhl, K. M. & Chilkoti, A. Controlled release of biologics for the treatment of type 2 diabetes. J. Con. Rel. 240, 151–164 (2015).

    Article  Google Scholar 

  19. 19

    Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696–1705 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Jimenez-Solem, E., Rasmussen, M. H., Christensen, M. & Knop, F. K. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes. Curr. Opin. Mol. Therap. 12, 790–797 (2010).

    CAS  Google Scholar 

  21. 21

    Matthews, J. E. et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 4810–4817 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Yu, L. et al. In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug Exenatide in an injectable thermogel. J. Pharm. Sci. 102, 4140–4149 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Chen, Y. P. et al. Injectable and thermosensitive hydrogel containing Liraglutide as a long-acting antidiabetic system. ACS Appl. Mater. Inter. 8, 30703–30713 (2016).

    CAS  Article  Google Scholar 

  24. 24

    Gedulin, B. R. et al. Dose-response for glycaemic and metabolic changes 28 days after single injection of long-acting release exenatide in diabetic fatty Zucker rats. Diabetologia 48, 1380–1385 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Kim, D. et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diab. Care 30, 1487–1493 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Schwendeman, S. P., Shah, R. B., Bailey, B. A. & Schwendeman, A. S. Injectable controlled release depots for large molecules. J. Con. Rel. 190, 240–253 (2014).

    CAS  Article  Google Scholar 

  27. 27

    DeYoung, M. B., MacConell, L., Sarin, V., Trautmann, M. & Herbert, P. Encapsulation of exenatide in poly-(d,l-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diab. Technol. Ther. 13, 1145–1154 (2011).

    CAS  Article  Google Scholar 

  28. 28

    MacEwan, S. R. & Chilkoti, A. Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94, 60–77 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Chilkoti, A., Christensen, T. & MacKay, J. A. Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr. Opin. Chem. Biol. 10, 652–657 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Cho, Y. H. et al. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B 112, 13765–13771 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Amiram, M., Luginbuhl, K. M., Li, X., Feinglos, M. N. & Chilkoti, A. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection. J. Con. Rel. 172, 144–151 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Amiram, M. Glucagon-Like Peptide-1 Depots for the Treatment of Type-2 Diabetes. PhD thesis, Duke Univ. (2012).

  33. 33

    Trammell, R. A., Cox, L. & Toth, L. A. Markers for heightened monitoring, imminent death, and euthanasia in aged inbred mice. Compar. Med. 62, 172–178 (2012).

    CAS  Google Scholar 

  34. 34

    Runge, S. et al. Differential structural properties of GLP-1 and exendin-4 determine their relative affinity for the GLP-1 receptor N-terminal extracellular domain. Biochemistry 46, 5830–5840 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes 53, 2492–2500 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Madsbad, S. et al. An overview of once-weekly glucagon-like peptide-1 receptor agonists-available efficacy and safety data and perspectives for the future. Diab. Obes. Metab 13, 394–407 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Chae, S. Y. et al. Pharmacokinetic and pharmacodynamic evaluation of site-specific PEGylated glucagon-like peptide-1 analogs as flexible postprandial-glucose controllers. J. Pharm. Sci. 98, 1556–1567 (2009).

    CAS  Article  Google Scholar 

  38. 38

    McDaniel, J. R., Radford, D. C. & Chilkoti, A. A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules 14, 2866–2872 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Brenner, B. M., Hostetter, T. H. & Humes, H. D. Glomerular permselectivity: barrier function based on discrimination of molecular size and charge. Am. J. Physiol. 234, 455–460 (1978).

    Google Scholar 

  40. 40

    Waldmann, T. A., Strober, W. & Mogielnicki, R. P. The renal handling of low molecular weight proteins. II. Disorders of serum protein catabolism in patients with tubular proteinuria, the nephrotic syndrome, or uremia. J. Clin. Invest. 51, 2162–2174 (1972).

    CAS  Article  Google Scholar 

  41. 41

    Pisal, D. S., Kosloski, M. P. & Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci. 99, 2557–2575 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Caliceti, P. & Veronese, F. M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 55, 1261–1277 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Yamaoka, T., Tabata, Y. & Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 83, 601–606 (1994).

    CAS  Article  Google Scholar 

  44. 44

    Armstrong, J. K., Wenby, R. B., Meiselman, H. J. & Fisher, T. C. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J. 87, 4259–4270 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Purtell, J. N., Pesce, A. J., Clyne, D. H., Miller, W. C. & Pollak, V. E. Isoelectric point of albumin: effect on renal handling of albumin. Kidney Int. 16, 366–376 (1979).

    CAS  Article  Google Scholar 

  46. 46

    Dubuc, P. U., Scott, B. K. & Peterson, C. M. Sex-differences in glycated hemoglobin in diabetic and nondiabetic C57bl/6 mice. Diab. Res. Clin. Pr. 21, 95–101 (1993).

    CAS  Article  Google Scholar 

  47. 47

    Vanputten, L. M. The life span of red cells in the rat and the mouse as determined by labeling with Dfp32 in vivo. Blood 13, 789–794 (1958).

    CAS  Google Scholar 

  48. 48

    Shemin, D. & Rittenberg, D. The life span of the human red blood cell. J. Biol. Chem. 166, 627–636 (1946).

    CAS  PubMed  Google Scholar 

  49. 49

    Mahmood, I. Application of allometric principles for the prediction of pharmacokinetics in human and veterinary drug development. Adv. Drug Deliv. Rev. 59, 1177–1192 (2007).

    CAS  Article  Google Scholar 

  50. 50

    Lapin, B. A., Gvozdik, T. E. & Klots, I. N. Blood glucose levels in rhesus monkeys (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) under moderate stress and after recovery. Bull. Exp. Biol. Med. 154, 497–500 (2013).

    CAS  Article  Google Scholar 

  51. 51

    Ponce, R. et al. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul. Toxicol. Pharm. 54, 164–182 (2009).

    CAS  Article  Google Scholar 

  52. 52

    Glaesner, W. et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diab. Metab. Res. Rev. 26, 287–296 (2010).

    CAS  Article  Google Scholar 

  53. 53

    Williams, D. L., Baskin, D. G. & Schwartz, M. W. Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes 55, 3387–3393 (2006).

    CAS  Article  Google Scholar 

  54. 54

    Enriori, P. J. et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 5, 181–194 (2007).

    CAS  Article  Google Scholar 

  55. 55

    Glaesner, W. et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diab. Metab. Res. 26, 287–296 (2010).

    CAS  Article  Google Scholar 

  56. 56

    Young, M. A. et al. Clinical pharmacology of albiglutide, a GLP-1 receptor agonist. Postgrad. Med. 126, 84–97 (2014).

    Article  Google Scholar 

  57. 57

    Painter, N. A., Morello, C. M., Singh, R. F. & McBane, S. E. An evidence-based and practical approach to using Bydureon in patients with type 2 diabetes. J. Am. Board Fam. Med. 26, 203–210 (2013).

    Article  Google Scholar 

  58. 58

    Wang, J., Wang, B. M. & Schwendeman, S. P. Characterization of the initial burst release of a model peptide from poly(D,L-lactide-co-glycolide) microspheres. J. Control. Rel. 82, 289–307 (2002).

    CAS  Article  Google Scholar 

  59. 59

    Zou, P. et al. Applications of human pharmacokinetic prediction in first-in-human dose estimation. AAPS J. 14, 262–281 (2012).

    Article  Google Scholar 

  60. 60

    McDaniel, J. R., MacKay, J. A., Quiroz, F. G. & Chilkoti, A. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules 11, 944–952 (2010).

    CAS  Article  Google Scholar 

  61. 61

    Burcelin, R., Dolci, W. & Thorens, B. Long-lasting antidiabetic effect of a dipeptidyl peptidase IV-resistant analog of glucagon-like peptide-1. Metab. Clin. Exp. 48, 252–258 (1999).

    CAS  Article  Google Scholar 

  62. 62

    de Meester, I., Lambeir, A. M., Proost, P. & Scharpe, S. Dipeptidyl peptidase IV substrates. An update on in vitro peptide hydrolysis by human DPPIV. Adv. Exp. Med. Biol. 524, 3–17 (2003).

    CAS  Article  Google Scholar 

  63. 63

    Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    CAS  Article  Google Scholar 

  64. 64

    Miranda, L. P. et al. Design and synthesis of conformationally constrained glucagon-like peptide-1 derivatives with increased plasma stability and prolonged in vivo activity. J. Med. Chem. 51, 2758–2765 (2008).

    CAS  Article  Google Scholar 

  65. 65

    Amiram, M., Luginbuhl, K. M., Li, X., Feinglos, M. N. & Chilkoti, A. Injectable protease-operated depots of glucagon-like peptide-1 provide extended and tunable glucose control. Proc. Natl Acad. Sci. USA 110, 2792–2797 (2013).

    CAS  Article  Google Scholar 

  66. 66

    Meyer, D. E. & Chilkoti, A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat. Biotechnol. 17, 1112–1115 (1999).

    CAS  Article  Google Scholar 

  67. 67

    Chizzonite, R. et al. IL-12: monoclonal antibodies specific for the 40-kDa subunit block receptor binding and biologic activity on activated human lymphoblasts. J. Immunol. 147, 1548–1556 (1991).

    CAS  PubMed  Google Scholar 

  68. 68

    Goke, R. & Conlon, J. M. Receptors for glucagon-like peptide-1(7-36) amide on rat insulinoma-derived cells. J. Endocrinol. 116, 357–362 (1988).

    CAS  Article  Google Scholar 

  69. 69

    Chan, H. M., Jain, R., Ahren, B., Pacini, G. & D'Argenio, D. Z. Effects of increasing doses of glucagon-like peptide-1 on insulin-releasing phases during intravenous glucose administration in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, 1126–1133 (2011).

    Article  Google Scholar 

  70. 70

    Ahren, B., Holst, J. J., Martensson, H. & Balkan, B . Improved glucose tolerance and insulin secretion by inhibition of dipeptidyl peptidase IV in mice. Eur. J. Pharmacol. 404, 239–245 (2000).

    CAS  Article  Google Scholar 

  71. 71

    Luginbuhl, K. M. et al. Dataset for: One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. figsharehttp://dx.doi.org/10.6084/m9.figshare.4903931 (2017).

Download references

Acknowledgements

A.C. acknowledges the support of NIH through grant R01-DK091789. K.M.L. acknowledges the support of the NSF through a Graduate Research Fellowship. We thank D. Drucker for providing BHK cells for assaying in vitro activity, G. A. Johnson and Duke’s Center for In Vivo Microscopy for use of their U-SPECT-II/CT imaging equipment, and M. R. Zalutsky for allowing us to use his laboratory and equipment to conduct radiolabelling experiments. K.L. thanks C. Gilroy for productive discussions on in vitro and in vivo experiments. The authors all sincerely thank K. Gerken, who provided pathology expertise and helped to analyse and interpret injection site histology, as well as the Duke Research Immunohistology Shared Resource Lab who processed the skin samples. Finally, we would like to thank J. Jowett, D. Sendecki and C. Woods of PhaseBio Pharmaceuticals, who helped to express and purify fusion protein for the non-human primate experiment.

Author information

Affiliations

Authors

Contributions

K.M.L. and A.C. conceived and designed the research. K.M.L., J.L.S., X.L. and B.U. performed the experiments. S.B. provided materials for the imaging study. S.A. helped to plan and organize the non-human primate study. M.F. and D.D. provided expertise in endocrinology for the design of in vivo studies. E.M.M. assisted in statistical analysis and interpretation of in vivo results. K.M.L. and A.C. analysed the results and wrote the manuscript. J.L.S., E.M.M. and D.D. edited the manuscript.

Corresponding author

Correspondence to Ashutosh Chilkoti.

Ethics declarations

Competing interests

A.C. is a scientific advisor and is on the board of directors for PhaseBio Pharmaceuticals, which has licensed the ELP technology for drug delivery applications from Duke University.

Supplementary information

Supplementary Information

Supplementary methods, figures and tables (PDF 4067 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luginbuhl, K., Schaal, J., Umstead, B. et al. One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat Biomed Eng 1, 0078 (2017). https://doi.org/10.1038/s41551-017-0078

Download citation

Further reading