Light in diagnosis, therapy and surgery

Light and optical techniques have made profound impacts on modern medicine, with numerous lasers and optical devices currently being used in clinical practice to assess health and treat disease. Recent advances in biomedical optics have enabled increasingly sophisticated technologies — in particular, those that integrate photonics with nanotechnology, biomaterials and genetic engineering. In this Review, we revisit the fundamentals of light–matter interactions, describe the applications of light in imaging, diagnosis, therapy and surgery, overview their clinical use, and discuss the promise of emerging light-based technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Light–tissue interactions.
Figure 2: Medical application areas of light.
Figure 3: Surgical and therapeutic applications of light.
Figure 4: Current and emerging optical imaging.
Figure 5: Various implantable photonic devices at the proof-of-concept stage.

References

  1. 1

    Zaret, M. M. et al. Ocular lesions produced by an optical maser (laser). Science 134, 1525–1526 (1961).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Goldman, L. & Wilson, R. G. Treatment of basal cell epithelioma by laser radiation. JAMA 189, 773–775 (1964).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Sakimoto, T., Rosenblatt, M. I. & Azar, D. T. Laser eye surgery for refractive errors. Lancet 367, 1432–1447 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Marshall, J., Trokel, S., Rothery, S. & Krueger, R. Long-term healing of the central cornea after photorefractive keratectomy using an exicmer laser. Opthalmology 95, 1411–1421 (1988).

    CAS  Article  Google Scholar 

  5. 5

    Solomon, K. D. et al. LASIK world literature review: quality of life and patient satisfaction. Ophthalmology 116, 691–701 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Palanker, D. V. et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med. 2, 58ra85 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Karabag, R. Y. Retinal tears and rhegmatogenous retinal detachment after intravitreal injections: its prevalence and case reports. Digit. J. Ophthalmol. 21, 8–10 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. 8

    Sternberg, P. Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Arch. Ophthalmol. 109, 1242–1257 (1991).

    Article  Google Scholar 

  9. 9

    Tanzi, E. L., Lupton, J. R. & Alster, T. S. Lasers in dermatology: four decades of progress. J. Am. Acad. Dermatol. 49, 1–34 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Anderson, R. R. & Parrish, J. A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220, 524–527 (1983).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Anderson, R. R. & Parrish, J. A. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg. Med. 1, 263–276 (1981).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Nelson, J. S. et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation. Arch. Dermatol. 131, 695–700 (1995).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Fitzpatrick, R. E., Goldman, M. P., Satur, N. M. & Tope, W. D. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch. Dermatol. 132, 395–402 (1996).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Manstein, D., Herron, G. S., Sink, R. K., Tanner, H. & Anderson, R. R. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg. Med. 34, 426–438 (2004).

    PubMed  Article  Google Scholar 

  15. 15

    Sherling, M. et al. Consensus recommendations on the use of an erbium-doped 1,550-nm fractionated laser and its applications in dermatologic laser surgery. Dermatologic Surg. 36, 461–469 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Kositratna, G., Evers, M., Sajjadi, A. & Manstein, D. Rapid fibrin plug formation within cutaneous ablative fractional CO2 laser lesions. Lasers Surg. Med. 48, 125–132 (2016).

    PubMed  Article  Google Scholar 

  17. 17

    Kilmer, S. L. & Anderson, R. R. Clinical use of the Q-switched ruby and the Q-switched Nd:YAG (1064 nm and 532 nm) lasers for treatment of tattoos. J. Dermatol. Surg. Oncol. 19, 330–338 (1993).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Brauer, J. A. et al. Successful and rapid treatment of blue and green tattoo pigment with a novel picosecond laser. Arch. Dermatol. 148, 820–823 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Grossman, M. C., Dierickx, C., Farinelli, W., Flotte, T. & Anderson, R. R. Damage to hair follicles by normal-mode ruby laser pulses. J. Am. Acad. Dermatol. 35, 889–894 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Metelitsa, A. I. & Green, J. B. Home-use laser and light devices for the skin: an update. Semin. Cutan. Med. Surg. 30, 144–147 (2011).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6, 423–431 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Gilling, P., Cass, C., Cresswell, M. & Fraundorfer, M. Holmium laser resection of the prostate: preliminary results of a new method for the treatment of benign prostatic hyperplasia. Urology 47, 48–51 (1996).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Malek, R. S., Kuntzman, R. S. & Barrett, D. M. High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 hours later. Urology 51, 254–256 (1998).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Sofer, M. et al. Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J. Urol. 167, 31–34 (2002).

    PubMed  Article  Google Scholar 

  25. 25

    Ell, C., Lux, G., Hochberger, J., Müller, D. & Demling, L. Laser lithotripsy of common bile duct stones. Gut 29, 746–751 (1988).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Wazni, O. et al. Lead extraction in the contemporary setting: the LExICon study: an observational retrospective study of consecutive laser lead extractions. J. Am. Coll. Cardiol. 55, 579–586 (2010).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Wilkoff, B. L. et al. Pacemaker lead extraction with the laser sheath: results of the pacing lead extraction with the excimer sheath (PLEXES) trial. J. Am. Coll. Cardiol. 33, 1671–1676 (1999).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Grundfest, W. S. et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury. J. Am. Coll. Cardiol. 5, 929–933 (1985).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Min, R. J., Khilnani, N. & Zimmet, S. E. Endovenous laser treatment of saphenous vein reflux: long-term results. J. Vasc. Interv. Radiol. 14, 991–996 (2003).

    PubMed  Article  Google Scholar 

  30. 30

    Proebstle, T. M., Moehler, T. & Herdemann, S. Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: definition of a threshold for the endovenous fluence equivalent. J. Vasc. Surg. 44, 834–839 (2006).

    PubMed  Article  Google Scholar 

  31. 31

    Mccoppin, H. H., Hovenic, W. W. & Wheeland, R. G. Laser treatment of superficial leg veins. Dermatologic Surg. 37, 729–741 (2011).

    CAS  Google Scholar 

  32. 32

    Hibst, R. & Keller, U. Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg. Med. 9, 338–344 (1989).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Wigdor, H. A. et al. Lasers in dentistry. Lasers Surg. Med. 16, 103–133 (1995).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Strong, M. S. & Jako, G. J. Laser surgery in the larynx. Early clinical experience with continuous CO2 laser. Ann. Otol. Rhinol. Laryngol. 81, 792–798 (1972).

    Article  Google Scholar 

  35. 35

    Amin, Z. et al. Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment. Radiology 187, 339–347 (1993).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Mellow, M. H. & Pinkas, H. Endoscopic laser therapy for malignancies affecting the esophagus and gastroesophageal junction: analysis of technical and functional efficacy. Arch. Intern. Med. 145, 1443–1446 (1985).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Wahidi, M. M., Herth, F. J. F. & Ernst, A. State of the art: interventional pulmonology. Chest 131, 261–274 (2007).

    PubMed  Article  Google Scholar 

  38. 38

    Maisels, M. J. & McDonagh, A. F. Phototherapy for neonatal jaundice. N. Engl. J. Med. 358, 920–928 (2008).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Schwarz, T. & Beissert, S. Milestones in photoimmunology. J. Invest. Dermatol. 133, E7–E10 (2013).

    PubMed  Article  Google Scholar 

  40. 40

    Gläser, R. et al. UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J. Allergy Clin. Immunol. 123, 1117–1123 (2009).

    PubMed  Article  CAS  Google Scholar 

  41. 41

    Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773 (2006).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Kripke, M. L. Antigenicity of murine skin tumors induced by ultraviolet light. J. Natl Cancer Inst. 53, 1333–1336 (1974).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Stapelberg, M. P. F., Williams, R. B. H., Byrne, S. N. & Halliday, G. M. The alternative complement pathway seems to be a UVA sensor that leads to systemic immunosuppression. J. Invest. Dermatol. 129, 2694–2701 (2009).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Lim, H. W. et al. Phototherapy in dermatology: a call for action. J. Am. Acad. Dermatol. 72, 1078–1080 (2015).

    PubMed  Article  Google Scholar 

  45. 45

    Johnson-Huang, L. M. et al. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J. Invest. Dermatol. 130, 2654–2663 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Stern, R. S. Psoralen and ultraviolet A light therapy for psoriasis. N. Engl. J. Med. 357, 682–690 (2007).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Norval, M. & Halliday, G. M. The consequences of UV-induced immunosuppression for human health. Photochem. Photobiol. 87, 965–977 (2011).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Becklund, B. R., Severson, K. S., Vang, S.V & DeLuca, H. F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl Acad. Sci. USA 107, 6418–6423 (2010).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Geldenhuys, S. et al. Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes 63, 3759–3769 (2014).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Slusher, T. M. et al. A randomized trial of phototherapy with filtered sunlight in African neonates. N. Engl. J. Med. 373, 1115–1124 (2015).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Anderson, J. L., Glod, C. A., Dai, J., Cao, Y. & Lockley, S. W. Lux vs. wavelength in light treatment of seasonal affective disorder. Acta Psychiatr. Scand. 120, 203–212 (2009).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15, 443–454 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Golden, R. N. et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am. J. Psychiatry 162, 656–662 (2005).

    PubMed  Article  Google Scholar 

  54. 54

    Lockley, S. W., Brainard, G. C. & Czeisler, C. A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 88, 4502–4505 (2003).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Lam, R. W. et al. Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder. JAMA Psychiatry 73, 56–63 (2015).

    Article  Google Scholar 

  56. 56

    Dai, T. et al. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob. Agents Chemother. 57, 1238–1245 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Dai, T. et al. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?. Drug Resist. Updates 15, 233–236 (2012).

    Article  Google Scholar 

  58. 58

    Wu, P. C., Tsai, C. L., Wu, H. L., Yang, Y. H. & Kuo, H. K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 120, 1080–1085 (2013).

    PubMed  Article  Google Scholar 

  59. 59

    Smith, E. L., Hung, L. F. & Huang, J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 53, 421–428 (2012).

    Article  Google Scholar 

  60. 60

    Wang, J., Li, B. & Wu, M. X. Effective and lesion-free cutaneous influenza vaccination. Proc. Natl Acad. Sci. USA 112, 5005–5010 (2015).

    CAS  PubMed  Article  Google Scholar 

  61. 61

    Avci, P., Gupta, G. K., Clark, J., Wikonkal, N. & Hamblin, M. R. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg. Med. Surg. Med. 46, 144–151 (2014).

    Article  Google Scholar 

  62. 62

    Chung, H. et al. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 40, 516–533 (2012).

    PubMed  Article  Google Scholar 

  63. 63

    Chow, R. T., Johnson, M. I., Lopes-Martins, R. A. & Bjordal, J. M. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374, 1897–1908 (2009).

    PubMed  Article  Google Scholar 

  64. 64

    Naeser, M. A. et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J. Neurotrauma 31, 1008–1017 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Arany, P. R. et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci. Transl. Med. 6, 238ra69 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66

    Shapiro, M. G., Homma, K., Villarreal, S., Richter, C.-P. & Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736 (2012).

  67. 67

    Jenkins, M. W. et al. Optical pacing of the embryonic heart. Nat. Photon. 4, 623–626 (2010).

    CAS  Article  Google Scholar 

  68. 68

    Teudt, I. U., Nevel, A. E., Izzo, A. D., Walsh, J. T. & Richter, C.-P. Optical stimulation of the facial nerve: a new monitoring technique?. Laryngoscope 117, 1641–1647 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Wollensak, G., Spoerl, E. & Seiler, T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J. Cataract Refract. Surg. 29, 1780–1785 (2003).

    PubMed  Article  Google Scholar 

  70. 70

    Lang, N. et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Transl. Med. 6, 218ra6 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71

    Roche, E. T. et al. A light-reflecting balloon catheter for atraumatic tissue defect repair. Sci. Transl. Med. 7, 306ra149 (2015).

    PubMed  Article  Google Scholar 

  72. 72

    Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl Acad. Sci. USA 105, 9522–9527 (2008).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Hillel, A. T. et al. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med. 3, 93ra67 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J.Clin. 61, 250–281 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Spring, B. Q., Rizvi, I., Xu, N. & Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci. 14, 1476–1491 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Wan, M. T. & Lin, J. Y. Current evidence and applications of photodynamic therapy in dermatology. Clin. Cosmet. Investig. Dermatol. 7, 145–163 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Lozano, M., Cid, J. & Müller, T. H. Plasma treated with methylene blue and light: clinical efficacy and safety profile. Transfus. Med. Rev. 27, 235–240 (2013).

    PubMed  Article  Google Scholar 

  79. 79

    Yang, Y. et al. Thienopyrrole-expanded BODIPY as a potential NIR photosensitizer for photodynamic therapy. Chem. Commun. 49, 3940–3942 (2013).

    CAS  Article  Google Scholar 

  80. 80

    Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    Kim, Y. R. et al. Bioluminescence-activated deep-tissue photodynamic therapy of cancer. Theranostics 5, 805–817 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Hildebrandt, B. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Jin, C. S., Lovell, J. F., Chen, J. & Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7, 2541–2550 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Cheng, L., Yang, K., Chen, Q. & Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6, 5605–5613 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86

    Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10, 324–332 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87

    Shaikh, N., Hoberman, A., Kaleida, P. H., Ploof, D. L. & Paradise, J. L. Diagnosing otitis media — otoscopy and cerumen removal. N. Engl. J. Med. 362, e62 (2010).

  88. 88

    Thangaratinam, S., Brown, K., Zamora, J., Khan, K. S. & Ewer, A. K. Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systematic review and meta-analysis. Lancet 379, 2459–2464 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Boas, D. A., Elwell, C. E., Ferrari, M. & Taga, G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage 85, 1–5 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    Schwarz, R. A. et al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer 115, 1669–1679 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Humeau-Heurtier, A., Guerreschi, E., Abraham, P. & Mahé, G. Relevance of laser doppler and laser speckle techniques for assessing vascular function: state of the art and future trends. IEEE Trans. Biomed. Eng. 60, 659–666 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92

    Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Boppart, S. A. & Richards-Kortum, R. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Sci. Transl. Med. 6, 253rv2 (2014).

  94. 94

    Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 6, 267ra175 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Shen, L., Hagen, J. A. & Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chip 12, 4240–4243 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Ming, K. et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano 9, 3060–3074 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Ambrosio, M. V. D. et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci. Transl. Med. 7, 286re4 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2013).

    Article  CAS  Google Scholar 

  99. 99

    Shelton, R. L. et al. Optical coherence tomography for advanced screening in the primary care office. J. Biophotonics 7, 525–533 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  100. 100

    de la Rica, R. & Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotech. 8, 1759–1764 (2012).

    Google Scholar 

  101. 101

    Chen, Z. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26, 1285–1292 (2008).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Detection with optical microcavities. Science 317, 783–787 (2007).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Fan, X. & Yun, S.-H. The potential of optofluidic biolasers. Nat. Methods 11, 141–147 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Friedman, A. A., Letai, A., Fisher, D. E. & Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 15, 747–756 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106

    Veitch, A. M., Uedo, N., Yao, K. & East, J. E. Optimizing early upper gastrointestinal cancer detection at endoscopy. Nat. Rev. Gastroenterol. Hepatol. 12, 660–667 (2015).

    PubMed  Article  Google Scholar 

  107. 107

    Deepak, P. et al. Incremental diagnostic yield of chromoendoscopy and outcomes in inflammatory bowel disease patients with a history of colorectal dysplasia on white-light endoscopy. Gastrointest. Endosc. 83, 1005–1012 (2016).

    PubMed  Article  Google Scholar 

  108. 108

    Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417 (2000).

  109. 109

    Liao, Z., Gao, R., Xu, C. & Li, Z.-S. Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest. Endosc. 71, 280–286 (2010).

    PubMed  Article  Google Scholar 

  110. 110

    Drexler, W. & Fujimoto, J. G. State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res. 27, 45–88 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111

    Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112

    Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Tearney, G. J. et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59, 1058–1072 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  114. 114

    Prati, F. et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur. Heart J. 33, 2513–2520 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115

    Bouma, B. E., Tearney, G. J., Compton, C. C. & Nishioka, N. S. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest. Endosc. 51, 467–474 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Liu, L. et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17, 1010–1014 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117

    Yoo, H. et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 17, 1680–1684 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118

    Roblyer, D. et al. Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment. Proc. Natl Acad. Sci. USA 108, 14626–14631 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119

    Schaafsma, B. E. et al. Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Clin. Cancer Res. 21, 577–584 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  120. 120

    Jiang, S. et al. Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment. Clin. Cancer Res. 20, 6006–6015 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Fang, Q. et al. Combined optical and X-ray tomosynthesis breast imaging. Radiology 258, 89–97 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122

    Eggebrecht, A. T. et al. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photon. 8, 448–454 (2014).

    CAS  Article  Google Scholar 

  123. 123

    White, B. R., Liao, S. M., Ferradal, S. L., Inder, T. E. & Culver, J. P. Bedside optical imaging of occipital resting-state functional connectivity in neonates. Neuroimage 59, 2529–2538 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  124. 124

    Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  125. 125

    Buchner, A. M. et al. Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps. Gastroenterology 138, 834–842 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  126. 126

    Moussata, D. et al. Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo. Gut 60, 26–33 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  127. 127

    Sonn, G. A. et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J. Urol. 182, 1299–1305 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  128. 128

    Hsiung, P.-L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med. 14, 454–458 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129

    Sturm, M. B. et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci. Transl. Med. 5, 184ra61 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  130. 130

    Bird-Lieberman, E. L. et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat. Med. 18, 315–321 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131

    Pan, Y. et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci. Transl. Med. 6, 260ra148 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  132. 132

    Burggraaf, J. et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med. 21, 955–961 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133

    Fitzgerald, R. Assessing the potential impact of fluorescence angiography in preventing limb loss. Pod. Today 29, http://www.podiatrytoday.com/assessing-potential-impact-fluorescence-angiography-preventing-limb-loss (2016).

  134. 134

    Choi, M., Kwok, S. J. J. & Yun, S. H. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology 30, 40–49 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135

    Dimitrow, E. et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J. Invest. Dermatol. 129, 1752–1758 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Palczewska, G. et al. Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat. Med. 20, 785–789 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137

    Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138

    Ji, M. et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med. 7, 309ra163 (2015).

  139. 139

    Yao, J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407–410 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Yang, J.-M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18, 1297–1302 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141

    Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotech. 4, 855–860 (2009).

    CAS  Article  Google Scholar 

  142. 142

    Ermilov, S. A. et al. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14, 24007 (2009).

  143. 143

    Kitai, T. et al. Photoacoustic mammography: initial clinical results. Breast Cancer 21, 146–153 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  144. 144

    Scope, A. et al. In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins. Br. J. Dermatol. 163, 1218–1228 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145

    Guitera, P. et al. In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: analysis of 710 consecutive clinically equivocal cases. J. Invest. Dermatol. 132, 2386–2394 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146

    Scarcelli, G., Besner, S., Pineda, R., Kalout, P. & Yun, S. H. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 133, 480–482 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  147. 147

    Tsui, C., Klein, R. & Garabrant, M. Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg. Endosc. Other Interv. Tech. 27, 2253–2257 (2013).

    Article  Google Scholar 

  148. 148

    Omata, J. et al. Acute gastric volvulus associated with wandering spleen in an adult treated laparoscopically after endoscopic reduction: a case report. Surg. Case Reports 2, 47 (2016).

  149. 149

    Jourdan, I. C. et al. Stereoscopic vision provides a significant advantage for precision robotic laparoscopy. Br. J. Surg. 91, 879–885 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150

    Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151

    Nguyen, Q. T. & Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat. Rev. Cancer 13, 653–662 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152

    Widhalm, G. et al. 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS ONE 8, e76988 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153

    Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154

    Choi, H. S. et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 31, 148–153 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155

    Hyun, H. et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 21, 192–197 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156

    Verbeek, F. P. R. et al. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Res. Treat. 143, 333–342 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  157. 157

    Van Der Vorst, J. R. et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer 119, 3411–3418 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158

    van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17, 1315–1319 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159

    Metildi, C. A. et al. Ratiometric activatable cell-penetrating peptides label pancreatic cancer, enabling fluorescence-guided surgery, which reduces metastases and recurrence in orthotopic mouse models. Ann. Surg. Oncol. 22, 2082–2087 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  160. 160

    Whitney, M. A. et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol. 29, 352–356 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161

    Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162

    Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med. 8, 320ra4 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  163. 163

    Ehlers, J. P. et al. The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomography (PIONEER) study: 2-year results. Am. J. Ophthalmol. 158, 999–1007 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  164. 164

    Prati, F. et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8, 823–829 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  165. 165

    Kut, C. et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci. Transl. Med. 7, 292ra100 (2015).

  166. 166

    Ji, M. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5, 201ra119 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  167. 167

    Jermyn, M. et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med. 7, 274ra19 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168

    Celli, J. P. et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110, 2795–2838 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169

    Yang, V. X. D., Muller, P. J., Herman, P. & Wilson, B. C. A multispectral fluorescence imaging system: design and initial clinical tests in intra-operative Photofrin-photodynamic therapy of brain tumors. Lasers Surg. Med. 32, 224–232 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  170. 170

    Ntziachristos, V. et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA 101, 12294–12299 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171

    Atreya, R. et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn's disease. Nat. Med. 20, 313–318 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172

    Zhang, R. et al. Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy. J. Biomed. Opt. 18, 110504 (2013).

  173. 173

    Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174

    Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

  175. 175

    Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    CAS  Article  Google Scholar 

  177. 177

    Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  178. 178

    Youan, B. B. C. Chronopharmaceutical drug delivery systems: hurdles, hype or hope?. Adv. Drug Deliv. Rev. 62, 898–903 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179

    Jayakumar, M. K. G., Idris, N. M. & Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl Acad. Sci. USA 109, 8483–8488 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  180. 180

    Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  181. 181

    Carter, K. A. et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 5, 3546 (2014).

  182. 182

    Li, Y. et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 5, 4712 (2014).

  183. 183

    Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  184. 184

    Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18, 829–834 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  185. 185

    Lin, J. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  186. 186

    Liu, J. et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 9, 696–707 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  187. 187

    Spring, B. Q. et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotech. 11, 378–387 (2016).

    CAS  Article  Google Scholar 

  188. 188

    Pasparakis, G., Manouras, T., Vamvakaki, M. & Argitis, P. Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy. Nat. Commun. 5, 3623 (2014).

  189. 189

    Lukianova-Hleb, E. Y. et al. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat. Med. 20, 778–784 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  190. 190

    Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

  191. 191

    Tong, R. & Langer, R. Nanomedicines targeting the tumor microenvironment. Cancer J. 21, 314–321 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  192. 192

    Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  193. 193

    von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. 194

    Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotech. http://dx.doi.org/10.1038/nnano.2016.187 (2016).

  195. 195

    Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196

    Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  197. 197

    Creed, M., Pascoli, V. J. & Luscher, C. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347, 659–664 (2015).

    CAS  PubMed  Article  Google Scholar 

  198. 198

    Williams, J. C. & Denison, T. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med. 5, 177ps6 (2013).

  199. 199

    Chow, B. Y. & Boyden, E. S. Optogenetics and translational medicine. Sci. Transl. Med. 5, 177ps5 (2013).

  200. 200

    Ramirez, S. et al. Activating positive memory engrams suppresses depression-like behaviour. Nature 522, 335–339 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  201. 201

    Iyer, S. M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 32, 274–278 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. 202

    Bruegmann, T. et al. Optogenetic control of contractile function in skeletal muscle. Nat. Commun. 6, 7153 (2015).

  203. 203

    Busskamp, V. & Roska, B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol. 21, 942–946 (2011).

    CAS  PubMed  Article  Google Scholar 

  204. 204

    Barrett, J. M., Berlinguer-Palmini, R. & Degenaar, P. Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 31, 345–354 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  205. 205

    Kramer, R. H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  206. 206

    Polosukhina, A. et al. Photochemical restoration of visual responses in blind mice. Neuron 75, 271–282 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  207. 207

    Mourot, A. et al. Rapid optical control of nociception with an ion-channel photoswitch. Nat. Methods 9, 396–402 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  208. 208

    Levitz, J. et al. Optical control of metabotropic glutamate receptors. Nat. Neurosci. 16, 507–516 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  209. 209

    Gaub, B. M. et al. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc. Natl. Acad. Sci. USA 111, E5574–E5583 (2014).

    CAS  PubMed  Article  Google Scholar 

  210. 210

    Melyan, Z., Tarttelin, E. E., Bellingham, J., Lucas, R. J. & Hankins, M. W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005).

    CAS  PubMed  Article  Google Scholar 

  211. 211

    Ye, H., Daoud-El Baba, M., Peng, R.-W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011).

    CAS  PubMed  Article  Google Scholar 

  212. 212

    Choi, M. et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photon. 7, 987–994 (2013).

    CAS  Article  Google Scholar 

  213. 213

    Gao, L. et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 5, 4938 (2014).

  214. 214

    White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7, 811–816 (2013).

    CAS  Article  Google Scholar 

  215. 215

    Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013).

    CAS  PubMed  Article  Google Scholar 

  216. 216

    Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014).

  217. 217

    Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  218. 218

    Lee, H. et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat. Commun. 6, 10059 (2015).

  219. 219

    Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012).

    CAS  Article  Google Scholar 

  220. 220

    Kim, R.-H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010).

    CAS  PubMed  Article  Google Scholar 

  221. 221

    Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  222. 222

    Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  223. 223

    Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  224. 224

    Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  225. 225

    Folcher, M. et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun. 5, 5392 (2014).

  226. 226

    Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).

    CAS  PubMed  Article  Google Scholar 

  227. 227

    Lee, S. H., Jeong, C. K., Hwang, G.-T. & Lee, K. J. Self-powered flexible inorganic electronic system. Nano Energy 14, 111–125 (2014).

    Article  CAS  Google Scholar 

  228. 228

    Bae, B. et al. Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Biomaterials 35, 8487–8495 (2014).

    CAS  PubMed  Article  Google Scholar 

  229. 229

    Choi, M., Humar, M., Kim, S. & Yun, S.-H. Step-index optical fiber made of biocompatible hydrogels. Adv. Mater. 27, 4081–4086 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  230. 230

    Nizamoglu, S. et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 7, 10374 (2015).

  231. 231

    Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  232. 232

    Humar, M. & Yun, S. H. Intracellular microlasers. Nat. Photon. 9, 572–576 (2015).

    CAS  Article  Google Scholar 

  233. 233

    Cho, S., Humar, M., Martino, N. & Yun, S. H. Laser particle stimulated emission microscopy. Phys. Rev. Lett. 117, 193902 (2016).

  234. 234

    van Allen, H. W. Some new applications of electricity and light in medicine. N. Engl. J. Med. 160, 331–333 (1909).

    Google Scholar 

  235. 235

    Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  236. 236

    Moritz, A. R. & Henriques, F. C. J. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol. 23, 695–720 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. 237

    Srinivasan, R. Ablation of polymers and biological tissue by ultraviolet lasers. Science 234, 559–565 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  238. 238

    Cain, C. P. et al. ICNIRP guidelines: revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1. 4 μm. Health Phys. 79, 431–440 (2000).

    Article  Google Scholar 

  239. 239

    Thekaekara, M. P. Solar radiation measurement: techniques and instrumentation. Sol. Energy 18, 309–325 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health Director's Pioneer Award (DP1-OD022296) and grants P41-EB015903, R01-EY025454 and R01-CA192878, and National Science Foundation grants ECCS-1505569 and CMMI-1562863.

Author information

Affiliations

Authors

Contributions

S.H.Y. and S.J.J.K. conceived and wrote the manuscript.

Corresponding author

Correspondence to Seok Hyun Yun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Kwok, S. Light in diagnosis, therapy and surgery. Nat Biomed Eng 1, 0008 (2017). https://doi.org/10.1038/s41551-016-0008

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing