Examination of the foreign body response to biomaterials by nonlinear intravital microscopy

Abstract

Implanted biomaterials often fail because they elicit a foreign body response (FBR) and concomitant fibrotic encapsulation. To design clinically relevant interference approaches, it is crucial to first examine the FBR mechanisms. Here, we report the development and validation of infrared-excited nonlinear microscopy to resolve the three-dimensional (3D) organization and fate of 3D-electrospun scaffolds implanted deep into the skin of mice and the following step-wise FBR process. We observed that immigrating myeloid cells (predominantly macrophages of the M1 type) engaged and became immobilized along the scaffold/tissue interface, before forming multinucleated giant cells. Both macrophages and giant cells locally produced vascular endothelial growth factor (VEGF), which initiated and maintained an immature neovessel network, followed by the formation of a dense collagen capsule two- to four-weeks post-implantation. Elimination of the macrophage/giant-cell compartment, by clodronate and/or neutralization of VEGF by VEGF Trap, significantly diminished giant-cell accumulation, neovascularization and fibrosis. Our findings identify macrophages and giant cells as incendiaries of the fibrotic encapsulation of engrafted biomaterials via VEGF release and neovascularization, and therefore as targets for therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Higher harmonic multiphoton microscopy of 3D-printed mPCL-CaP fibres in vitro.
Figure 2: | Generation and characterization of an in vivo model to study the FBR by longitudinal intravital imaging.
Figure 3: Dynamics of infiltrate cells of the FBR monitored by intravital microscopy.
Figure 4: Neovessel development and collagen deposition in the scaffold-elicited FBR monitored by intravital microscopy.
Figure 5: Therapeutic targeting of the FBR by macrophage and VEGF depletion.
Figure 6: Long-term efficacy of macrophage- and VEGF-depletion treatment.
Figure 7: FBR and late-stage scarring mediated by macrophages, giant cells and neovessels.

References

  1. 1

    Babensee, J. E., Anderson, J. M., McIntire, L. V. & Mikos, A. G. Host response to tissue engineered devices. Adv. Drug Deliver. Rev. 33, 111–139 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Ward, W. K. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes Sci. Technol. 2, 768–777 (2008).

    Article  Google Scholar 

  3. 3

    Morais, J. M., Papadimitrakopoulos, F. & Burgess, D. J. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 12, 188–196 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Sheikh, Z., Brooks, P. J., Barzilay, O., Fine, N. & Glogauer, M. Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials 8, 5671–5701 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Sussman, E. M., Halpin, M. C., Muster, J., Moon, R. T. & Ratner, B. D. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42, 1508–1516 (2014).

    Article  Google Scholar 

  6. 6

    Anderson, J. M. Inflammatory response to implants. ASAIO Trans. 34, 101–107 (1988).

    CAS  Article  Google Scholar 

  7. 7

    Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Yu, T., Tutwiler, V. J. & Spiller, K. in Biomaterials in Regenerative Medicine and the Immune System (ed. Santambrogio, L. ) 17–34 (Springer, 2015).

    Google Scholar 

  9. 9

    Spiller, K. L. et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35, 4477–4488 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Moore, L. B. & Kyriakides, T. R. Molecular characterization of macrophage-biomaterial interactions. Adv. Exp. Med. Biol. 865, 109–122 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  Google Scholar 

  14. 14

    Ferrante, C. J. & Leibovich, S. J. Regulation of macrophage polarization and wound healing. Adv. Wound Care 1, 10–16 (2012).

    Article  Google Scholar 

  15. 15

    Rostam, H. M. et al. The impact of surface chemistry modification on macrophage polarisation. Immunobiology 221, 1237–1246 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Palmer, J. A., Abberton, K. M., Mitchell, G. M. & Morrison, W. A. Macrophage phenotype in response to implanted synthetic scaffolds: an immunohistochemical study in the rat. Cells Tissues Organs 199, 169–183 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Yu, T. et al. Temporal and spatial distribution of macrophage phenotype markers in the foreign body response to glutaraldehyde-crosslinked gelatin hydrogels. J. Biomat. Sci.-Polym. E. 27, 721–742 (2016).

    CAS  Article  Google Scholar 

  18. 18

    Miron, R. J. & Bosshardt, D. D. OsteoMacs: key players around bone biomaterials. Biomaterials 82, 1–19 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Major, M. R., Wong, V. W., Nelson, E. R., Longaker, M. T. & Gurtner, G. C. The foreign body response: at the interface of surgery and bioengineering. Plast. Reconstr. Surg. 135, 1489–1498 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Zeplin, P. H., Larena-Avellaneda, A. & Schmidt, K. Surface modification of silicone breast implants by binding the antifibrotic drug halofuginone reduces capsular fibrosis. Plast. Reconstr. Surg. 126, 266–274 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Klueh, U., Dorsky, D. I. & Kreutzer, D. L. Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization. Biomaterials 26, 1155–1163 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Kastellorizios, M., Papadimitrakopoulos, F. & Burgess, D. J. Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J. Control. Release 214, 103–111 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Mooney, J. E. et al. Cellular plasticity of inflammatory myeloid cells in the peritoneal foreign body response. Am. J. Pathol. 176, 369–380 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Cao, H., McHugh, K., Chew, S. Y. & Anderson, J. M. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J. Biomed. Mater. Res. A 93, 1151–1159 (2010).

    PubMed  Google Scholar 

  26. 26

    Chen, S. et al. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials 31, 3479–3491 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Damanik, F. F., Rothuizen, T. C., van Blitterswijk, C., Rotmans, J. I. & Moroni, L. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix. Sci. Rep. 4, 6325 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Woodruff, M. A. & Hutmacher, D. W. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217–1256 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Holzapfel, B. M. et al. Tissue engineered humanized bone supports human hematopoiesis in vivo . Biomaterials 61, 103–114 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Holzapfel, B. M. et al. Species-specific homing mechanisms of human prostate cancer metastasis in tissue engineered bone. Biomaterials 35, 4108–4115 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotech. 20, 54–62 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Weigelin, B., Bakker, G. J. & Friedl, P. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. 129, 245–255 (2016).

    CAS  Article  Google Scholar 

  33. 33

    Ho, R. M., Chiang, Y. W., Lin, C. C. & Huang, B. H. Crystallization and melting behavior of poly(epsilon-caprolactone) under physical confinement. Macromolecules 38, 4769–4779 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Rodriguez, A., Macewan, S. R., Meyerson, H., Kirk, J. T. & Anderson, J. M. The foreign body reaction in T-cell-deficient mice. J. Biomed. Mater. Res. A 90, 106–113 (2009).

    Article  Google Scholar 

  35. 35

    Rodriguez, A., Voskerician, G., Meyerson, H., MacEwan, S. R. & Anderson, J. M. T cell subset distributions following primary and secondary implantation at subcutaneous biomaterial implant sites. J. Biomed. Mater. Res. A 85, 556–565 (2008).

    Article  Google Scholar 

  36. 36

    Marques, S. M. et al. Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc. Res. 82, 246–252 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Rohan, R. M., Fernandez, A., Udagawa, T., Yuan, J. & D’Amato, R. J. Genetic heterogeneity of angiogenesis in mice. FASEB J. 14, 871–876 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Middleton, J. C. & Tipton, A. J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21, 2335–2346 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Gunatillake, P. A. & Adhikari, R. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1–16 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Wang, P. et al. Quantitative analysis of tumor vascular structure after drug treatment. In Ann. Int. Conf. IEEE Engineer. Med. Biol. Soc. IEEE Engineering in Medicine and Biology Society. Annual Conference 726–729 (IEEE, 2010).

  41. 41

    Wild, R., Ramakrishnan, S., Sedgewick, J. & Griffioen, A. W. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density. Microvasc. Res. 59, 368–376 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Van Rooijen, N. & Sanders, A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174, 83–93 (1994).

    CAS  Article  Google Scholar 

  44. 44

    Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Wang, T. F. & Lockhart, A. C. Aflibercept in the treatment of metastatic colorectal cancer. Clin. Med. Ins. Oncol. 6, 19–30 (2012).

    Google Scholar 

  47. 47

    Stewart, M. W. Aflibercept (VEGF Trap-eye): the newest anti-VEGF drug. Br. J. Ophthalmol. 96, 1157–1158 (2012).

    Article  Google Scholar 

  48. 48

    Kwee, B. J. & Mooney, D. J. Manipulating the intersection of angiogenesis and inflammation. Ann. Biomed. Eng. 43, 628–640 (2015).

    Article  Google Scholar 

  49. 49

    Jones, J. A. et al. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. A 83, 585–596 (2007).

    Article  Google Scholar 

  50. 50

    Hristodorov, D. et al. Targeting CD64 mediates elimination of M1 but not M2 macrophages in vitro and in cutaneous inflammation in mice and patient biopsies. MAbs 7, 853–862 (2015).

    CAS  Article  Google Scholar 

  51. 51

    Kennel, K. A. & Drake, M. T. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin. Proc. 84, 632–637 (2009).

    CAS  Article  Google Scholar 

  52. 52

    McClung, M. et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am. J. Med. 126, 13–20 (2013).

    CAS  Article  Google Scholar 

  53. 53

    Do, D. V. et al. The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema. Ophthalmology 118, 1819–1826 (2011).

    Article  Google Scholar 

  54. 54

    Thibaudeau, L. et al. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis. Model. Mech. 7, 299–309 (2014).

    CAS  Article  Google Scholar 

  55. 55

    Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Starbuck, C. Johnston, Y. Xiaoqing, R. Jimenez and J. Douglas for histological processing of the samples; and E. De Juan Pardo for the manufacturing of the mPCL-CaP scaffolds. E.D. was supported by the Cancer Prevention and Research Institute of Texas (RP140482) and the Prostate Cancer Foundation (16YOUN24). P.F. was supported by the Netherlands Science Organization (NWO-VICI 918.11.626), the European Research Council (ERC-CoG DEEPINSIGHT, Project No. 617430) and the Cancer Genomics Center, The Netherlands. This work was further supported by the National Health and Medical Research Council (NHMRC Project Grant 1082313), the National Breast Cancer Foundation (NBCF IN-15-047) and the Worldwide Cancer Research (WWCR 15-11563) to B.M.H. and D.W.H. and the German Research Foundation (DFG HO 5068/1-1) to B.M.H. The Genitourinary Cancers Program of the CCSG shared resources at the MD Anderson Cancer Center was supported by the National Institute of Health/National Cancer Institute award number P30 CA016672.

Author information

Affiliations

Authors

Contributions

E.D., B.M.H., S.A., D.W.H. and P.F. designed the research. E.D., B.M.H., S.A., S.F. and D.W.H. performed the research. E.D., S.F., D.W.H. and P.F. analysed the data. E.D., B.M.H., D.W.H. and P.F. wrote the paper.

Corresponding authors

Correspondence to Eleonora Dondossola or Peter Friedl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures and video captions. (PDF 13926 kb)

Video 1

Kinetics of infiltrate cells at day 4 post-scaffold implantation. (AVI 5426 kb)

Video 2

Kinetics of infiltrate cells at day 7 post-scaffold implantation. (AVI 12122 kb)

Video 3

Kinetics of infiltrate cells at day 10 post-scaffold implantation. (AVI 15468 kb)

Video 4

Cytoplasmic dynamics of scaffold-associated giant cells. (AVI 1036 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dondossola, E., Holzapfel, B., Alexander, S. et al. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat Biomed Eng 1, 0007 (2017). https://doi.org/10.1038/s41551-016-0007

Download citation

Further reading