Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip

Abstract

An in vitro model of the human kidney glomerulus—the major site of blood filtration—could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes—the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (over 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers for a mature phenotype (nephrin+, WT1+, podocin+, PAX2) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue–tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficient differentiation of kidney podocytes from human iPS cells.
Figure 2: Human iPS-cell-derived podocytes express markers characteristic of the mature phenotype.
Figure 3: Human iPS-cell-derived podocytes exhibit primary and secondary cell processes and enhanced molecular uptake of exogenous albumin.
Figure 4: Modelling the human glomerular capillary wall with an organ-on-a-chip microfluidic device.
Figure 5: Microfluidic organ-on-a-chip device reconstitutes kidney glomerular capillary function in vitro.
Figure 6: Human glomerulus-on-a-chip mimics adriamycin-induced kidney glomerular injury.

Similar content being viewed by others

References

  1. Kardasz, S. The function of the nephron and the formation of urine. Anaesth. Intensive Care Med. 10, 265–270 (2009).

    Article  Google Scholar 

  2. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    Article  CAS  Google Scholar 

  3. Reiser, J. & Sever, S. Podocyte biology and pathogenesis of kidney disease. Annu. Rev. Med. 64, 357–366 (2013).

    Article  CAS  Google Scholar 

  4. Benam, K. H. et al. Engineered in vitro disease models. Annu. Rev. Pathol. 10, 195–262 (2015).

    Article  CAS  Google Scholar 

  5. Thomson, J. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  6. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  7. Song, B. et al. The directed differentiation of human iPS cells into kidney podocytes. PLoS ONE 7, e46453 (2012).

    Article  CAS  Google Scholar 

  8. Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    Article  Google Scholar 

  9. Ciampi, O. et al. Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell. Res. 17, 130–139 (2016).

    Article  CAS  Google Scholar 

  10. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article  Google Scholar 

  11. Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article  Google Scholar 

  12. Jones, D. L. & Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9, 11–21 (2008).

    Article  CAS  Google Scholar 

  13. Ingber, D. E., Wang, N. & Stamenovic, D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep. Prog. Phys. 77, 046603 (2014).

    Article  Google Scholar 

  14. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  Google Scholar 

  15. Mummery, C. et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111, 344–358 (2012).

    Article  CAS  Google Scholar 

  16. Musah, S. et al. glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6, 10168–10177 (2012).

    Article  CAS  Google Scholar 

  17. Musah, S. et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc. Natl Acad. Sci. USA 111, 13805–13810 (2014).

    Article  CAS  Google Scholar 

  18. Li, D. et al. Role of mechanical factors in fate decisions of stem cells. Regen. Med. 6, 229–240 (2011).

    Article  Google Scholar 

  19. Rodin, S. et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat. Biotechnol. 28, 611–615 (2010).

    Article  CAS  Google Scholar 

  20. Patey, N., Halbwachs-Mecarelli, L., Droz, D., Lesavre, P. & Noel, L. H. Distribution of integrin subunits in normal human kidney. Cell Adhes. Commun. 2, 159–167 (1994).

    Article  CAS  Google Scholar 

  21. Pavenstädt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253–307 (2003).

    Article  Google Scholar 

  22. Miner, J. Renal basement membrane components. Kidney Int. 56, 2016–2024 (1999).

    Article  CAS  Google Scholar 

  23. Kanasaki, K. et al. Integrin β1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev. Biol. 313, 584–593 (2008).

    Article  CAS  Google Scholar 

  24. Pozzi, A. et al. β1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol. 316, 288–301 (2008).

    Article  CAS  Google Scholar 

  25. Pietilä, I. & Vainio, S. J. Kidney development: an overview. Nephron Exp. Nephrol. 126, 40–44 (2014).

    Article  Google Scholar 

  26. Mae, S.-I. et al. Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat. Commun. 4, 1367 (2013).

    Article  Google Scholar 

  27. Taguchi, A. & Nishinakamura, R. Nephron reconstitution from pluripotent stem cells. Kidney Int. 87, 894–900 (2015).

    Article  CAS  Google Scholar 

  28. Kitamoto, Y., Tokunaga, H., Miyamoto K. & Tomita, K. VEGF is an essential molecule for glomerular structuring. Nephrol. Dial. Transplant. 17 (Suppl. 9), 25–27 (2002).

    Article  CAS  Google Scholar 

  29. Gerber H. P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    CAS  PubMed  Google Scholar 

  30. Zhong, Y. et al. Novel retinoic acid receptor alpha agonists for treatment of kidney disease. PLoS ONE 6, e27945 (2011).

    Article  CAS  Google Scholar 

  31. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  CAS  Google Scholar 

  32. Davies, J. A. Morphogenesis of the metanephric kidney. ScientificWorldJournal 2, 1937–1950 (2002).

    Article  Google Scholar 

  33. Brennan, H. C., Nijjar, S. & Jones, E. A. The specification and growth factor inducibility of the pronephric glomus in Xenopus laevis . Development 126, 5847–5856 (1999).

    CAS  PubMed  Google Scholar 

  34. Saleem, M. et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J. Am. Soc. Nephrol. 13, 630–638 (2002).

    CAS  PubMed  Google Scholar 

  35. Tabar, V. & Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15, 82–92 (2014).

    Article  CAS  Google Scholar 

  36. Quaggin, S. Transcriptional regulation of podocyte specification and differentiation. Microsc. Res. Tech. 57, 208–211 (2002).

    Article  CAS  Google Scholar 

  37. Floege, J. et al. Visceral glomerular epithelial cells can proliferate in vivo and synthesize platelet-derived growth factor B-chain. Am. J. Pathol. 142, 637–650 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kestilä, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  Google Scholar 

  39. Ruotsalainen, V. et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc. Natl Acad. Sci. USA 96, 7962–7967 (1999).

    Article  CAS  Google Scholar 

  40. Satoh, D. et al. aPKCλ maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J. Biochem. 156, 115–128 (2014).

    Article  CAS  Google Scholar 

  41. Shankland, S. J., Pippin, J. W., Reiser J. & Mundel, P. Podocytes in culture: past, present, and future. Kidney Int. 72, 26–36 (2007).

    Article  CAS  Google Scholar 

  42. Saleem, M. A. One hundred ways to kill a podocyte. Nephrol. Dial. Transplant. 30, 1266–1272 (2015).

    Article  CAS  Google Scholar 

  43. Peti-Peterdi, J., Kidokoro, K. & Riquier-Brison, A. Novel in vivo techniques to visualize kidney anatomy and function. Kidney Int. 88, 44–51 (2015).

    Article  Google Scholar 

  44. Greek, R. & Menache, A. Systematic reviews of animal models: methodology versus epistemology. Int. J. Med. Sci. 10, 206–221 (2013).

    Article  Google Scholar 

  45. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  Google Scholar 

  46. Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    Article  CAS  Google Scholar 

  47. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–72 (2014).

    Article  CAS  Google Scholar 

  48. Jang, K.-J. J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119–1129 (2013).

    Article  CAS  Google Scholar 

  49. Huh, D. et al. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135–2157 (2013).

    Article  CAS  Google Scholar 

  50. Eremina, V. & Quaggin, S. E. The role of VEGF-A in glomerular development and function. Curr. Opin. Nephrol. Hypertens. 13, 9–15 (2004).

    Article  CAS  Google Scholar 

  51. Tojo, A. & Kinugasa, S. Mechanisms of glomerular albumin filtration and tubular reabsorption. Int. J. Nephrol. 2012, 481520 (2012).

    Article  Google Scholar 

  52. Bohle, A. et al. Human glomerular structure under normal conditions and in isolated glomerular disease. Kidney Int. Suppl. 54 (Suppl. 67), S186–S188 (1998).

    Article  Google Scholar 

  53. Abrahamson, D. R. Role of the podocyte (and glomerular endothelium) in building the GBM. Semin. Nephrol. 32, 342–349 (2012).

    Article  CAS  Google Scholar 

  54. Miner, J. H. Organogenesis of the kidney glomerulus: focus on the glomerular basement membrane. Organogenesis 7, 75–82 (2011).

    Article  Google Scholar 

  55. Abrahamson, D. R., Hudson, B. G., Stroganova, L., Borza, D.-B. & St John, P. L. Cellular origins of type IV collagen networks in developing glomeruli. J. Am. Soc. Nephrol. 20, 1471–1479 (2009).

    Article  CAS  Google Scholar 

  56. Zhang, H.-T. T. et al. The mTORC2/Akt/NFκB pathway-mediated activation of TRPC6 participates in adriamycin-induced podocyte apoptosis. Cell. Physiol. Biochem. 40, 1079–1093 (2016).

    Article  CAS  Google Scholar 

  57. Zhong, F., Wang, W., Lee, K., He, J. C. & Chen, N. Role of C/EBP-α in adriamycin-induced podocyte injury. Sci. Rep. 6, 33520 (2016).

    Article  CAS  Google Scholar 

  58. Friedman, D. J. & Pollak, M. R. Genetics of kidney failure and the evolving story of APOL1. J. Clin. Invest. 121, 3367–3374 (2011).

    Article  CAS  Google Scholar 

  59. Ball, M. P. et al. A public resource facilitating clinical use of genomes. Proc. Natl Acad. Sci. USA 109, 11920–11927 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency under Cooperative Agreement Number W911NF-12-2-0036 and the Wyss Institute for Biologically Inspired Engineering at Harvard University. S.M. was supported by a Dean’s Postdoctoral Fellowship from Harvard Medical School, a UNCF-Merck Postdoctoral Fellowship, a Postdoctoral Enrichment Program Award from the Burroughs Wellcome Fund and an NIH/NIDDK Nephrology Training Grant (4T32DK007199-39). We thank the Wyss Institute Microfabrication team for organ-chip production; A. P. Mehr, K. Jang, A. Bahinski and R. Prantil-Baun for helpful discussions; E. Jiang, Y. Torisawa, E.I. Qendro and S. Lightbown for technical assistance, and R. Luna for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.M., G.M.C. and D.E.I. conceived the strategy for this study; S.M. designed and performed experiments; S.M. and D.E.I. wrote the manuscript; T.M., T.C.F. and S.S.F.J. helped with the analysis of microscopy data; A.M. performed qPCR analysis; scanning electron microscopy analysis was performed by K.R., T.F.-D., S.K. and J.C.W.; M.H.-K. performed western blot experiments and analysed the data; S.C. performed LDH-release assay; S.M. and S.S.F.J. performed drug toxicity studies and analysed the data; R.N. and M.I. designed the microfluidic chips and built the programmable vacuum regulators. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Donald E. Ingber.

Ethics declarations

Competing interests

D.E.I. and S.M. are authors on a pending patent for methods for the generation of kidney glomerular podocytes from pluripotent stem cells (US patent application 14/950859). D.E.I. is a founder of Emulate, Inc., holds equity in it, and chairs its scientific advisory board.

Supplementary information

Supplementary Information

Supplementary text, tables and video captions. (PDF 1830 kb)

Supplementary Video 1

Human iPS-derived podocytes and glomerular endothelial cells cultured in an organ-on-a-chip microfluidic device under fluid flow without strain. (MP4 12230 kb)

Supplementary Video 2

Human iPS-derived podocytes and glomerular endothelial cells cultured in an organ-on-a-chip microfluidic device under both fluid flow and mechanical strain. (MP4 10988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musah, S., Mammoto, A., Ferrante, T. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat Biomed Eng 1, 0069 (2017). https://doi.org/10.1038/s41551-017-0069

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-017-0069

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research