Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-adjusting synthetic gene circuit for correcting insulin resistance

Abstract

Sophisticated genetic devices can be assembled to reprogram mammalian cell activities using tools from synthetic biology. Here, we demonstrate that a self-adjusting synthetic gene circuit can be designed to sense and reverse the insulin-resistance syndrome in different mouse models. By functionally rewiring the mitogen-activated protein kinase (MAPK) signalling pathway to produce MAPK-mediated activation of a hybrid transcription factor consisting of the tetracycline repressor, TetR, fused to the human ELK1-derived transactivation domain (TetR-Elk1), we assembled a synthetic insulin-sensitive transcription-control device that self-sufficiently distinguished between physiological and increased blood insulin levels and correspondingly fine-tuned the reversible expression of therapeutic transgenes from synthetic TetR-ELK1-specific promoters. In acute experimental hyperinsulinaemia, the synthetic insulin-sensing designer circuit reversed the insulin-resistance syndrome by coordinating expression of the insulin-sensitizing compound adiponectin. Engineering synthetic gene circuits to sense pathologic markers and coordinate the expression of therapeutic transgenes may provide opportunities for future gene- and cell-based treatments of multifactorial metabolic disorders.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synthetic insulin-sensitizing designer circuit for the treatment of insulin resistance.
Figure 2: Synthetic insulin-inducible mammalian sensor circuit.
Figure 3: Self-sufficient insulin-sensor-based control of adiponectin expression in insulin-resistant ob/ob mice.
Figure 4: Self-sufficient insulin-sensor-based control of adiponectin expression in insulin-resistant DIO mice.
Figure 5: Long-term therapeutic efficacy of insulin-triggered adiponectin expression in insulin-resistant ob/ob mice.
Figure 6: Long-term therapeutic efficacy of insulin-triggered adiponectin expression in insulin-resistant DIO mice.

References

  1. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    Article  Google Scholar 

  2. Johnson, A. M. & Olefsky, J. M. The origins and drivers of insulin resistance. Cell 152, 673–684 (2013).

    CAS  Article  Google Scholar 

  3. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    CAS  Article  Google Scholar 

  4. Prentki, M. & Nolan, C. J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802–1812 (2006).

    CAS  Article  Google Scholar 

  5. Christensen, R., Kristensen, P. K., Bartels, E. M., Bliddal, H. & Astrup, A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370, 1706–1713 (2007).

    CAS  Article  Google Scholar 

  6. Gloy, V. L. et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. Br. Med. J. 347, f5934 (2013).

    Article  Google Scholar 

  7. Loke, Y. K., Kwok, C. S. & Singh, S. Comparative cardiovascular effects of thiazolidinediones: systematic review and meta-analysis of observational studies. Br. Med. J. 342, d1309 (2011).

    Article  Google Scholar 

  8. Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001).

    CAS  Article  Google Scholar 

  9. Gao, H. et al. Evidence of a causal relationship between adiponectin levels and insulin sensitivity: a Mendelian randomization study. Diabetes 62, 1338–1344 (2013).

    CAS  Article  Google Scholar 

  10. Li, S., Shin, H. J., Ding, E. L. & van Dam, R. M. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302, 179–188 (2009).

    CAS  Article  Google Scholar 

  11. Ziemke, F. & Mantzoros, C. S. Adiponectin in insulin resistance: lessons from translational research. Am. J. Clin. Nutr. 91, 258S–261S (2010).

    CAS  Article  Google Scholar 

  12. Slomovic, S., Pardee, K. & Collins, J. J. Synthetic biology devices for in vitro and in vivo diagnostics. Proc. Natl Acad. Sci. USA 112, 14429–14435 (2015).

    CAS  Article  Google Scholar 

  13. Bai, P. et al. A synthetic biology-based device prevents liver injury in mice. J. Hepatol. 65, 84–94 (2016).

    CAS  Article  Google Scholar 

  14. Ye, H., Aubel, D. & Fussenegger, M. Synthetic mammalian gene circuits for biomedical applications. Curr. Opin. Chem. Biol. 17, 910–917 (2013).

    CAS  Article  Google Scholar 

  15. Bacchus, W., Aubel, D. & Fussenegger, M. Biomedically relevant circuit-design strategies in mammalian synthetic biology. Mol. Syst. Biol. 9, 691 (2013).

    CAS  Article  Google Scholar 

  16. Ye, H. et al. Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proc. Natl Acad. Sci. USA 110, 141–146 (2013).

    CAS  Article  Google Scholar 

  17. Kim, T., Folcher, M., Doaud-El Baba, M. & Fussenegger, M. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection. Angew. Chem. 54, 5933–5938 (2015).

    CAS  Article  Google Scholar 

  18. Auslander, D. et al. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol. Cell 55, 397–408 (2014).

    CAS  Article  Google Scholar 

  19. Jacob, K. K., Whittaker, J. & Stanley, F. M. Insulin receptor tyrosine kinase activity and phosphorylation of tyrosines 1162 and 1163 are required for insulin-increased prolactin gene expression. Mol. Cell. Endocrinol. 186, 7–16 (2002).

    CAS  Article  Google Scholar 

  20. Siddle, K. Signalling by insulin and IGF receptors: supporting acts and new players. J. Mol. Endocrinol. 47, R1–R10 (2011).

    CAS  Article  Google Scholar 

  21. Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12, 141–151 (2011).

    CAS  Article  Google Scholar 

  22. Keeley, M. B., Busch, J., Singh, R. & Abel, T. TetR hybrid transcription factors report cell signaling and are inhibited by doxycycline. BioTechniques 39, 529–536 (2005).

    CAS  Article  Google Scholar 

  23. Ge, H. et al. Generation of novel long-acting globular adiponectin molecules. J. Mol. Biol. 399, 113–119 (2010).

    CAS  Article  Google Scholar 

  24. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    CAS  Article  Google Scholar 

  25. Alberti, K. G. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Med. 15, 539–553 (1998).

    CAS  Article  Google Scholar 

  26. Bornfeldt, K. E. & Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 14, 575–585 (2011).

    CAS  Article  Google Scholar 

  27. Weber, W. & Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 13, 21–35 (2012).

    CAS  Article  Google Scholar 

  28. Ruder, W. C., Lu, T. & Collins, J. J. Synthetic biology moving into the clinic. Science 333, 1248–1252 (2011).

    CAS  Article  Google Scholar 

  29. Wu, C. Y., Rupp, L. J., Roybal, K. T. & Lim, W. A. Synthetic biology approaches to engineer T cells. Curr. Opin. Immunol. 35, 123–130 (2015).

    CAS  Article  Google Scholar 

  30. Heng, B. C., Aubel, D. & Fussenegger, M. Prosthetic gene networks as an alternative to standard pharmacotherapies for metabolic disorders. Curr. Opin. Biotech. 35, 37–45 (2015).

    CAS  Article  Google Scholar 

  31. Kojima, R., Aubel, D. & Fussenegger, M. Novel theranostic agents for next-generation personalized medicine: small molecules, nanoparticles, and engineered mammalian cells. Curr. Opin. Chem. Biol. 28, 29–38 (2015).

    CAS  Article  Google Scholar 

  32. Okada-Iwabu, M. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 503, 493–499 (2013).

    CAS  Article  Google Scholar 

  33. Fussenegger, M. et al. Streptogramin-based gene regulation systems for mammalian cells. Nat. Biotechnol. 18, 1203–1208 (2000).

    CAS  Article  Google Scholar 

  34. Trounson, A. & DeWitt, N. D. Pluripotent stem cells progressing to the clinic. Nat. Rev. Mol. Cell Biol. 17, 194–200 (2016).

    CAS  Article  Google Scholar 

  35. Lathuiliere, A., Cosson, S., Lutolf, M. P., Schneider, B. L. & Aebischer, P. A high-capacity cell macroencapsulation system supporting the long-term survival of genetically engineered allogeneic cells. Biomaterials 35, 779–791 (2014).

    CAS  Article  Google Scholar 

  36. Simonsen, J. L. et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20, 592–596 (2002).

    CAS  Article  Google Scholar 

  37. Wieland, M., Auslander, D. & Fussenegger, M. Engineering of ribozyme-based riboswitches for mammalian cells. Methods 56, 351–357 (2012).

    CAS  Article  Google Scholar 

  38. Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    CAS  Article  Google Scholar 

  39. Schlatter, S., Rimann, M., Kelm, J. & Fussenegger, M. SAMY, a novel mammalian reporter gene derived from Bacillus stearothermophilus alpha-amylase. Gene 282, 19–31 (2002).

    CAS  Article  Google Scholar 

  40. Weber, W. et al. Gas-inducible transgene expression in mammalian cells and mice. Nat. Biotechnol. 22, 1440–1444 (2004).

    CAS  Article  Google Scholar 

  41. Kemmer, C. et al. A designer network coordinating bovine artificial insemination by ovulation-triggered release of implanted sperms. J. Control. Release 150, 23–29 (2011).

    CAS  Article  Google Scholar 

  42. Folcher, M., Xie, M., Spinnler, A. & Fussenegger, M. Synthetic mammalian trigger-controlled bipartite transcription factors. Nucleic Acids Res. 41, e134 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Abel for providing the pTetR-ELK1 (MKp37) plasmid, B. Geering for providing human serum from healthy individuals, Y. Lai for providing the DyLight 800-labelled goat anti-mouse IgG, B. M. Lang and L. Scheller for assistance with the statistical analyses and M. Daoud-El Baba for skilful assistance with the animal study. This work was supported by a European Research Council (ERC) advanced grant (no. 321381), the Cantons of Basel and the Swiss Confederation within the INTERREG IV A.20 tri-national research program and the Gutenberg Chair (awarded to M.F.). This work was also supported by the National Key Research and Development Program of China, Stem Cell and Translational Research (no. 2016YFA0100300), the National Natural Science Foundation of China (NSFC; nos 31470834, 31522017 and 31670869), the Science and Technology Commission of Shanghai Municipality (nos 15QA1401500 and 14JC1401700) and Thousand Youth Talents Plan (awarded to H.Y.).

Author information

Authors and Affiliations

Authors

Contributions

H.Y., M.X., H.Z. and M.F. designed the project, analysed the results and wrote the manuscript. H.Y., M.X., G.H.E., S.X. and J.Y. performed the experimental work.

Corresponding authors

Correspondence to Haifeng Ye or Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures and Tables (PDF 1440 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Xie, M., Xue, S. et al. Self-adjusting synthetic gene circuit for correcting insulin resistance. Nat Biomed Eng 1, 0005 (2017). https://doi.org/10.1038/s41551-016-0005

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-016-0005

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing