Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A JWST/DiSCo-TNOs portrait of the primordial Solar System through its trans-Neptunian objects

Abstract

The detection of molecules on the coldest and outermost objects in our Solar System has long been limited by the terrestrial atmosphere and sensitivity of the available instrumentation. However, near-infrared observations by the James Webb Space Telescope have provided an unprecedented view of the molecular diversity on the surfaces of trans-Neptunian objects (TNOs). Using the low spectral resolution PRISM mode on the near-infrared spectrograph as part of the Cycle 1 large programme, ‘Discovering the Surface Composition of trans-Neptunian objects’, we report the detection of several molecular ices throughout the TNO population, including H2O, CO2, 13CO2, CO, CH3OH and complex molecules and refractory materials containing aliphatic C–H, C≡N, O–H and N–H bonds. As a result of the imprint that these molecules leave on the spectra, three main compositional groups consistently emerge from multiple independent cluster analyses. Our results unlock the long-standing question of the interpretation of colour diversity, providing the much-needed compositional information. The marked separation of the three spectral clusters reveals sharp variations in the surface molecular constituents. The C/O and (CH + NH)/(C + O) ratios on the surface of TNOs are the primary indicators of the spectral differences among the three TNO compositional groups observed. We propose that these objects are fossil remnants of icy planetesimals, and that the three compositional groups provide a picture of the ice retention lines in the Solar System that likely occurred in the outer protoplanetary disk, possibly just before a major planetary migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical and orbital parameters of the DiSCo sample of TNOs.
Fig. 2: Results of the PCA and k-means clustering technique.
Fig. 3: Representative spectra of each compositional class of TNOs.
Fig. 4: Distribution of molecules between compositional groups.
Fig. 5: Ice line hypothesis in relation to the molecules dominating each compositional group.

Similar content being viewed by others

Data availability

The JWST data used in this analysis are publicly available from the STScI MAST Archive (https://doi.org/10.17909/r2zp-r280).

References

  1. Gil-Hutton, R. Color diversity among Kuiper belt objects: the collisional resurfacing model revisited. Planet. Space Sci. 50, 57–62 (2002).

    ADS  Google Scholar 

  2. Métayer, R. et al. JWST/NIRSpec prospects on transneptunian objects. Front. Astron. Space Sci. 6 https://doi.org/10.3389/fspas.2019.00008 (2019).

  3. Schaller, E. L. & Brown, M. E. Volatile loss and retention on Kuiper Belt objects. Astrophys. J. Lett. 659, L61–L64 (2007).

    ADS  MATH  Google Scholar 

  4. Levi, A. & Podolak, M. Corona-like atmospheric escape from KBOs. II. The behavior of aerosols. Icarus 203, 610–625 (2009).

    ADS  MATH  Google Scholar 

  5. Young, L. A., Braga-Ribas, F. & Johnson, R. E. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 127–151 (Elsevier, 2020).

  6. Nesvorný, D. et al. OSSOS XX: the meaning of Kuiper Belt colors. Astron. J. 160, 46 (2020).

  7. Luu, J. & Jewitt, D. Color diversity among the Centaurs and Kuiper Belt objects. Astron. J. 112, 2310–2318 (1996).

  8. Tegler, S. C. & Romanishin, W. Two distinct populations of Kuiper-Belt objects. Nature 392, 49–51 (1998).

    ADS  MATH  Google Scholar 

  9. Lacerda, P. et al. The albedo–color diversity of transneptunian objects. Astrophys. J. Lett. 793, L2 (2014).

  10. Peixinho, N., Delsanti, A. & Doressoundiram, A. Reanalyzing the visible colors of Centaurs and KBOs: what is there and what we might be missing. Astron. Astrophys. 577, A35 (2015).

  11. Marsset, M. et al. Col-OSSOS: evidence for a compositional gradient inherited from the protoplanetary disk? Planet. Sci. J. 4, 160 (2023).

  12. Brown, M. E. The compositions of Kuiper Belt objects. Annu. Rev. Earth Planet. Sci. 40, 467–494 (2012).

    ADS  MATH  Google Scholar 

  13. Pinilla-Alonso, N., Stansberry, J. A. & Holler, B. J. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 395–412 (Elsevier, 2020).

  14. McClure, M. K. et al. An Ice Age JWST inventory of dense molecular cloud ices. Nat. Astron. 7, 431–443 (2023).

    ADS  MATH  Google Scholar 

  15. Altwegg, K., Balsiger, H. & Fuselier, S. A. Cometary chemistry and the origin of icy Solar System bodies: the view after Rosetta. Annu. Rev. Astron. Astrophys. 57, 113–155 (2019).

    ADS  Google Scholar 

  16. Biver, N., Dello Russo, N., Opitom, C. & Rubin, M. Chemistry of comet atmospheres. Preprint at https://arxiv.org/abs/2207.04800 (2022).

  17. Pinto, O. H. et al. First detection of CO2 emission in a Centaur: JWST NIRSpec observations of 39P/Oterma. Planet. Sci. J. 4, 208 (2023).

  18. Pinilla-Alonso, N. et al. Unveiling the ice and gas nature of active Centaur (2060) Chiron using the James Webb Space Telescope. Preprint at https://arxiv.org/abs/2407.07761 (2024).

  19. Pinilla-Alonso et al. DiSCo-TNOs: discovering the surface composition of the trans-Neptunian objwects, icy embryos for planet formation. JWST Proposal Cycle 1, ID #2418 (2021); https://ui.adsabs.harvard.edu/abs/2021jwst.prop.2418P/abstract

  20. Licandro, J. et al. Thermal evolution of trans-Neptunian objects through observations of Centaurs with JWST. Nat. Astron. https://doi.org/10.1038/s41550-024-02417-2 (2024).

  21. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astron. Astrophys. 661, A82 (2022).

  22. Topiak, M. et al. Quasars/orange-spectroscopy: Release 0.5.8. (2021); https://doi.org/10.5281/zenodo.1188775

  23. Pendleton, Y. J. & Allamandola, L. J. The organic refractory material in the diffuse interstellar medium: mid-infrared spectroscopic constraints. Astrophys. J. Suppl. Ser. 138, 75–98 (2002).

    ADS  MATH  Google Scholar 

  24. Palumbo, M. E., Castorina, A. C. & Strazzulla, G. Ion irradiation effects on frozen methanol (CH_3OH). Astron. Astrophys. 342, 551–562 (1999).

    ADS  Google Scholar 

  25. Vernazza, P. et al. Interplanetary dust particles as samples of icy asteroids. Astrophys. J. 806, 204 (2015).

  26. Ciarniello, M. et al. VIS-IR spectroscopy of mixtures of water ice, organic matter, and opaque mineral in support of small body remote sensing observations. Minerals 11, 1222 (2021).

  27. De Prá, M. N. et al. Widespread CO2 and CO ices in the trans-Neptunian population revealed by JWST/DiSCo-TNOs. Nat. Astron. https://doi.org/10.1038/s41550-024-02276-x (2024).

  28. Bergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M. & Li, J. Tracing the ingredients for a habitable Earth from interstellar space through planet formation. Proc. Natl Acad. Sci. USA 112, 8965–8970 (2015).

    ADS  Google Scholar 

  29. Grundy, W. M. et al. Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science 367, aay3705 (2020).

  30. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    ADS  MATH  Google Scholar 

  31. Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).

    ADS  MATH  Google Scholar 

  32. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    ADS  MATH  Google Scholar 

  33. Brasser, R., Schwamb, M. E., Lykawka, P. S. & Gomes, R. S. An Oort cloud origin for the high-inclination, high-perihelion Centaurs. Mon. Not. R. Astron. Soc. 420, 3396–3402 (2012).

    ADS  MATH  Google Scholar 

  34. Szabó, G. M. et al. Surface ice and tholins on the extreme Centaur 2012 DR30. Astron. J. 155, 170 (2018).

  35. Morbidelli, A., Batygin, K., Brasser, R. & Raymond, S. N. No evidence for interstellar planetesimals trapped in the Solar System. Mon. Not. R. Astron. Soc. 497, L46–L49 (2020).

    ADS  MATH  Google Scholar 

  36. Rothard, H. et al. Modification of ices by cosmic rays and solar wind. J. Phys. B 50, 062001 (2017).

  37. Loeffler, M. J., Baratta, G. A., Palumbo, M. E., Strazzulla, G. & Baragiola, R. A. CO2 synthesis in solid CO by Lyman-α photons and 200 keV protons. Astron. Astrophys. 435, 587–594 (2005).

    ADS  Google Scholar 

  38. Gomis, O., Satorre, M. A., Strazzulla, G. & Leto, G. Hydrogen peroxide formation by ion implantation in water ice and its relevance to the Galilean satellites. Planet. Space Sci. 52, 371–378 (2004).

    ADS  Google Scholar 

  39. Quirico, E. et al. On a radiolytic origin of red organics at the surface of the Arrokoth trans-Neptunian object. Icarus 394, 115396 (2023).

  40. Brunetto, R., Barucci, M. A., Dotto, E. & Strazzulla, G. Ion irradiation of frozen methanol, methane, and benzene: linking to the colors of Centaurs and trans-Neptunian objects. Astrophys. J. 644, 646–650 (2006).

    ADS  Google Scholar 

  41. Moore, M. H., Ferrante, R., Hudson, R. & Stone, J. Ammonia–water ice laboratory studies relevant to outer Solar System surfaces. Icarus 190, 260–273 (2007).

  42. Bockelée-Morvan, D. et al. Comet 67P outbursts and quiescent coma at 1.3 au from the Sun: dust properties from Rosetta/VIRTIS-H observations. Mon. Not. R. Astron. Soc. 469, S443–S458 (2017).

    MATH  Google Scholar 

  43. Poston, M. J. et al. Visible near-infrared spectral evolution of irradiated mixed ices and application to Kuiper Belt objects and Jupiter Trojans. Astrophys. J. 856, 124 (2018).

  44. Buchanan, L. E. et al. Col-OSSOS: probing ice line/color transitions within the Kuiper Belt’s progenitor populations. Planet. Sci. J. 3, 9 (2022).

  45. Wood, B. E., Redfield, S., Linsky, J. L. & Sahu, M. S. Elemental abundances and ionization states within the local interstellar cloud derived from Hubble Space Telescope and far ultraviolet spectroscopic explorer observations of the Capella line of sight. Astrophys. J. 581, 1168–1179 (2002).

    ADS  Google Scholar 

  46. Montmerle, T. et al. From Suns to life: a chronological approach to the history of life on Earth 3. Solar System formation and early evolution: the first 100 million years. Earth Moon Planets 98, 39–95 (2006).

    ADS  MATH  Google Scholar 

  47. Gordon, K. D. et al. The James Webb Space Telescope absolute flux calibration. I. Program design and calibrator stars. Astron. J. 163, 267 (2022).

  48. Souza-Feliciano, A. C. et al. Spectroscopy of the binary TNO Mors-Somnus with the JWST and its relationship to the cold classical and plutino subpopulations observed in the DiSCo-TNO project. Astron. Astrophys. 681, L17 (2024).

  49. Müller, T., Lellouch, E. & Fornasier, S. Trans-Neptunian objects and Centaurs at thermal wavelengths. In The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 153–181 (Elsevier, 2020).

  50. Volk, K. & Van Laerhoven, C. Dynamical classifications of multi-opposition TNOs as of 2023 December. Res. Notes AAS 8, 36 (2024).

  51. Gladman, B., Marsden, B. G. & Vanlaerhoven, C. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 43–57 (Univ. Arizona Press, 2008).

  52. de la Fuente Marcos, C. & de la Fuente Marcos, R. Large retrograde Centaurs: visitors from the Oort cloud? Astrophys. Space Sci. 352, 409–419 (2014).

    ADS  MATH  Google Scholar 

  53. Licandro, J., di Fabrizio, L., Pinilla-Alonso, N., de León, J. & Oliva, E. Trans-Neptunian object (55636) 2002 TX300, a fresh icy surface in the outer Solar System. Astron. Astrophys. 457, 329–333 (2006).

    ADS  Google Scholar 

  54. Brown, M. E., Barkume, K. M., Ragozzine, D. & Schaller, E. L. A collisional family of icy objects in the Kuiper Belt. Nature 446, 294–296 (2007).

    ADS  Google Scholar 

  55. Pinilla-Alonso, N., Licandro, J., Gil-Hutton, R. & Brunetto, R. The water ice rich surface of (145453) 2005 RR43: a case for a carbon-depleted population of TNOs? Astron. Astrophys. 468, L25–L28 (2007).

    ADS  MATH  Google Scholar 

  56. Pinilla-Alonso, N., Licandro, J. & Lorenzi, V. Visible spectroscopy in the neighborhood of 2003EL{61}. Astron. Astrophys. 489, 455–458 (2008).

    ADS  MATH  Google Scholar 

  57. Pinilla-Alonso, N. et al. The surface of (136108) Haumea (2003 EL{61}), the largest carbon-depleted object in the trans-Neptunian belt. Astron. Astrophys. 496, 547–556 (2009).

    ADS  Google Scholar 

  58. Toplak, M. et al. Infrared orange: connecting hyperspectral data with machine learning. Synchrotron Radiat. News 30, 40–45 (2017).

    ADS  Google Scholar 

  59. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    ADS  MATH  Google Scholar 

  60. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

    MATH  Google Scholar 

  61. Tan, P., Steinbach, M. & Kumar, V. Introduction to Data Mining: Pearson New International Edition PDF eBook (Pearson Education, 2013).

    MATH  Google Scholar 

  62. Weyer, L. G. Near-infrared spectroscopy of organic substances. Appl. Spectrosc. Rev. 21, 1–43 (1985).

    ADS  MATH  Google Scholar 

  63. Mastrapa, R. M., Grundy, W. M. & Gudipati, M. S. Amorphous and crystalline H2O ice. In The Science of Solar System Ices. Astrophysics and Space Science Library Vol. 356 (eds Gudipati, M. S. & Castillo-Rogez, J.) 371 (Springer, 2013).

  64. Villanueva, G. L. et al. JWST molecular mapping and characterization of Enceladus’ water plume feeding its torus. Nat. Astron. 7, 1056–1062 (2023).

    ADS  MATH  Google Scholar 

  65. Hansen, G. B. & McCord, T. B. Amorphous and crystalline ice on the Galilean satellites: a balance between thermal andradiolytic processes. J. Geophys. Res. E: Planets 109, E01012 (2004).

  66. Grundy, W. & Schmitt, B. The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice. J. Geophys. Res. E 103, 25809–25822 (1998).

  67. Mastrapa, R. M., Sandford, S. A., Roush, T. L., Cruikshank, D. P. & Dalle Ore, C. M. Optical constants of amorphous and crystalline H2O-ice: 2.5–22 μm (4000–455 cm−1) optical constants of H2O-ice. Astrophys. J. 701, 1347–1356 (2009).

    ADS  Google Scholar 

  68. Leto, G. & Baratta, G. A. Ly-α photon induced amorphization of Ic water ice at 16 Kelvin. Effects and quantitative comparison with ion irradiation. Astron. Astrophys. 397, 7–13 (2003).

    ADS  MATH  Google Scholar 

  69. Barucci, M. A. et al. New insights on ices in Centaur and Transneptunian populations. Icarus 214, 297–307 (2011).

    ADS  MATH  Google Scholar 

  70. Sandford, S. A. & Allamandola, L. J. The physical and infrared spectral properties of CO2 in astrophysical ice analogs. Astrophys. J. 355, 357–372 (1990).

  71. Sandford, S., Allamandola, L., Tielens, A. & Valero, G. Laboratory studies of the infrared spectral propertries of CO in astrophysical ices. Astrophys. J. 329, 498–510 (1988).

    ADS  Google Scholar 

  72. Lisse, C. et al. On the origin & thermal stability of Arrokoth’s and Pluto’s ices. Icarus 356, 114072 (2021).

  73. Cruikshank, D. P. et al. The composition of Centaur 5145 Pholus. Icarus 135, 389–407 (1998).

    ADS  MATH  Google Scholar 

  74. Urso, R. G., Baklouti, D., Djouadi, Z., Pinilla-Alonso, N. & Brunetto, R. Near-infrared methanol bands probe energetic processing of icy outer Solar System objects. Astrophys. J. Lett. 894, L3 (2020).

  75. Barucci, M. A., Merlin, F., Dotto, E., Doressoundiram, A. & de Bergh, C. TNO surface ices. Observations of the TNO 55638 (2002 VE95) and analysis of the population’s spectral properties. Astron. Astrophys. 455, 725–730 (2006).

    ADS  Google Scholar 

  76. Grim, R., Baas, F., Geballe, T., Greenberg, J. & Schutte, W. Detection of solid methanol toward W33A. Astron. Astrophys. 243, 473–477 (1991).

    ADS  Google Scholar 

  77. Fayolle, M. et al. Testing tholins as analogues of the dark reddish material covering Pluto’s Cthulhu region. Icarus 367, 114574 (2021).

  78. Nna-Mvondo, D., Khare, B. N., Ruiz-Bermejo, M. & McKay, C. P. Reactivity of tholins on Titan’s surface under impact shock processes: a laboratory approach. In European Planetary Science Congress 2012 EPSC2012-237 (2012).

  79. Beć, K. B., Grabska, J., Badzoka, J. & Huck, C. W. Spectra-structure correlations in NIR region of polymers from quantum chemical calculations. The cases of aromatic ring, C=O, C≡N and C-Cl functionalities. Spectrochim. Acta A 262, 120085 (2021).

  80. Moroz, L., Arnold, G., Korochantsev, A. & Wäsch, R. Natural solid bitumens as possible analogs for cometary and asteroid organics:: 1. Reflectance spectroscopy of pure bitumens. Icarus 134, 253–268 (1998).

  81. Quirico, E. et al. Refractory and semi-volatile organics at the surface of comet 67p/Churyumov-Gerasimenko: insights from the VIRTIS/Rosetta imaging spectrometer. Icarus 272, 32–47 (2016).

    ADS  Google Scholar 

  82. Cruikshank, D. P. et al. Solid CN bearing material on outer Solar System bodies. Icarus 94, 345–353 (1991).

    ADS  Google Scholar 

  83. Pendleton, Y., Tielens, A., Tokunaga, A. & Bernstein, M. The interstellar 4.62 micron band. Astrophys. J. 513, 294–304(1999).

  84. Baratta, G. et al. Organic samples produced by ion bombardment of ices for the EXPOSE-R2 mission on the International Space Station. Planet. Space Sci. 118, 211–220 (2015).

    ADS  MATH  Google Scholar 

  85. McCord, T. A. et al. Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278, 271–275 (1997).

    ADS  MATH  Google Scholar 

  86. Mahjoub, A. et al. Complex organosulfur molecules on comet 67P: evidence from the ROSINA measurements and insights from laboratory simulations. Sci. Adv. 9, eadh0394 (2023).

    Google Scholar 

  87. Ferrante, R. F., Moore, M. H., Spiliotis, M. M. & Hudson, R. L. Formation of interstellar OCS: radiation chemistry and IR spectra of precursor ices. Astrophys. J. 684, 1210 (2008).

  88. Palumbo, M., Geballe, T. & Tielens, A. G. Solid carbonyl sulfide (OCS) in dense molecular clouds. Astrophys. J. 479, 839–844 (1997).

  89. Cochran, A. L. et al. The composition of comets. Space Sci. Rev. 197, 9–46 (2015).

    ADS  MATH  Google Scholar 

  90. Bockelée-Morvan, D. et al. Evolution of CO2, CH4, and OCS abundances relative to H2O in the coma of comet 67P around perihelion from Rosetta/VIRTIS-H observations. Mon. Not. R. Astron. Soc. 462, S170–S183 (2016).

    MATH  Google Scholar 

  91. Bennett, C. J., Jamieson, C. S. & Kaiser, R. I. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3) in interstellar ice analog samples. Phys. Chem. Chem. Phys. 12, 4032–4050 (2010).

    Google Scholar 

  92. Hudson, R. L. & Gerakines, P. A. Infrared spectra and interstellar sulfur: new laboratory results for H2S and four malodorous thiol ices. Astrophys. J. 867, 138 (2018).

  93. Calmonte, U. et al. Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 462, S253–S273 (2016).

    MATH  Google Scholar 

  94. Nash, D. B. & Betts, B. H. Laboratory infrared spectra (2.3-23 μm) of SO2 phases: applications to Io surface analysis. Icarus 117, 402–419 (1995).

    ADS  MATH  Google Scholar 

  95. Mahjoub, A. et al. Effect of H2S on the near-infrared spectrum of irradiation residue and applications to the Kuiper Belt object (486958) Arrokoth. Astrophys. J. Lett. 914, L31 (2021).

  96. Kremer, C., Mustard, J. & Pieters, C. Cross-over infrared spectroscopy: a new tool for the remote determination of olivine composition. Geophys. Res. Lett. 47, e2020GL089151 (2020).

    ADS  MATH  Google Scholar 

  97. Mastrapa, R. M. E. Optical constants and lab spectra of water ice V1.0. NASA Planetary Data System https://ui.adsabs.harvard.edu/abs/2010PDSS..126.....M (2010)

  98. Nna-Mvondo, D. NIR and MIR reflectance spectra of AMES tholins (from 90%:10% gas). SSHADE/SOSYPOL (OSUG Data Center) https://doi.org/10.26302/SSHADE/EXPERIMENT_DM_20121002_004 (2018).

  99. Yarnall, Y. Y. & Hudson, R. L. A new method for measuring infrared band strengths in H2O ices: first results for OCS, H2S, and SO2. Astrophys. J. Lett. 931, L4 (2022).

  100. Ehrenfreund, P., Boogert, A. C. A., Gerakines, P. A., Tielens, A. G. G. M. & van Dishoeck, E. F. Infrared spectroscopy of interstellar apolar ice analogs. Astron. Astrophys. 328, 649–669 (1997).

    ADS  Google Scholar 

  101. van Broekhuizen, F. A., Keane, J. V. & Schutte, W. A. A quantitative analysis of OCN formation in interstellar ice analogs. Astron. Astrophys. 415, 425–436 (2004).

    ADS  Google Scholar 

  102. Fray, N. & Bouilloud, M. MIR absorbance spectra of CO ice at 25K for different deposition rates and different thicknesses. SSHADE/SOSYPOL (OSUG Data Center) https://doi.org/10.26302/SSHADE/EXPERIMENT_NF_20180503_2100 (2012).

  103. Hainaut, O. R., Boehnhardt, H. & Protopapa, S. Colours of minor bodies in the outer Solar System. II. A statistical analysis revisited. Astron. Astrophys. 546, A115 (2012).

  104. Sheppard, S. S., Ragozzine, D. & Trujillo, C. 2007 TY430: a cold classical Kuiper Belt type binary in the Plutino population. Astron. J. 143, 58 (2012).

  105. Bauer, J. M. et al. Centaurs and scattered disk objects in the thermal infrared: analysis of WISE/NEOWISE observations. Astrophys. J. 773, 22 (2013).

  106. Tegler, S. C., Romanishin, W. & Consolmagno, G. J. Two color populations of Kuiper Belt and Centaur objects and the smaller orbital inclinations of red Centaur objects. Astron. J. 152, 210 (2016).

  107. Lorenzi, V. et al. Visible and NIR spectroscopy of (468861) 2013 LU28 with TNG. In Proc. Asteroids, Comets, Meteors Conference 2023 (LPI, 2023); https://www.hou.usra.edu/meetings/acm2023/pdf/2379.pdf

Download references

Acknowledgements

The DiSCo-TNOs team would like to thank W. Eck and A. Henry of the Space Telescope Science Institute (STScI) for their help in preparing the observations for execution. This study was based on observations made with the National Aeronautics and Space Administration/European Space Agency/Canadian Space Agency JWST under the GO-1 programme 2418. Support for this programme was provided by NASA through a grant from STScI. The data were obtained from the Barbara A. Mikulski Archive for Space Telescopes at the STScI, which is operated by the Association of Universities for Research in Astronomy, under the NASA contract NAS 5-03127 for JWST. N.P.-A. acknowledges the Ministry of Science, Innovation, and Universities (MCIU) in Spain and the State Agency for Research (AEI) for funding through the ATRAE programme, project ATR2023-145683. R.B. and E.H. acknowledge the support from the CNES-France (JWST mission). N.P. acknowledges funding by Fundação para a Ciência e a Tecnologia through the research grants UIDB/04434/2020 and UIDP/04434/2020. J.A.S. acknowledges the Lowell Observatory and Northern Arizona University, both in Flagstaff, AZ, for their support during his sabbatical tenure. J.L. acknowledges support from the ACIISI, Consejería de Economía, Conocimiento y Empleo del Gobierno de Canarias and the European Regional Development Fund under grant ProID2021010134, and support from the Agencia Estatal de Investigacion del Ministerio de Ciencia e Innovacion under grant ‘Hydrated Minerals and Organic Compounds in Primitive Asteroids’ with reference PID2020-120464GB-100.

Author information

Authors and Affiliations

Authors

Contributions

N.P.-A., V.L., M.N.D.P., B.J.H. and J.A.S. designed the observational programme. N.P.-A., R.B., M.N.D.P., J.L., Y.J.P., D.P.C., T.G.M., J.A.S. and J.P.E. conceived the scientific goals of DiSCo. B.H., N.P.-A., I.W., A.C.d.S.F., M.N.D.P. and C.A.S. reduced and validated the data. N.P.-A., E.H., R.B., M.N.D.P., A.C.d.S.F., J.A.S. and T.G.M. performed the band identification and spectral characterization. R.B., M.N.D.P. and N.P.-A. performed clustering and studied the band areas. R.B., N.P.-A. and B.J.H. elaborated and proposed the scenario for interpreting the results. N.P.-A., R.B. and E.H. drafted the manuscript. All authors were involved in the discussion of the results and the finalization of the manuscript.

Corresponding author

Correspondence to Noemí Pinilla-Alonso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Theodore Kareta and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bowl-type DiSCo spectra.

All the spectra in the Bowl-type group normalized at 2.6 μm and shift vertically for clarity. The error bar at each wavelength, corresponding to the standard deviation, is represented in grey.

Extended Data Fig. 2 Double Dip-type DiSCo spectra.

All the spectra in the Double-Dip-type group normalized at 2.6 μm and shift vertically for clarity. The error bar at each wavelength, corresponding to the standard deviation, is represented in grey.

Extended Data Fig. 3 Cliff-type DiSCo spectra.

All the spectra in the Cliff-type group normalized at 2.6 μm and shift vertically for clarity. The error bar at each wavelength, corresponding to the standard deviation, is represented in grey.

Extended Data Fig. 4 Unclassified DiSCo Spectra.

Spectra of objects in the DiSCo sample not included in the clustering corresponding, from top to bottom, to two low signal-to-noise observations, five Centaurs, and one object in the Haumea family. The Centaurs are studied in detail in20. The spectrum of 2013 UZ117 does not resemble any other object in the DiSCo sample but it is in agreement with the spectra of other objects in the Haumea family observed in program GTO-1191. Its peculiar shape resembles that of pure water ice making these objects the only water-ice-rich surfaces in the trans-Neptunian belt. Spectra have been normalized at 2.6 μm and shifted vertically for clarity. The light grey bars at each wavelength correspond to the standard deviation.

Extended Data Fig. 5 Hierarchical clustering on the DiSCo dataset.

The detection of three main spectral groups is evident using either a Euclidean (left) or cosine (right) distance metric.

Extended Data Fig. 6 Detail of absorption bands identified in DiSCo-TNOs spectra.

Panel A: median of each compositional group ± the median absolute deviation compared to the reflectance of pure crystalline water ice97 and a Tholin rich in C–H and N–H molecules98. In green the spectrum of Enceladus obtained with JWST64. Panel B: median of the Bowl-type spectra ± the median absolute deviation, Enceladus64, and pure crystalline water ice, all three showing the Fresnel Peak at 3.1 μm. Panel C: Spectra of Arrokoth29, from New Horizons, and two DiSCo-TNOs targets compared with the spectrum of methanol and a tholin rich in N–H and C–H molecules98. Panel D: Median spectra of the Double-Dip and Cliff-type TNOs ± the median absolute deviation compared to the reflectance of methanol and tholins98. Panel E: Spectra of two DiSCo-TNOs targets compared to the spectrum of methanol and H2S99. Panel F: Spectra of two DiSCo-TNO targets compared to the spectrum of Jupiter’s moon Callisto85 showing an absorption of C ≡ N and the spectra of 13CO2100, OCN101, and CO102.

Extended Data Fig. 7 Examples of calculations of band areas for four different objects.

Band A: CH3OH and organics; B: CO2; C: H2O; D: aliphatic C − − H. Error bars are provided for each spectrum (median absolute deviation over the 4-dithers within each wavelength bin), confirming these are significant detections. The three baseline calculations and corresponding areas are reported in dark gray for the linear baseline, gray for the second order polynomial function, and light gray for the third order polynomial function. See text for more details.

Extended Data Table 1 Observation circumstances
Extended Data Table 2 Physical properties of the TNOs in the DiSCo program
Extended Data Table 3 Summary of spectral attributions

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and reference.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinilla-Alonso, N., Brunetto, R., De Prá, M.N. et al. A JWST/DiSCo-TNOs portrait of the primordial Solar System through its trans-Neptunian objects. Nat Astron 9, 230–244 (2025). https://doi.org/10.1038/s41550-024-02433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02433-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing