Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring


Tumour-derived extracellular vesicles (EVs) are of increasing interest as a resource of diagnostic biomarkers. However, most EV assays require large samples and are time-consuming, low-throughput and costly, and thus impractical for clinical use. Here, we describe a rapid, ultrasensitive and inexpensive nanoplasmon-enhanced scattering (nPES) assay that directly quantifies tumour-derived EVs from as little as 1 μl of plasma. The assay uses the binding of antibody-conjugated gold nanospheres and nanorods to EVs captured by EV-specific antibodies on a sensor chip to produce a local plasmon effect that enhances tumour-derived EV detection sensitivity and specificity. We identified a pancreatic cancer EV biomarker, ephrin type-A receptor 2 (EphA2), and demonstrate that an nPES assay for EphA2-EVs distinguishes pancreatic cancer patients from pancreatitis patients and healthy subjects. EphA2-EVs were also informative in staging tumour progression and in detecting early responses to neoadjuvant therapy, with better performance than a conventional enzyme-linked immunosorbent assay. The nPES assay can be easily refined for clinical use, and readily adapted for diagnosis and monitoring of other conditions with disease-specific EV biomarkers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design of an nPES platform for EV detection.
Figure 2: Characterization of the performance of the nPES assay with exosome-spiked human plasma samples.
Figure 3: Identification of pancreatic-cancer-associated EV as a potential biomarker by establishing an nPES-EphA2-EV detection system.
Figure 4: EphA2-EV detection and clinical performance.


  1. 1

    Brinton, L. T., Sloane, H. S., Kester, M. & Kelly, K. A. Formation and role of exosomes in cancer. Cell Mol. Life Sci. 72, 659–671 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Gyorgy, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol. Life Sci. 68, 2667–2688 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Anderson, H. C., Mulhall, D. & Garimella, R. Role of extracellular membrane vesicles in the pathogenesis of various diseases, including cancer, renal diseases, atherosclerosis, and arthritis. Lab Invest. 90, 1549–1557 (2010).

    CAS  Article  Google Scholar 

  5. 5

    van der Pol, E., Boing, A. N., Harrison, P., Sturk, A. & Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64, 676–705 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Muralidharan-Chari, V., Clancy, J. W., Sedgwick, A. & D'Souza-Schorey, C. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell. Sci. 123, 1603–1611 (2010).

    CAS  Article  Google Scholar 

  7. 7

    De Candia, P. et al. Intracellular modulation, extracellular disposal and serum increase of MiR-150 mark lymphocyte activation. PLoS ONE 8, e75348 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Tanaka, Y. et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119, 1159–1167 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Rabinowits, G., Gercel-Taylor, C., Day, J. M., Taylor, D. D. & Kloecker, G. H. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Boukouris, S. & Mathivanan, S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom. Clin. Appl. 9, 358–367 (2015).

    CAS  Article  Google Scholar 

  11. 11

    O’Driscoll, L. Expanding on exosomes and ectosomes in cancer. N. Engl. J. Med. 372, 2359–2362 (2015).

    Article  Google Scholar 

  12. 12

    Khan, S. et al. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS ONE 7, e46737 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Théry, C., Clayton, A., Amigorena, S. & Raposo, G. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 3.22.1–3.22.29 (2006).

  14. 14

    He, M., Crow, J., Roth, M., Zeng, Y. & Godwin, A. K. Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14, 3773–3780 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Lane, R. E., Korbie, D., Anderson, W., Vaidyanathan, R. & Trau, M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep. 5, 7639 (2015).

    Article  Google Scholar 

  16. 16

    Kanwar, S. S., Dunlay, C. J., Simeone, D. M. & Nagrath, S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14, 1891–1900 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Logozzi, M. et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS ONE 4, e5219 (2009).

    Article  Google Scholar 

  18. 18

    Shao, H. et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med. 18, 1835–1840 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Shao, H. et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 6, 6999 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Im, H. et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 32, 490–495 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Yoshioka, Y. et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 5, 3591 (2014).

    Article  Google Scholar 

  25. 25

    Miyazaki, T., Kato, H., Fukuchi, M., Nakajima, M. & Kuwano, H. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int. J. Cancer 103, 657–663 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Duxbury, M. S., Ito, H., Zinner, M. J., Ashley, S. W. & Whang, E. E. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 23, 1448–1456 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Mudali, S. V. et al. Patterns of EphA2 protein expression in primary and pancreatic carcinoma and correlation with genetic status. Clin. Exp. Metastasis 23, 357–365 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Duxbury, M. S., Ito, H., Zinner, M. J., Ashley, S. W. & Whang, E. E. Ligation of EphA2 by Ephrin A1-Fc inhibits pancreatic adenocarcinoma cellular invasiveness. Biochem. Biophys. Res. Commun. 320, 1096–1102 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Rodriguez-Lorenzo, L., de la Rica, R., Alvarez-Puebla, R. A., Liz-Marzan, L. M. & Stevens, M. M. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 11, 604–607 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Choi, Y., Park, Y., Kang, T. & Lee, L. P. Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat. Nanotech. 4, 742–746 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Nusz, G. J. et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal. Chem. 80, 984–989 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Ghosh, S. K. & Pa, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Lee, K., Cui, Y., Lee, L. P. & Irudayaraj, J. Quantitative imaging of single mRNA splice variants in living cells. Nat. Nanotech. 9, 474–480 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Shi, L. et al. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew. Chem. Int. Ed. 52, 6011–6014 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Kalra, H. et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13, 3354–3364 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Vaidyanathan, R. et al. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal. Chem. 86, 11125–11132 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Li, D., Xie, K., Wolff, R. & Abbruzzese, J. L. Pancreatic cancer. Lancet 363, 1049–1057 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Freelove, R. & Walling, A. D. Pancreatic cancer: diagnosis and management. Am. Fam. Physician. 73, 485–492 (2006).

    PubMed  Google Scholar 

  41. 41

    Ballehaninna, U. K. & Chamberlain, R. S. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J. Gastrointest. Oncol. 3, 105–119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 362, 1605–1617 (2010).

    CAS  Article  Google Scholar 

  43. 43

    Ballehaninna, U. K. & Chamberlain, R. S. Biomarkers for pancreatic cancer: promising new markers and options beyond CA 19-9. Tumour Biol. 34, 3279–3292 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Del Villano, B. C. et al. Radioimmunometric assay for monoclonal antibody-defined tumor marker, CA 19-9. Clin. Chem. 29, 549–552 (1983).

    CAS  PubMed  Google Scholar 

  45. 45

    Jazieh, K. A., Foote, M. B. & Diaz, L. A. Jr The clinical utility of biomarkers in the management of pancreatic adenocarcinoma. Semin. Radiat. Oncol. 24, 67–76 (2014).

    Article  Google Scholar 

  46. 46

    Locker, G. Y. et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24, 5313–5327 (2006).

    CAS  Article  Google Scholar 

  47. 47

    Lowenfels, A. B. et al. Pancreatitis and the risk of pancreatic cancer. N. Engl. J. Med. 328, 1433–1437 (1993).

    CAS  Article  Google Scholar 

  48. 48

    Logsdon, C. D. et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res. 63, 2649–2657 (2003).

    CAS  PubMed  Google Scholar 

  49. 49

    Pei, H. et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16, 259–266 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Kinch, M. S. & Carles-Kinch, K. Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin. Exp. Metastasis 20, 59–68 (2003).

    CAS  Article  Google Scholar 

  51. 51

    Chang, Q., Jorgensen, C., Pawson, T. & Hedley, D. W. Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br. J. Cancer 99, 1074–1082 (2008).

    CAS  Article  Google Scholar 

  52. 52

    Dobrzanski, P. et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res. 64, 910–919 (2004).

    CAS  Article  Google Scholar 

  53. 53

    Ansuini, H. et al. Anti-EphA2 antibodies with distinct in vitro properties have equal in vivo efficacy in pancreatic cancer. J. Oncol. 2009, 951917 (2009).

    Article  Google Scholar 

  54. 54

    Archin, N. M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).

    CAS  Article  Google Scholar 

  55. 55

    Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, 968–977 (2016).

    Article  Google Scholar 

  56. 56

    Good, D. M. et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J. Proteome Res. 6, 4549–4555 (2007).

    CAS  Article  Google Scholar 

  57. 57

    Lescuyer, P., Hochstrasser, D. & Rabilloud, T. How shall we use the proteomics toolbox for biomarker discovery? J. Proteome Res. 6, 3371–3376 (2007).

    CAS  Article  Google Scholar 

  58. 58

    Hori, S. S. & Gambhir, S. S. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci. Transl. Med. 3, 1–9 (2011).

    Article  Google Scholar 

  59. 59

    Joshi, G. K. et al. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano 9, 11075–11089 (2015).

    CAS  Article  Google Scholar 

  60. 60

    Brantley, D. M. et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo . Oncogene 21, 7011–7026 (2002).

    CAS  Article  Google Scholar 

  61. 61

    Kinch, M. S. & Carles-Kinch, K. Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin. Exp. Metastasis 20, 59–68 (2003).

    CAS  Article  Google Scholar 

  62. 62

    Evans, D. B. et al. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas. Arch. Surg. 127, 1335–1339 (1992).

    CAS  Article  Google Scholar 

  63. 63

    Yokoi, K. et al. Porous silicon nanocarriers for dual targeting tumor associated endothelial cells and macrophages in stroma of orthotopic human pancreatic cancers. Cancer Lett. 334, 319–327 (2013).

    CAS  Article  Google Scholar 

  64. 64

    Jensen, M. M., Jorgensen, J. T., Binderup, T. & Kjaer, A. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med. Imaging 8, 16 (2008).

    Article  Google Scholar 

  65. 65

    Liang, K. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. figshare (2017).

Download references


We thank P. Mcshane at Houston Methodist Hospital and M. W. Hurd at the University of Texas M.D. Anderson Cancer Center for organizing clinical samples in this study. The work was primarily supported by research funding provided by NIH grants R01Al113725, R01AI122932, U54CA143837 and 5P50CA126752-08, an NIH intramural research program, a John S. Dunn Foundation award, a PANCAN-AACR Career Development Award (14-20-25-KOAY), a Radiological Society of North America seed grant (RSD1429), and the Sheikh Ahmed Center for Pancreatic Cancer Research and the Center for Radiation Oncology Research at The University of Texas M.D. Anderson Cancer Center.

Author information




K.L., F.L., J.F. and Y.H. designed the research plan. K.L., F.L., J.F., D.S. and C.L. performed the experiments. E.J.K., D.W.B., K.Y. and M.H.K. collected the clinical samples and clinical data. K.L., F.L. C.J.L., Y.L., Z.Z. and Y.H. performed data analysis. K.L., F.L., C.J.L., Z.Z. and Y.H. wrote the manuscript, and all authors contributed to the revision of the manuscript.

Corresponding authors

Correspondence to Kai Liang or Fei Liu or Ye Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary methods, figures and tables. (PDF 2563 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Liu, F., Fan, J. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng 1, 0021 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing