Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-time intraoperative monitoring of blood coagulability via coherence-gated light scattering


When characterizing dynamic processes, ergodicity—that is, the equivalence of time averages and of averages over a system’s possible microstates—is often invoked. Yet many complex social, economic and material systems are such that practical observations cannot survey the entire ensemble of microstates. In the case of non-ergodic fluids, their slow structural dynamics makes such an approach prohibitive. Blood is a prominent example of a non-ergodic, complex fluid for which today’s standards for coagulation tests in vivo are chemically induced offline assays. Here, we show that heterodyne amplification—that is, amplification of a signal by frequency conversion—combined with suitable control of spatiotemporal coherence permits measurements of non-stationary dynamics in non-ergodic, complex media. By taking advantage of this approach, we developed an optical-fibre-based tool that can be directly incorporated into standard vascular-access devices for real-time monitoring of blood coagulability in the operating room.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Three-dimensional spatiotemporal coherence-gated DLS.
Figure 2: PSDs measured with the MMF-based technique from probe nanoparticles caged within a polymer network.
Figure 3: Typical PSDs of signal fluctuations arising from light scattering in whole blood at different stages during cardiovascular surgery, measured by spatiotemporal coherence-gated DLS.
Figure 4: Correlation between incremental time-point differences of the log-slope of the PSD and of ACT.
Figure 5: An all-fibre realization of the spatiotemporal coherence-gated DLS technique
Figure 6: Time evolution of power-spectral frequencies of whole blood measured continuously via spatiotemporal coherence-gated DLS during two hours of CPB for a single patient.


  1. 1

    Bergenholtz, J., Fuchs, M. & Voigtmann, T. Colloidal gelation and non-ergodicity transitions. J. Phys. Condens. Matter 12, 6575–6583 (2000).

    Article  Google Scholar 

  2. 2

    Bergenholtz, J. & Fuchs, M. Nonergodicity transitions in colloidal suspensions with attractive interactions. Phys. Rev. E 59, 5706–5715 (1999).

    Article  Google Scholar 

  3. 3

    Härtl, W. Colloidal glasses. Curr. Opin. Colloid Interface Sci. 6, 479–483 (2001).

    Article  Google Scholar 

  4. 4

    Cipelletti, L. & Ramos, L. Slow dynamics in glasses, gels and foams. Curr. Opin. Colloid Interface Sci. 7, 228–234 (2002).

    Article  Google Scholar 

  5. 5

    Dawson, K. A. The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr. Opin. Colloid Interface Sci. 7, 218–227 (2002).

    Article  Google Scholar 

  6. 6

    Tanaka, H., Meunier, J. & Bonn, D. Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels. Phys. Rev. E 69, 031404 (2004).

    Article  Google Scholar 

  7. 7

    Trappe, V. & Sandkühler, P. Colloidal gels—low-density disordered solid-like states. Curr. Opin. Colloid Interface Sci. 8, 494–500 (2004).

    Article  Google Scholar 

  8. 8

    Cherstvy, A. G., Chechkin, A. V. & Metzler, R. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New J. Phys. 15, 083039 (2013).

    Article  Google Scholar 

  9. 9

    Cherstvy, A. G., Chechkin, A. V. & Metzler, R. Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. Soft Matter 10, 1591–1601 (2014).

    Article  Google Scholar 

  10. 10

    Cherstvy, A. G. & Metzler, R. Nonergodicity, fluctuations, and criticality in heterogeneous diffusion processes. Phys. Rev. E 90, 012134 (2014).

    Article  Google Scholar 

  11. 11

    Jeon, J.-H., Chechkin, A. V. & Metzler, R. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion. Phys. Chem. Chem. Phys. 16, 15811–15817 (2014).

    Article  Google Scholar 

  12. 12

    Massignan, P. et al. Nonergodic subdiffusion from Brownian motion in an inhomogeneous medium. Phys. Rev. Lett. 112, 150603 (2014).

    Article  Google Scholar 

  13. 13

    Metzler, R. et al. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014).

    Article  Google Scholar 

  14. 14

    Cherstvy, A. G. & Metzler, R. Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes. J. Chem. Phys. 142, 144105 (2015).

    Article  Google Scholar 

  15. 15

    Cherstvy, A. G. & Metzler, R. Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity. J. Stat. Mech. 2015, P05010 (2015).

    Article  Google Scholar 

  16. 16

    Tolić-Nørrelykke, I. M. et al. Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93, 078102 (2004).

    Article  Google Scholar 

  17. 17

    Deng, L. et al. Fast and slow dynamics of the cytoskeleton. Nat. Mater. 5, 636–640 (2006).

    Article  Google Scholar 

  18. 18

    Golding, I. & Cox, E. C. Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006).

    Article  Google Scholar 

  19. 19

    Bronstein, I. et al. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103, 018102 (2009).

    Article  Google Scholar 

  20. 20

    Jeon, J.-H. et al. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011).

    Article  Google Scholar 

  21. 21

    Weigel, A.V. et al. Ergodic and non-ergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl Acad. Sci. USA 108, 6438–6443 (2011).

    Article  Google Scholar 

  22. 22

    Höfling, F. & Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 7, 046602 (2013).

    Article  Google Scholar 

  23. 23

    Tabei, S. A. et al. Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl Acad. Sci. USA 110, 4911–4916 (2013).

    Article  Google Scholar 

  24. 24

    Manzo, C. et al. Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X 5, 011021 (2015).

    Google Scholar 

  25. 25

    Berne, B. J. & Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics ( Courier Corporation, 1976).

    Google Scholar 

  26. 26

    Tripathi, M. M. et al. Assessing blood coagulation status with laser speckle rheology. Biomed. Opt. Express 5, 817–831 (2014).

    Article  Google Scholar 

  27. 27

    Hajjarian, Z., Tripathi, M. M. & Nadkarni, S. K. Optical thromboelastography to evaluate whole blood coagulation. J. Biophotonics 8, 372–381 (2015).

    Article  Google Scholar 

  28. 28

    Pusey, P. & van Megen, W. Dynamic light scattering by non-ergodic media. Physica A 157, 705–741 (1989).

    Article  Google Scholar 

  29. 29

    Xue, J.-Z. et al. Nonergodicity and light scattering from polymer gels. Phys. Rev. A 46, 6550–6563 (1992).

    Article  Google Scholar 

  30. 30

    Schätzel, K. Accuracy of photon correlation measurements on nonergodic samples. Appl. Opt. 32, 3880–3885 (1993).

    Article  Google Scholar 

  31. 31

    Joosten, J. G., Geladé, E. T. & Pusey, P. N. Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels. Phys. Rev. A 42, 2161–2175 (1990).

    Article  Google Scholar 

  32. 32

    Van Megen, W., Underwood, S. & Pusey, P. Nonergodicity parameters of colloidal glasses. Phys. Rev. Lett. 67, 1586–1589 (1991).

    Article  Google Scholar 

  33. 33

    Scheffold, F. et al. Diffusing-wave spectroscopy of nonergodic media. Phys. Rev. E 63, 061404 (2001).

    Article  Google Scholar 

  34. 34

    Kirsch, S. et al. Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes. J. Chem. Phys. 104, 1758–1761 (1996).

    Article  Google Scholar 

  35. 35

    Bartsch, E. et al. The glass transition dynamics of polymer micronetwork colloids. A mode coupling analysis. J. Chem. Phys. 106, 3743–3756 (1997).

    Article  Google Scholar 

  36. 36

    Knaebel, A. et al. Aging behavior of laponite clay particle suspensions. Europhys. Lett. 52, 73–79 (2000).

    Article  Google Scholar 

  37. 37

    Wiese, H. & Horn, D. Fiber-optic quasielastic light scattering in concentrated latex dispersions: the performance of single-mode vs. multimode fibers. Ber. Bunsenges. Phys. Chem. 96, 1818–1828 (1992).

    Article  Google Scholar 

  38. 38

    Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications ( Roberts Co., 2007).

    Google Scholar 

  39. 39

    Cummins, H. & Swinney, H. in Progress in Optics (ed. Wolf, E. ) 146–150 (North-Holland, 1970).

    Google Scholar 

  40. 40

    Jakeman, E. in Photon Correlation and Light Beating Spectroscopy (eds Cummins, H. Z. & Pike, E. R. ) 75–149 ( Springer, 1974).

    Book  Google Scholar 

  41. 41

    Gloge, D. & Marcatili, E. Multimode theory of graded-core fibers. Bell Syst. Tech. J. 52, 1563–1578 (1973).

    Article  Google Scholar 

  42. 42

    Fan, S. & Kahn, J. M. Principal modes in multimode waveguides. Opt. Lett. 30, 135–137 (2005).

    Article  Google Scholar 

  43. 43

    Shemirani, M. B. et al. Principal modes in graded-index multimode fiber in presence of spatial-and polarization-mode coupling. J. Lightwave Technol. 27, 1248–1261 (2009).

    Article  Google Scholar 

  44. 44

    Ho, K.-P. & Kahn, J. M. Statistics of group delays in multimode fiber with strong mode coupling. J. Lightwave Technol. 29, 3119–3128 (2011).

    Article  Google Scholar 

  45. 45

    Guzman-Sepulveda, J. et al. In-situ characterization of structural dynamics in swelling hydrogels. Soft Matter 12, 5986–5994 (2016).

    Article  Google Scholar 

  46. 46

    Chitlur, M. & Massicotte, M. The perfect measure of hemostasis: a quest for the holy grail. Thromb. Res. 125, 481–482 (2010).

    Article  Google Scholar 

  47. 47

    Sohn, I., Rajagopalan, R. & Dogariu, A. Spatially resolved microrheology through a liquid/liquid interface. J. Colloid Interface Sci. 269, 503–513 (2004).

    Article  Google Scholar 

  48. 48

    Guzman-Sepulveda, J. R. et al. Passive optical mapping of structural evolution in complex fluids. RSC Adv. 5, 5357–5362 (2015).

    Article  Google Scholar 

  49. 49

    Mason, T. G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol. Acta 39, 371–378 (2000).

    Article  Google Scholar 

  50. 50

    Douglass, K. M., Sukhov, S. & Dogariu, A. Superdiffusion in optically controlled active media. Nat. Photon. 6, 834–837 (2012).

    Article  Google Scholar 

  51. 51

    Guzman-Sepulveda, J., Hurtado-Gimenez, D. E. & Dogariu, A. Measurement of diffusive transport at liquid–liquid interfaces. In Frontiers in Optics 2015 (Optical Society of America, 2015).

    Book  Google Scholar 

  52. 52

    Liang, W. et al. Microrheology and release behaviors of self-assembled steroid hydrogels. J. Mater. Sci. Chem. Eng. 3, 6–15 (2015).

    Google Scholar 

Download references


This work was partially supported by the National Institutes of Health and the National Heart, Lung and Blood Institute under grant number 5R21HL124486.

Author information




A.D. and W.M.D.C. planned the project. A.D. and J.R.G.-S. designed the experimental technique. W.M.D.C. and R.A.-M. designed the clinical study and the medical protocols. J.R.G.-S. and R.A.-M. contributed to data collection. J.R.G.-S. and A.D. analysed the data. All authors contributed to interpreting the data and to drafting the article.

Corresponding author

Correspondence to A. Dogariu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods, discussion, figures and tables. (PDF 4837 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guzman-Sepulveda, J., Argueta-Morales, R., DeCampli, W. et al. Real-time intraoperative monitoring of blood coagulability via coherence-gated light scattering. Nat Biomed Eng 1, 0028 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing