Prolonged energy harvesting for ingestible devices

Abstract

Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged-monitoring systems for patients. Although previous biocompatible power-harvesting systems for in vivo use have demonstrated short (minute-long) bursts of power from the stomach, little is known about the potential for powering electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 μW mm−2 of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell could provide power to the next generation of ingestible electronic devices for prolonged periods of time inside the gastrointestinal tract.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Initial in vivo characterization and anode comparison.
Figure 2: Electrical characterization of the gastric battery in a porcine model.

References

  1. 1

    Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417 (2000).

    CAS  Article  Google Scholar 

  2. 2

    van der Schaar, P. J. et al. A novel ingestible electronic drug delivery and monitoring device. Gastrointest. Endosc. 78, 520–528 (2013).

    Article  Google Scholar 

  3. 3

    Maqbool, S., Parkman, H. P. & Friedenberg, F. K. Wireless capsule motility: comparison of the SmartPill(R) GI monitoring system with scintigraphy for measuring whole gut transit. Dig. Dis. Sci. 54, 2167–2174 (2009).

    Article  Google Scholar 

  4. 4

    Traverso, G. et al. Physiologic status monitoring via the gastrointestinal tract. PLoS ONE 10, e0141666 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Ramadass, Y. K. & Chandrakasan, A. P. A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid-State Circuits 46, 333–341 (2011).

    Article  Google Scholar 

  6. 6

    Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Waters, B. H., Sample, A. P., Bonde, P. & Smith, J. R. Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system. Proc. IEEE 100, 138–149 (2012).

    Article  Google Scholar 

  8. 8

    Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Laulicht, B., Traverso, G., Deshpande, V., Langer, R. & Karp, J. M. Simple battery armor to protect against gastrointestinal injury from accidental ingestion. Proc. Natl Acad. Sci. USA 111, 16490–16495 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Mercier, P. P., Lysaght, A. C., Bandyopadhyay, S., Chandrakasan, A. P. & Stankovic, K. M. Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30, 1240–1243 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Jung, W. et al. An ultra-low power fully integrated energy harvester based on self-oscillating switched-capacitor voltage doubler. IEEE J. Solid-State Circuits 49, 2800–2811 (2014).

    Article  Google Scholar 

  12. 12

    El-Damak, D. & Chandrakasan, A. P. A 10 nW–1 μW power management IC with integrated battery management and self-startup for energy harvesting applications. IEEE J. Solid-State Circuits 51, 943–954 (2016).

    Article  Google Scholar 

  13. 13

    Zhang, S. et al. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat. Mater. 14, 1065–1071 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Yin, L. et al. Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 26, 3879–3884 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Lee, K. B. & Lin, L. Electrolyte-based on-demand and disposable microbattery. IEEE J. Microelectromechanical Syst. 12, 840–847 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Garay, E. F. & Bashirullah, R. Biofluid activated microbattery for disposable microsystems. IEEE J. Microelectromechanical Syst. 24, 70–79 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Kim, Y. J., Chun, S.-E., Whitacre, J. & Bettinger, C. J. Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 1, 3781–3788 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Hafezi, H. et al. An ingestible sensor for measuring medication adherence. IEEE Trans. Biomed. Eng. 62, 99–109 (2015).

    Article  Google Scholar 

  19. 19

    Jimbo, H. & Miki, N. Gastric-fluid-utilizing micro battery for micro medical devices. Sens. Actuat. B. 134, 219–224 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Mostafalu, P. & Sonkusale, S. Flexible and transparent gastric battery: energy harvesting from gastric acid for endoscopy application. Biosens. Bioelectron. 54, 292–296 (2014).

    CAS  Article  Google Scholar 

  21. 21

    Di Maio, S. & Carrier, R. L. Gastrointestinal contents in fasted state and post-lipid ingestion: in vivo measurements and in vitro models for studying oral drug delivery. J. Control. Release 151, 110–122 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Roy, O. Z. & Wehnert, R. W. Improvements in biogalvanic energy sources. Med. Biol. Eng. 12, 50–56 (1974).

    CAS  Article  Google Scholar 

  23. 23

    She, D., Tsang, M., Kim, J. K. & Allen, M. G. Immobilized electrolyte biodegradable batteries for implantable MEMS. In 18th Int. Conf. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 494–497 (IEEE, 2015).

  24. 24

    Dietary Reference Intakes for Vitamin A, K, Aresenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (Food and Nutrition Board, Institute of Medicine, USA, 2001).

  25. 25

    Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC, 2015).

    Google Scholar 

  26. 26

    Kear, G., Barker, B. D. & Walsh, F. C. Electrochemical corrosion of unalloyed copper in chloride media—a critical review. Corros. Sci. 46, 109–135 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Low Voltage Digitially Controlled Potentiometer, ISL23315 (Intersil, 2015).

  28. 28

    8-Bit Flash Microcontroller with XLP Technology, PIC12LF1840T39A (Microchip, 2014).

  29. 29

    Snoeck, V. et al. Gastrointestinal transit time of nondisintegrating radio-opaque pellets in suckling and recently weaned piglets. J. Control. Release 94, 143–153 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Hossain, M., Abramowitz, W., Watrous, B. J., Szpunar, G. J. & Ayres, J. W. Gastrointestinal transit of nondisintegrating, nonerodible oral dosage forms in pigs. Pharm. Res. 7, 1163–1166 (1990).

    CAS  Article  Google Scholar 

  31. 31

    Traverso, G. et al. Microneedles for drug delivery via the gastrointestinal tract. J. Pharm. Sci. 104, 362–367 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Ultra Low Power Boost Converter with Battery Management for Energy Harverster Applications, BQ25504 (Texas Instruments, 2015).

  33. 33

    Santini, J. T. Jr, Cima, M. J. & Langer, R. A controlled-release microchip. Nature 397, 335–338 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Santini J. T. Jr, Richards, A. C., Scheidt, R., Cima, M. J. & Langer, R. Microchips as controlled drug-delivery devices. Angew. Chem. Int. Ed. 39, 2396–2407 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Singeap, A.-M. Capsule endoscopy: the road ahead. World J. Gastroenterol. 22, 369 (2016).

    CAS  Article  Google Scholar 

  36. 36

    Reardon, S. Electroceuticals spark interest. Nature 511, 18 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Traverso, G. & Langer, R. Perspective: special delivery for the gut. Nature 519, S19 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Niven, D. J. et al. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Ann. Intern. Med. 163, 768–777 (2015).

    Article  Google Scholar 

  39. 39

    Harpe, P., Gao, H., Dommele, R. V., Cantatore, E. & van Roermund, A. H. M . A 0.20 mm2 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS. IEEE J. Solid-State Circuits 51, 240–248 (2016).

    Article  Google Scholar 

  40. 40

    Yaul, F. M. & Chandrakasan, A. P. A 10 bit SAR ADC with data-dependent energy reduction using LSB-first successive approximation. IEEE J. Solid-State Circuits 49, 2825–2834 (2014).

    Article  Google Scholar 

  41. 41

    Paidimarri, A., Ickes, N. & Chandrakasan, A. P. A +10dBm 2.4GHz transmitter with sub-400pW leakage and 43.7% system efficiency. In 2015 IEEE Int. Solid-State Circuits Conf. (ISSCC) Digest of Technical Papers 1–3 (IEEE, 2015).

  42. 42

    Fojtik, M. et al. A millimeter-scale energy-autonomous sensor system with stacked battery and solar cells. IEEE. J. Solid-State Circuits 48, 801–813 (2013).

    Article  Google Scholar 

  43. 43

    Kethu, S. R. et al. Endoluminal bariatric techniques. Gastrointest. Endosc. 76, 1–7 (2012).

    Article  Google Scholar 

  44. 44

    Rapoport, B. I., Kedzierski, J. T. & Sarpeshkar, R. A glucose fuel cell for implantable brain-machine interfaces. PLoS ONE 7, e38436 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Schoellhammer, C. M. et al. Ultrasound-mediated gastrointestinal drug delivery. Sci. Transl. Med. 7, 310ra168 (2015).

    Article  Google Scholar 

  46. 46

    Nadeau, P. et al. Data for Prolonged energy harvesting for ingestible devices. figsharehttp://dx.doi.org/10.6084/m9.figshare.4451420 (2017).

Download references

Acknowledgements

We thank J. Haupt, M. Jamiel and A. Hayward for help with the in vivo porcine work. We also thank A. Paidimarri for helpful discussions. A.P.C. was funded by Texas Instruments, the Semiconductor Research Corporation’s Center of Excellence for Energy Efficient Electronics, and the Hong Kong Innovation and Technology Commission. R.L. was funded by a National Institutes of Health grant, EB-000244; a Max Planck Research Award, Ltr Dtd. 2/11/08; and the Alexander von Humboldt-Stiftung Foundation. G.T. was funded in part by the Division of Gastroenterology, Brigham and Women’s Hospital.

Author information

Affiliations

Authors

Contributions

P.N., D.E-D., D.G., Y.L.K., N.R., R.L., A.P.C. and G.T. conceived and designed the research. P.N., D.E-D., S.M., Y.L.K. and N.R. constructed the prototypes for testing. P.N., D.E-D., D.G. and Y.L.K. conducted the in vitro characterization. P.N. wrote the software for the capsules and offline processing of the packets. P.N., D.E-D., D.G., Y.L.K., C.C., L.B. and G.T. performed the in vivo pig experiments. P.N., D.E-D., D.G., Y.L.K., N.R., R.L., A.P.C. and G.T. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Robert Langer or Anantha P. Chandrakasan or Giovanni Traverso.

Ethics declarations

Competing interests

The authors declare that provisional patent application no. 62/328,084, covering a portion of this work, was filed with the United States Patent and Trademark Office on 27 April 2016.

Supplementary information

Supplementary Information

Supplementary Figures (PDF 3420 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nadeau, P., El-Damak, D., Glettig, D. et al. Prolonged energy harvesting for ingestible devices. Nat Biomed Eng 1, 0022 (2017). https://doi.org/10.1038/s41551-016-0022

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing