Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Light in diagnosis, therapy and surgery

Light and optical techniques have made profound impacts on modern medicine, with numerous lasers and optical devices currently being used in clinical practice to assess health and treat disease. Recent advances in biomedical optics have enabled increasingly sophisticated technologies — in particular, those that integrate photonics with nanotechnology, biomaterials and genetic engineering. In this Review, we revisit the fundamentals of light–matter interactions, describe the applications of light in imaging, diagnosis, therapy and surgery, overview their clinical use, and discuss the promise of emerging light-based technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light–tissue interactions.
Figure 2: Medical application areas of light.
Figure 3: Surgical and therapeutic applications of light.
Figure 4: Current and emerging optical imaging.
Figure 5: Various implantable photonic devices at the proof-of-concept stage.

References

  1. Zaret, M. M. et al. Ocular lesions produced by an optical maser (laser). Science 134, 1525–1526 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Goldman, L. & Wilson, R. G. Treatment of basal cell epithelioma by laser radiation. JAMA 189, 773–775 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Sakimoto, T., Rosenblatt, M. I. & Azar, D. T. Laser eye surgery for refractive errors. Lancet 367, 1432–1447 (2006).

    Article  PubMed  Google Scholar 

  4. Marshall, J., Trokel, S., Rothery, S. & Krueger, R. Long-term healing of the central cornea after photorefractive keratectomy using an exicmer laser. Opthalmology 95, 1411–1421 (1988).

    Article  CAS  Google Scholar 

  5. Solomon, K. D. et al. LASIK world literature review: quality of life and patient satisfaction. Ophthalmology 116, 691–701 (2009).

    Article  PubMed  Google Scholar 

  6. Palanker, D. V. et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci. Transl. Med. 2, 58ra85 (2010).

    Article  PubMed  Google Scholar 

  7. Karabag, R. Y. Retinal tears and rhegmatogenous retinal detachment after intravitreal injections: its prevalence and case reports. Digit. J. Ophthalmol. 21, 8–10 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Sternberg, P. Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Arch. Ophthalmol. 109, 1242–1257 (1991).

    Article  Google Scholar 

  9. Tanzi, E. L., Lupton, J. R. & Alster, T. S. Lasers in dermatology: four decades of progress. J. Am. Acad. Dermatol. 49, 1–34 (2003).

    Article  PubMed  Google Scholar 

  10. Anderson, R. R. & Parrish, J. A. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220, 524–527 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Anderson, R. R. & Parrish, J. A. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg. Med. 1, 263–276 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Nelson, J. S. et al. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation. Arch. Dermatol. 131, 695–700 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Fitzpatrick, R. E., Goldman, M. P., Satur, N. M. & Tope, W. D. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch. Dermatol. 132, 395–402 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Manstein, D., Herron, G. S., Sink, R. K., Tanner, H. & Anderson, R. R. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg. Med. 34, 426–438 (2004).

    Article  PubMed  Google Scholar 

  15. Sherling, M. et al. Consensus recommendations on the use of an erbium-doped 1,550-nm fractionated laser and its applications in dermatologic laser surgery. Dermatologic Surg. 36, 461–469 (2010).

    Article  CAS  Google Scholar 

  16. Kositratna, G., Evers, M., Sajjadi, A. & Manstein, D. Rapid fibrin plug formation within cutaneous ablative fractional CO2 laser lesions. Lasers Surg. Med. 48, 125–132 (2016).

    Article  PubMed  Google Scholar 

  17. Kilmer, S. L. & Anderson, R. R. Clinical use of the Q-switched ruby and the Q-switched Nd:YAG (1064 nm and 532 nm) lasers for treatment of tattoos. J. Dermatol. Surg. Oncol. 19, 330–338 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Brauer, J. A. et al. Successful and rapid treatment of blue and green tattoo pigment with a novel picosecond laser. Arch. Dermatol. 148, 820–823 (2012).

    Article  PubMed  Google Scholar 

  19. Grossman, M. C., Dierickx, C., Farinelli, W., Flotte, T. & Anderson, R. R. Damage to hair follicles by normal-mode ruby laser pulses. J. Am. Acad. Dermatol. 35, 889–894 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Metelitsa, A. I. & Green, J. B. Home-use laser and light devices for the skin: an update. Semin. Cutan. Med. Surg. 30, 144–147 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6, 423–431 (2012).

    Article  CAS  Google Scholar 

  22. Gilling, P., Cass, C., Cresswell, M. & Fraundorfer, M. Holmium laser resection of the prostate: preliminary results of a new method for the treatment of benign prostatic hyperplasia. Urology 47, 48–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Malek, R. S., Kuntzman, R. S. & Barrett, D. M. High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 hours later. Urology 51, 254–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Sofer, M. et al. Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J. Urol. 167, 31–34 (2002).

    Article  PubMed  Google Scholar 

  25. Ell, C., Lux, G., Hochberger, J., Müller, D. & Demling, L. Laser lithotripsy of common bile duct stones. Gut 29, 746–751 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wazni, O. et al. Lead extraction in the contemporary setting: the LExICon study: an observational retrospective study of consecutive laser lead extractions. J. Am. Coll. Cardiol. 55, 579–586 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Wilkoff, B. L. et al. Pacemaker lead extraction with the laser sheath: results of the pacing lead extraction with the excimer sheath (PLEXES) trial. J. Am. Coll. Cardiol. 33, 1671–1676 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Grundfest, W. S. et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury. J. Am. Coll. Cardiol. 5, 929–933 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Min, R. J., Khilnani, N. & Zimmet, S. E. Endovenous laser treatment of saphenous vein reflux: long-term results. J. Vasc. Interv. Radiol. 14, 991–996 (2003).

    Article  PubMed  Google Scholar 

  30. Proebstle, T. M., Moehler, T. & Herdemann, S. Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: definition of a threshold for the endovenous fluence equivalent. J. Vasc. Surg. 44, 834–839 (2006).

    Article  PubMed  Google Scholar 

  31. Mccoppin, H. H., Hovenic, W. W. & Wheeland, R. G. Laser treatment of superficial leg veins. Dermatologic Surg. 37, 729–741 (2011).

    CAS  Google Scholar 

  32. Hibst, R. & Keller, U. Experimental studies of the application of the Er:YAG laser on dental hard substances: I. Measurement of the ablation rate. Lasers Surg. Med. 9, 338–344 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Wigdor, H. A. et al. Lasers in dentistry. Lasers Surg. Med. 16, 103–133 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Strong, M. S. & Jako, G. J. Laser surgery in the larynx. Early clinical experience with continuous CO2 laser. Ann. Otol. Rhinol. Laryngol. 81, 792–798 (1972).

    Article  Google Scholar 

  35. Amin, Z. et al. Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment. Radiology 187, 339–347 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Mellow, M. H. & Pinkas, H. Endoscopic laser therapy for malignancies affecting the esophagus and gastroesophageal junction: analysis of technical and functional efficacy. Arch. Intern. Med. 145, 1443–1446 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Wahidi, M. M., Herth, F. J. F. & Ernst, A. State of the art: interventional pulmonology. Chest 131, 261–274 (2007).

    Article  PubMed  Google Scholar 

  38. Maisels, M. J. & McDonagh, A. F. Phototherapy for neonatal jaundice. N. Engl. J. Med. 358, 920–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz, T. & Beissert, S. Milestones in photoimmunology. J. Invest. Dermatol. 133, E7–E10 (2013).

    Article  PubMed  Google Scholar 

  40. Gläser, R. et al. UV-B radiation induces the expression of antimicrobial peptides in human keratinocytes in vitro and in vivo. J. Allergy Clin. Immunol. 123, 1117–1123 (2009).

    Article  PubMed  CAS  Google Scholar 

  41. Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kripke, M. L. Antigenicity of murine skin tumors induced by ultraviolet light. J. Natl Cancer Inst. 53, 1333–1336 (1974).

    Article  CAS  PubMed  Google Scholar 

  43. Stapelberg, M. P. F., Williams, R. B. H., Byrne, S. N. & Halliday, G. M. The alternative complement pathway seems to be a UVA sensor that leads to systemic immunosuppression. J. Invest. Dermatol. 129, 2694–2701 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Lim, H. W. et al. Phototherapy in dermatology: a call for action. J. Am. Acad. Dermatol. 72, 1078–1080 (2015).

    Article  PubMed  Google Scholar 

  45. Johnson-Huang, L. M. et al. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J. Invest. Dermatol. 130, 2654–2663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stern, R. S. Psoralen and ultraviolet A light therapy for psoriasis. N. Engl. J. Med. 357, 682–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Norval, M. & Halliday, G. M. The consequences of UV-induced immunosuppression for human health. Photochem. Photobiol. 87, 965–977 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Becklund, B. R., Severson, K. S., Vang, S.V & DeLuca, H. F. UV radiation suppresses experimental autoimmune encephalomyelitis independent of vitamin D production. Proc. Natl Acad. Sci. USA 107, 6418–6423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geldenhuys, S. et al. Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet. Diabetes 63, 3759–3769 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Slusher, T. M. et al. A randomized trial of phototherapy with filtered sunlight in African neonates. N. Engl. J. Med. 373, 1115–1124 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Anderson, J. L., Glod, C. A., Dai, J., Cao, Y. & Lockley, S. W. Lux vs. wavelength in light treatment of seasonal affective disorder. Acta Psychiatr. Scand. 120, 203–212 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15, 443–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Golden, R. N. et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am. J. Psychiatry 162, 656–662 (2005).

    Article  PubMed  Google Scholar 

  54. Lockley, S. W., Brainard, G. C. & Czeisler, C. A. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 88, 4502–4505 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Lam, R. W. et al. Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder. JAMA Psychiatry 73, 56–63 (2015).

    Article  Google Scholar 

  56. Dai, T. et al. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob. Agents Chemother. 57, 1238–1245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dai, T. et al. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?. Drug Resist. Updates 15, 233–236 (2012).

    Article  Google Scholar 

  58. Wu, P. C., Tsai, C. L., Wu, H. L., Yang, Y. H. & Kuo, H. K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 120, 1080–1085 (2013).

    Article  PubMed  Google Scholar 

  59. Smith, E. L., Hung, L. F. & Huang, J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 53, 421–428 (2012).

    Article  Google Scholar 

  60. Wang, J., Li, B. & Wu, M. X. Effective and lesion-free cutaneous influenza vaccination. Proc. Natl Acad. Sci. USA 112, 5005–5010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Avci, P., Gupta, G. K., Clark, J., Wikonkal, N. & Hamblin, M. R. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg. Med. Surg. Med. 46, 144–151 (2014).

    Article  Google Scholar 

  62. Chung, H. et al. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 40, 516–533 (2012).

    Article  PubMed  Google Scholar 

  63. Chow, R. T., Johnson, M. I., Lopes-Martins, R. A. & Bjordal, J. M. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374, 1897–1908 (2009).

    Article  PubMed  Google Scholar 

  64. Naeser, M. A. et al. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: open-protocol study. J. Neurotrauma 31, 1008–1017 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Arany, P. R. et al. Photoactivation of endogenous latent transforming growth factor-β1 directs dental stem cell differentiation for regeneration. Sci. Transl. Med. 6, 238ra69 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Shapiro, M. G., Homma, K., Villarreal, S., Richter, C.-P. & Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736 (2012).

  67. Jenkins, M. W. et al. Optical pacing of the embryonic heart. Nat. Photon. 4, 623–626 (2010).

    Article  CAS  Google Scholar 

  68. Teudt, I. U., Nevel, A. E., Izzo, A. D., Walsh, J. T. & Richter, C.-P. Optical stimulation of the facial nerve: a new monitoring technique?. Laryngoscope 117, 1641–1647 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wollensak, G., Spoerl, E. & Seiler, T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J. Cataract Refract. Surg. 29, 1780–1785 (2003).

    Article  PubMed  Google Scholar 

  70. Lang, N. et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Transl. Med. 6, 218ra6 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Roche, E. T. et al. A light-reflecting balloon catheter for atraumatic tissue defect repair. Sci. Transl. Med. 7, 306ra149 (2015).

    Article  PubMed  Google Scholar 

  72. Du, Y., Lo, E., Ali, S. & Khademhosseini, A. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl Acad. Sci. USA 105, 9522–9527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hillel, A. T. et al. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci. Transl. Med. 3, 93ra67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J.Clin. 61, 250–281 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Spring, B. Q., Rizvi, I., Xu, N. & Hasan, T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci. 14, 1476–1491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wan, M. T. & Lin, J. Y. Current evidence and applications of photodynamic therapy in dermatology. Clin. Cosmet. Investig. Dermatol. 7, 145–163 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Lozano, M., Cid, J. & Müller, T. H. Plasma treated with methylene blue and light: clinical efficacy and safety profile. Transfus. Med. Rev. 27, 235–240 (2013).

    Article  PubMed  Google Scholar 

  79. Yang, Y. et al. Thienopyrrole-expanded BODIPY as a potential NIR photosensitizer for photodynamic therapy. Chem. Commun. 49, 3940–3942 (2013).

    Article  CAS  Google Scholar 

  80. Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Kim, Y. R. et al. Bioluminescence-activated deep-tissue photodynamic therapy of cancer. Theranostics 5, 805–817 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hildebrandt, B. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002).

    Article  PubMed  Google Scholar 

  83. Jin, C. S., Lovell, J. F., Chen, J. & Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7, 2541–2550 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Cheng, L., Yang, K., Chen, Q. & Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6, 5605–5613 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Shaikh, N., Hoberman, A., Kaleida, P. H., Ploof, D. L. & Paradise, J. L. Diagnosing otitis media — otoscopy and cerumen removal. N. Engl. J. Med. 362, e62 (2010).

  88. Thangaratinam, S., Brown, K., Zamora, J., Khan, K. S. & Ewer, A. K. Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systematic review and meta-analysis. Lancet 379, 2459–2464 (2012).

    Article  PubMed  Google Scholar 

  89. Boas, D. A., Elwell, C. E., Ferrari, M. & Taga, G. Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage 85, 1–5 (2014).

    Article  PubMed  Google Scholar 

  90. Schwarz, R. A. et al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer 115, 1669–1679 (2009).

    Article  PubMed  Google Scholar 

  91. Humeau-Heurtier, A., Guerreschi, E., Abraham, P. & Mahé, G. Relevance of laser doppler and laser speckle techniques for assessing vascular function: state of the art and future trends. IEEE Trans. Biomed. Eng. 60, 659–666 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Boppart, S. A. & Richards-Kortum, R. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. Sci. Transl. Med. 6, 253rv2 (2014).

  94. Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 6, 267ra175 (2014).

    Article  PubMed  Google Scholar 

  95. Shen, L., Hagen, J. A. & Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chip 12, 4240–4243 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Ming, K. et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano 9, 3060–3074 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Ambrosio, M. V. D. et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci. Transl. Med. 7, 286re4 (2015).

    Article  PubMed  Google Scholar 

  98. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2013).

    Article  CAS  Google Scholar 

  99. Shelton, R. L. et al. Optical coherence tomography for advanced screening in the primary care office. J. Biophotonics 7, 525–533 (2014).

    Article  PubMed  Google Scholar 

  100. de la Rica, R. & Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotech. 8, 1759–1764 (2012).

    Google Scholar 

  101. Chen, Z. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26, 1285–1292 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Detection with optical microcavities. Science 317, 783–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Fan, X. & Yun, S.-H. The potential of optofluidic biolasers. Nat. Methods 11, 141–147 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Friedman, A. A., Letai, A., Fisher, D. E. & Flaherty, K. T. Precision medicine for cancer with next-generation functional diagnostics. Nat. Rev. Cancer 15, 747–756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Veitch, A. M., Uedo, N., Yao, K. & East, J. E. Optimizing early upper gastrointestinal cancer detection at endoscopy. Nat. Rev. Gastroenterol. Hepatol. 12, 660–667 (2015).

    Article  PubMed  Google Scholar 

  107. Deepak, P. et al. Incremental diagnostic yield of chromoendoscopy and outcomes in inflammatory bowel disease patients with a history of colorectal dysplasia on white-light endoscopy. Gastrointest. Endosc. 83, 1005–1012 (2016).

    Article  PubMed  Google Scholar 

  108. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417 (2000).

  109. Liao, Z., Gao, R., Xu, C. & Li, Z.-S. Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review. Gastrointest. Endosc. 71, 280–286 (2010).

    Article  PubMed  Google Scholar 

  110. Drexler, W. & Fujimoto, J. G. State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res. 27, 45–88 (2008).

    Article  PubMed  Google Scholar 

  111. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yun, S. H. et al. Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tearney, G. J. et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59, 1058–1072 (2012).

    Article  PubMed  Google Scholar 

  114. Prati, F. et al. Expert review document part 2: methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur. Heart J. 33, 2513–2520 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bouma, B. E., Tearney, G. J., Compton, C. C. & Nishioka, N. S. High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest. Endosc. 51, 467–474 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Liu, L. et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17, 1010–1014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoo, H. et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 17, 1680–1684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roblyer, D. et al. Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment. Proc. Natl Acad. Sci. USA 108, 14626–14631 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schaafsma, B. E. et al. Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Clin. Cancer Res. 21, 577–584 (2015).

    Article  PubMed  Google Scholar 

  120. Jiang, S. et al. Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment. Clin. Cancer Res. 20, 6006–6015 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fang, Q. et al. Combined optical and X-ray tomosynthesis breast imaging. Radiology 258, 89–97 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Eggebrecht, A. T. et al. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photon. 8, 448–454 (2014).

    Article  CAS  Google Scholar 

  123. White, B. R., Liao, S. M., Ferradal, S. L., Inder, T. E. & Culver, J. P. Bedside optical imaging of occipital resting-state functional connectivity in neonates. Neuroimage 59, 2529–2538 (2012).

    Article  PubMed  Google Scholar 

  124. Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).

    Article  PubMed  Google Scholar 

  125. Buchner, A. M. et al. Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps. Gastroenterology 138, 834–842 (2010).

    Article  PubMed  Google Scholar 

  126. Moussata, D. et al. Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo. Gut 60, 26–33 (2011).

    Article  PubMed  Google Scholar 

  127. Sonn, G. A. et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J. Urol. 182, 1299–1305 (2009).

    Article  PubMed  Google Scholar 

  128. Hsiung, P.-L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med. 14, 454–458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sturm, M. B. et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci. Transl. Med. 5, 184ra61 (2013).

    Article  PubMed  CAS  Google Scholar 

  130. Bird-Lieberman, E. L. et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett's esophagus. Nat. Med. 18, 315–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Pan, Y. et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci. Transl. Med. 6, 260ra148 (2014).

    Article  PubMed  CAS  Google Scholar 

  132. Burggraaf, J. et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med. 21, 955–961 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Fitzgerald, R. Assessing the potential impact of fluorescence angiography in preventing limb loss. Pod. Today 29, http://www.podiatrytoday.com/assessing-potential-impact-fluorescence-angiography-preventing-limb-loss (2016).

  134. Choi, M., Kwok, S. J. J. & Yun, S. H. In vivo fluorescence microscopy: lessons from observing cell behavior in their native environment. Physiology 30, 40–49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dimitrow, E. et al. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J. Invest. Dermatol. 129, 1752–1758 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Palczewska, G. et al. Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat. Med. 20, 785–789 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ji, M. et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med. 7, 309ra163 (2015).

  139. Yao, J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407–410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, J.-M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18, 1297–1302 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Galanzha, E. I. et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotech. 4, 855–860 (2009).

    Article  CAS  Google Scholar 

  142. Ermilov, S. A. et al. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14, 24007 (2009).

  143. Kitai, T. et al. Photoacoustic mammography: initial clinical results. Breast Cancer 21, 146–153 (2014).

    Article  PubMed  Google Scholar 

  144. Scope, A. et al. In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins. Br. J. Dermatol. 163, 1218–1228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Guitera, P. et al. In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: analysis of 710 consecutive clinically equivocal cases. J. Invest. Dermatol. 132, 2386–2394 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Scarcelli, G., Besner, S., Pineda, R., Kalout, P. & Yun, S. H. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 133, 480–482 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Tsui, C., Klein, R. & Garabrant, M. Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg. Endosc. Other Interv. Tech. 27, 2253–2257 (2013).

    Article  Google Scholar 

  148. Omata, J. et al. Acute gastric volvulus associated with wandering spleen in an adult treated laparoscopically after endoscopic reduction: a case report. Surg. Case Reports 2, 47 (2016).

  149. Jourdan, I. C. et al. Stereoscopic vision provides a significant advantage for precision robotic laparoscopy. Br. J. Surg. 91, 879–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nguyen, Q. T. & Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat. Rev. Cancer 13, 653–662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Widhalm, G. et al. 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS ONE 8, e76988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stummer, W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Choi, H. S. et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 31, 148–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Hyun, H. et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat. Med. 21, 192–197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Verbeek, F. P. R. et al. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Res. Treat. 143, 333–342 (2014).

    Article  PubMed  Google Scholar 

  157. Van Der Vorst, J. R. et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer 119, 3411–3418 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17, 1315–1319 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Metildi, C. A. et al. Ratiometric activatable cell-penetrating peptides label pancreatic cancer, enabling fluorescence-guided surgery, which reduces metastases and recurrence in orthotopic mouse models. Ann. Surg. Oncol. 22, 2082–2087 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Whitney, M. A. et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat. Biotechnol. 29, 352–356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Whitley, M. J. et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med. 8, 320ra4 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Ehlers, J. P. et al. The prospective intraoperative and perioperative ophthalmic imaging with optical coherence tomography (PIONEER) study: 2-year results. Am. J. Ophthalmol. 158, 999–1007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Prati, F. et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention 8, 823–829 (2012).

    Article  PubMed  Google Scholar 

  165. Kut, C. et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci. Transl. Med. 7, 292ra100 (2015).

  166. Ji, M. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5, 201ra119 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Jermyn, M. et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci. Transl. Med. 7, 274ra19 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Celli, J. P. et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110, 2795–2838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang, V. X. D., Muller, P. J., Herman, P. & Wilson, B. C. A multispectral fluorescence imaging system: design and initial clinical tests in intra-operative Photofrin-photodynamic therapy of brain tumors. Lasers Surg. Med. 32, 224–232 (2003).

    Article  PubMed  Google Scholar 

  170. Ntziachristos, V. et al. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA 101, 12294–12299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Atreya, R. et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn's disease. Nat. Med. 20, 313–318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, R. et al. Real-time in vivo Cherenkoscopy imaging during external beam radiation therapy. J. Biomed. Opt. 18, 110504 (2013).

  173. Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

  175. Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    Article  CAS  Google Scholar 

  177. Doane, T. L. & Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Youan, B. B. C. Chronopharmaceutical drug delivery systems: hurdles, hype or hope?. Adv. Drug Deliv. Rev. 62, 898–903 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jayakumar, M. K. G., Idris, N. M. & Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl Acad. Sci. USA 109, 8483–8488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yavuz, M. S. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Carter, K. A. et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 5, 3546 (2014).

  182. Li, Y. et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 5, 4712 (2014).

  183. Phillips, E. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Kircher, M. F. et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 18, 829–834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lin, J. et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 7, 5320–5329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Liu, J. et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 9, 696–707 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Spring, B. Q. et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotech. 11, 378–387 (2016).

    Article  CAS  Google Scholar 

  188. Pasparakis, G., Manouras, T., Vamvakaki, M. & Argitis, P. Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy. Nat. Commun. 5, 3623 (2014).

  189. Lukianova-Hleb, E. Y. et al. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat. Med. 20, 778–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

  191. Tong, R. & Langer, R. Nanomedicines targeting the tumor microenvironment. Cancer J. 21, 314–321 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotech. http://dx.doi.org/10.1038/nnano.2016.187 (2016).

  195. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Creed, M., Pascoli, V. J. & Luscher, C. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347, 659–664 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Williams, J. C. & Denison, T. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med. 5, 177ps6 (2013).

  199. Chow, B. Y. & Boyden, E. S. Optogenetics and translational medicine. Sci. Transl. Med. 5, 177ps5 (2013).

  200. Ramirez, S. et al. Activating positive memory engrams suppresses depression-like behaviour. Nature 522, 335–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Iyer, S. M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 32, 274–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bruegmann, T. et al. Optogenetic control of contractile function in skeletal muscle. Nat. Commun. 6, 7153 (2015).

  203. Busskamp, V. & Roska, B. Optogenetic approaches to restoring visual function in retinitis pigmentosa. Curr. Opin. Neurobiol. 21, 942–946 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Barrett, J. M., Berlinguer-Palmini, R. & Degenaar, P. Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 31, 345–354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kramer, R. H., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat. Neurosci. 16, 816–823 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Polosukhina, A. et al. Photochemical restoration of visual responses in blind mice. Neuron 75, 271–282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Mourot, A. et al. Rapid optical control of nociception with an ion-channel photoswitch. Nat. Methods 9, 396–402 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Levitz, J. et al. Optical control of metabotropic glutamate receptors. Nat. Neurosci. 16, 507–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gaub, B. M. et al. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc. Natl. Acad. Sci. USA 111, E5574–E5583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Melyan, Z., Tarttelin, E. E., Bellingham, J., Lucas, R. J. & Hankins, M. W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Ye, H., Daoud-El Baba, M., Peng, R.-W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Choi, M. et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photon. 7, 987–994 (2013).

    Article  CAS  Google Scholar 

  213. Gao, L. et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 5, 4938 (2014).

  214. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photon. 7, 811–816 (2013).

    Article  CAS  Google Scholar 

  215. Wang, C. et al. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014).

  217. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Lee, H. et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat. Commun. 6, 10059 (2015).

  219. Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012).

    Article  CAS  Google Scholar 

  220. Kim, R.-H. et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater. 9, 929–937 (2010).

    Article  CAS  PubMed  Google Scholar 

  221. Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Folcher, M. et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun. 5, 5392 (2014).

  226. Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Lee, S. H., Jeong, C. K., Hwang, G.-T. & Lee, K. J. Self-powered flexible inorganic electronic system. Nano Energy 14, 111–125 (2014).

    Article  CAS  Google Scholar 

  228. Bae, B. et al. Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Biomaterials 35, 8487–8495 (2014).

    Article  CAS  PubMed  Google Scholar 

  229. Choi, M., Humar, M., Kim, S. & Yun, S.-H. Step-index optical fiber made of biocompatible hydrogels. Adv. Mater. 27, 4081–4086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Nizamoglu, S. et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 7, 10374 (2015).

  231. Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Humar, M. & Yun, S. H. Intracellular microlasers. Nat. Photon. 9, 572–576 (2015).

    Article  CAS  Google Scholar 

  233. Cho, S., Humar, M., Martino, N. & Yun, S. H. Laser particle stimulated emission microscopy. Phys. Rev. Lett. 117, 193902 (2016).

  234. van Allen, H. W. Some new applications of electricity and light in medicine. N. Engl. J. Med. 160, 331–333 (1909).

    Google Scholar 

  235. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    Article  PubMed  Google Scholar 

  236. Moritz, A. R. & Henriques, F. C. J. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol. 23, 695–720 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Srinivasan, R. Ablation of polymers and biological tissue by ultraviolet lasers. Science 234, 559–565 (1986).

    Article  CAS  PubMed  Google Scholar 

  238. Cain, C. P. et al. ICNIRP guidelines: revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1. 4 μm. Health Phys. 79, 431–440 (2000).

    Article  Google Scholar 

  239. Thekaekara, M. P. Solar radiation measurement: techniques and instrumentation. Sol. Energy 18, 309–325 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health Director's Pioneer Award (DP1-OD022296) and grants P41-EB015903, R01-EY025454 and R01-CA192878, and National Science Foundation grants ECCS-1505569 and CMMI-1562863.

Author information

Authors and Affiliations

Authors

Contributions

S.H.Y. and S.J.J.K. conceived and wrote the manuscript.

Corresponding author

Correspondence to Seok Hyun Yun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, S., Kwok, S. Light in diagnosis, therapy and surgery. Nat Biomed Eng 1, 0008 (2017). https://doi.org/10.1038/s41551-016-0008

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-016-0008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing