Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for morning-to-evening limb asymmetry on the cool low-density exoplanet WASP-107 b

Subjects

Abstract

The atmospheric properties of hot exoplanets are expected to be different between the morning and the evening limbs due to their global atmospheric circulation. Ground-based observations at high spectral resolution have detected this limb asymmetry in several ultra-hot (>2,000 K) exoplanets, but the prevalence of the phenomenon in the broader exoplanetary population remains unexplored. Here we use JWST/NIRCam transmission spectra between 2.5 and 4.0 μm to find evidence of limb asymmetry on exoplanet WASP-107 b. With its equilibrium temperature of 770 K and low density of 0.126 g cm−3, WASP-107 b probes a very different regime compared to ultra-hot giant planets and was not expected to exhibit substantial spatial heterogeneity according to atmospheric models. We infer instead a morning-to-evening temperature difference of the order of 100 K with a hotter evening limb. Further observations of other cooler exoplanets are needed to determine whether WASP-107 b is an outlier or whether the models have underestimated the presence of limb asymmetry in exoplanets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic spectrum and broadband light curve from our JWST/NIRCam F322W2 transit observation of WASP-107 b.
Fig. 2: Separate transmission spectra of WASP-107 b’s morning and evening limbs.
Fig. 3: Signal of limb asymmetry in our JWST/NIRCam data.
Fig. 4: Atmospheric model fits to WASP-107 b’s evening and morning limb spectra.

Similar content being viewed by others

Data availability

The JWST/NIRCam data (JWST GTO programme 1185; PI Greene; Observations 8 and 9), JWST/MIRI data (JWST GTO programme 1280; PI Lagage; Observation 1) and TESS data (PI Caldwell; Observation hlsp_tess-spoc_tess_phot_0000000429302040-s0010_tess_v1) are publicly available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu). The Spitzer/IRAC data (Programme 13052; PI Werner; AORKEY 62712320) are publicly available from the Spitzer Heritage Archive (https://irsa.ipac.caltech.edu/applications/Spitzer/SHA/). The SOAR data (Programme N23A-840705; PI Murphy) are available from Zenodo at https://doi.org/10.5281/zenodo.12747273 (ref. 72).

Code availability

The three reduction pipelines used in this work (Eureka!, tshirt and Pegasus) are either already open source or planned to be made open source. The codes for each are hosted on GitHub, and there are links for each in Methods.

References

  1. Močnik, T., Hellier, C., Anderson, D. R., Clark, B. J. M. & Southworth, J. Starspots on WASP-107 and pulsations of WASP-118. Mon. Not. R. Astron. Soc. 469, 1622–1629 (2017).

    Article  ADS  Google Scholar 

  2. Dai, F. & Winn, J. N. The oblique orbit of WASP-107b from K2 photometry. Astron. J. 153, 205 (2017).

    Article  ADS  Google Scholar 

  3. Hejazi, N. et al. Elemental abundances of the super-Neptune WASP-107b’s host star using high-resolution, near-infrared spectroscopy. Astrophys. J. 949, 79 (2023).

    Article  ADS  Google Scholar 

  4. Anderson, D. R. et al. The discoveries of WASP-91b, WASP-105b and WASP-107b: two warm Jupiters and a planet in the transition region between ice giants and gas giants. Astron. Astrophys. 604, A110 (2017).

    Article  Google Scholar 

  5. Piaulet, C. et al. WASP-107b’s density is even lower: a case study for the physics of planetary gas envelope accretion and orbital migration. Astron. J. 161, 70 (2021).

    Article  ADS  Google Scholar 

  6. Kataria, T. et al. The atmospheric circulation of a nine-hot-Jupiter sample: probing circulation and chemistry over a wide phase space. Astrophys. J. 821, 9 (2016).

    Article  ADS  Google Scholar 

  7. Line, M. R. & Parmentier, V. The influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016).

    Article  ADS  Google Scholar 

  8. Schwartz, J. C., Kashner, Z., Jovmir, D. & Cowan, N. B. Phase offsets and the energy budgets of hot Jupiters. Astrophys. J. 850, 154 (2017).

    Article  ADS  Google Scholar 

  9. Powell, D. et al. Transit signatures of inhomogeneous clouds on hot Jupiters: insights from microphysical cloud modeling. Astrophys. J. 887, 170 (2019).

    Article  ADS  Google Scholar 

  10. Powell, D., Zhang, X., Gao, P. & Parmentier, V. Formation of silicate and titanium clouds on hot Jupiters. Astrophys. J. 860, 18 (2018).

    Article  ADS  Google Scholar 

  11. Feng, Y. K. et al. The impact of non-uniform thermal structure on the interpretation of exoplanet emission spectra. Astrophys. J. 829, 52 (2016).

    Article  ADS  Google Scholar 

  12. Caldas, A. et al. Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: retrieval biases due to day-night temperature gradients. Astron. Astrophys. 623, A161 (2019).

    Article  Google Scholar 

  13. Welbanks, L. & Madhusudhan, N. On atmospheric retrievals of exoplanets with inhomogeneous terminators. Astrophys. J. 933, 79 (2022).

    Article  ADS  Google Scholar 

  14. MacDonald, R. J., Goyal, J. M. & Lewis, N. K. Why is it so cold in here? Explaining the cold temperatures retrieved from transmission spectra of exoplanet atmospheres. Astrophys. J. Lett. 893, L43 (2020).

    Article  ADS  Google Scholar 

  15. Schlawin, E., Greene, T. P., Line, M., Fortney, J. J. & Rieke, M. Clear and cloudy exoplanet forecasts for JWST: maps, retrieved composition, and constraints on formation with MIRI and NIRCam. Astron. J. 156, 40 (2018).

    Article  ADS  Google Scholar 

  16. Greene, T. et al. NIRCam: development and testing of the JWST near-infrared camera. In Proc. SPIE Conference Series, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave Vol. 7731 (eds Oschmann, J. et al.) 77310C (SPIE, 2010).

  17. Rieke, M. J. et al. Performance of NIRCam on JWST in flight. Publ. Astron. Soc. Pac. 135, 028001 (2023).

    Article  ADS  Google Scholar 

  18. Bell, T. et al. Eureka!: an end-to-end pipeline for JWST time-series observations. J. Open Source Softw. 7, 4503 (2022).

    Article  ADS  Google Scholar 

  19. Beatty, T. G. et al. Sulfur dioxide and other molecular species in the atmosphere of the sub-Neptune GJ 3470 b. Astrophys. J. Lett. 970, L10 (2024).

    Article  Google Scholar 

  20. Schlawin, E. et al. JWST noise floor. I. Random error sources in JWST NIRCam time series. Astron. J. 160, 231 (2020).

    Article  ADS  Google Scholar 

  21. von Paris, P., Gratier, P., Bordé, P., Leconte, J. & Selsis, F. Inferring asymmetric limb cloudiness on exoplanets from transit light curves. Astron. Astrophys. 589, A52 (2016).

    Article  Google Scholar 

  22. Espinoza, N. & Jones, K. Constraining mornings and evenings on distant worlds: a new semianalytical approach and prospects with transmission spectroscopy. Astron. J. 162, 165 (2021).

    Article  ADS  Google Scholar 

  23. Clemens, J. C., Crain, J. A. & Anderson, R. The Goodman spectrograph. In Proc. SPIE Conference Series, Ground-based Instrumentation for Astronomy Vol. 5492 (eds Moorwood, A. F. M. & Iye, M.) 331–340 (SPIE, 2004).

  24. Jones, K. & Espinoza, N. catwoman: a transit modelling Python package for asymmetric light curves. J. Open Source Softw. 7, 2382 (2022).

    Article  Google Scholar 

  25. Kreidberg, L., Line, M. R., Thorngren, D., Morley, C. V. & Stevenson, K. B. Water, high-altitude condensates, and possible methane depletion in the atmosphere of the warm super-Neptune WASP-107b. Astrophys. J. Lett. 858, L6 (2018).

    Article  ADS  Google Scholar 

  26. Dyrek, A. et al. SO2, silicate clouds, but no CH4 detected in a warm Neptune. Nature 625, 51–54 (2024).

    Article  ADS  Google Scholar 

  27. Welbanks, L. et al. A high internal heat flux and large core in a warm Neptune exoplanet. Nature 630, 836–840 (2024).

    Article  Google Scholar 

  28. Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).

    Article  ADS  Google Scholar 

  29. Welbanks, L. & Madhusudhan, N. Aurora: a generalized retrieval framework for exoplanetary transmission spectra. Astrophys. J. 913, 114 (2021).

    Article  ADS  Google Scholar 

  30. Agol, E. & Deck, K. Transit timing to first order in eccentricity. Astrophys. J. 818, 177 (2016).

    Article  ADS  Google Scholar 

  31. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    Article  ADS  Google Scholar 

  32. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars. Astron. J. 157, 96 (2019).

    Article  ADS  Google Scholar 

  33. Oshagh, M. et al. Effect of stellar spots on high-precision transit light-curve. Astron. Astrophys. 556, A19 (2013).

    Article  Google Scholar 

  34. Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).

    Article  ADS  Google Scholar 

  35. Kesseli, A. Y. & Snellen, I. A. G. Confirmation of asymmetric iron absorption in WASP-76b with HARPS. Astrophys. J. Lett. 908, L17 (2021).

    Article  ADS  Google Scholar 

  36. Gandhi, S. et al. Spatially resolving the terminator: variation of Fe, temperature, and winds in WASP-76 b across planetary limbs and orbital phase. Mon. Not. R. Astron. Soc. 515, 749–766 (2022).

    Article  ADS  Google Scholar 

  37. Maguire, C. et al. High-resolution atmospheric retrievals of WASP-76b transmission spectroscopy with ESPRESSO: monitoring limb asymmetries across multiple transits. Astron. Astrophys. 687, A49 (2024).

  38. Hoeijmakers, H. J. et al. High-resolution transmission spectroscopy of MASCARA-2 b with EXPRES. Astron. Astrophys. 641, A120 (2020).

    Article  Google Scholar 

  39. Bourrier, V. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). III. Atmospheric structure of the misaligned ultra-hot Jupiter WASP-121b. Astron. Astrophys. 635, A205 (2020).

    Article  Google Scholar 

  40. Borsa, F. et al. Atmospheric Rossiter-McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO. Astron. Astrophys. 645, A24 (2021).

    Article  Google Scholar 

  41. Espinoza, N. et al. Inhomogeneous terminators on the exoplanet WASP-39 b. Nature https://doi.org/10.1038/s41586-024-07768-4 (2024).

  42. Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 210, 642–646 (1976).

    Article  ADS  Google Scholar 

  43. Wall, J. V. & Jenkins, C. R. Practical Statistics for Astronomers (Cambridge Univ. Press, 2012).

  44. Tsai, S.-M., Moses, J. I., Powell, D. & Lee, E. K. H. Day-night transport-induced chemistry and clouds on WASP-39b: gas-phase composition. Astrophys. J. Lett. 959, L30 (2023).

    Article  ADS  Google Scholar 

  45. Perez-Becker, D. & Showman, A. P. Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776, 134 (2013).

    Article  ADS  Google Scholar 

  46. Bell, T. J. et al. Methane throughout the atmosphere of the warm exoplanet WASP-80b. Nature 623, 709–712 (2023).

    Article  ADS  Google Scholar 

  47. Schlawin, E. et al. JWST NIRCam defocused imaging: photometric stability performance and how it can sense mirror tilts. Publ. Astron. Soc. Pac. 135, 018001 (2023).

    Article  ADS  Google Scholar 

  48. Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).

    Article  ADS  Google Scholar 

  49. Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m telescope. In Proc. SPIE Conference Series, Instrumentation in Astronomy VIII Vol. 2198 (eds Crawford, D. L. & Craine, E. R.) 362 (SPIE, 1994).

  50. Collins, K. A., Kielkopf, J. F., Stassun, K. G. & Hessman, F. V. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).

    Article  ADS  Google Scholar 

  51. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W. & O'Neil, M. Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell 38, 252–265 (2015).

    Article  ADS  Google Scholar 

  52. Beatty, T. G. et al. A significant overluminosity in the transiting brown dwarf CWW 89ab. Astron. J. 156, 168 (2018).

    Article  ADS  Google Scholar 

  53. Howell, S. B. Handbook of CCD Astronomy 2nd edn (Cambridge Univ. Press, 2006).

  54. Bell, T. J. et al. Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b. Nat. Astron. 8, 879–898 (2024).

  55. Bourque, M. et al. The exoplanet characterization toolkit (exoctk). Zenodo https://doi.org/10.5281/zenodo.4556063 (2021).

  56. Kreidberg, L. batman: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).

    Article  ADS  Google Scholar 

  57. Rubenzahl, R. A. et al. The TESS-Keck survey. IV. A retrograde, polar orbit for the ultra-low-density, hot super-Neptune WASP-107b. Astron. J. 161, 119 (2021).

    Article  ADS  Google Scholar 

  58. Carteret, Y., Bourrier, V. & Dethier, W. The Rossiter–McLaughlin effect and exoplanet transits: a delicate association at medium and low spectral resolution. Astron. Astrophys. 683, A63 (2024).

    Article  ADS  Google Scholar 

  59. Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).

    ADS  Google Scholar 

  60. Peale, S. J. Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37, 533–602 (1999).

    Article  ADS  Google Scholar 

  61. Fabrycky, D. C., Johnson, E. T. & Goodman, J. Cassini states with dissipation: why obliquity tides cannot inflate hot Jupiters. Astrophys. J. 665, 754–766 (2007).

    Article  ADS  Google Scholar 

  62. Correia, A. C. M. & Laskar, J. in Exoplanets (eds Dotson, R. & Seager, S.) 239–266 (Univ. Arizona Press, 2010).

  63. Guillot, T., Burrows, A., Hubbard, W. B., Lunine, J. I. & Saumon, D. Giant planets at small orbital distances. Astrophys. J. Lett. 459, L35 (1996).

    Article  ADS  Google Scholar 

  64. Rauscher, E., Cowan, N. B. & Luger, R. Warm Jupiters beyond the tidal synchronization limit may exhibit a wide range of secondary eclipse depths. Astron. J. 165, 261 (2023).

    Article  ADS  Google Scholar 

  65. Kokori, A. et al. ExoClock project. II. A large-scale integrated study with 180 updated exoplanet ephemerides. Astrophys. J. Suppl. Ser. 258, 40 (2022).

    Article  ADS  Google Scholar 

  66. Piskorz, D. et al. Ground- and space-based detection of the thermal emission spectrum of the transiting hot Jupiter KELT-2Ab. Astron. J. 156, 133 (2018).

    Article  ADS  Google Scholar 

  67. Gharib-Nezhad, E. & Line, M. R. The influence of H2O pressure broadening in high-metallicity exoplanet atmospheres. Astrophys. J. 872, 27 (2019).

    Article  ADS  Google Scholar 

  68. Mansfield, M. et al. A unique hot Jupiter spectral sequence with evidence for compositional diversity. Nat. Astron. 5, 1224–1232 (2021).

    Article  ADS  Google Scholar 

  69. Iyer, A. R., Line, M. R., Muirhead, P. S., Fortney, J. J. & Gharib-Nezhad, E. The SPHINX M-dwarf spectral grid. I. Benchmarking new model atmospheres to derive fundamental M-dwarf properties. Astrophys. J. 944, 41 (2023).

    Article  ADS  Google Scholar 

  70. Tsai, S.-M. et al. VULCAN: an open-source, validated chemical kinetics Python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017).

    Article  ADS  Google Scholar 

  71. Line, M. R. et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013).

    Article  ADS  Google Scholar 

  72. Murphy, Matthew. SOAR/Goodman spectrograph observations of a transit of WASP-107 b. Zenodo https://doi.org/10.5281/zenodo.12747273 (2024).

  73. Fulton, B. J., Petigura, E. A., Blunt, S. & Sinukoff, E. RadVel: the radial velocity modeling toolkit. Publ. Astron. Soc. Pac. 130, 044504 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge N. Espinoza and K. Misselt for assistance in verifying the reliability of JWST’s instrument timestamps, P.-O. Lagage for providing the JWST/MIRI LRS data observed in JWST programme 1280, C. Beichman for suggesting we observe this planet as part of our JWST guaranteed time programme, K. Hardegree-Ullman for help with using the package TTVFaster and N. Espinoza for a helpful discussion about this paper. T.P.G. and T.J.B. acknowledge funding from NASA (WBS 411672.07.05.05.03.02). M.M.M., E.S. and M.R. acknowledge funding from NASA Goddard Space Flight Center (NASA Contract NAS5-02105). This work benefited from the 2023 Exoplanet Summer Program in the Other Worlds Laboratory at the University of California, Santa Cruz, a programme funded by the Heising–Simons Foundation and NASA.

Author information

Authors and Affiliations

Authors

Contributions

M.M.M. led this analysis including formulating the idea and performing the data and supporting analyses and was the primary author of the paper. T.G.B. contributed the Pegasus reduction of the NIRCam data, E.S. contributed the tshirt reduction, and T.J.B. contributed the Eureka! reduction of the NIRCam F322W2 spectra and the broadband reduction of the MIRI/LRS data. T.J.B., E.S., and T.G.B. also contributed to the interpretation of our results and the writing of the paper. M.R.L. contributed the modelling analysis using ScCHIMERA. T.P.G. selected the object, devised the observing strategy and contributed to the analysis. V.P., E.R., J.J.F., M.R.L. and L.W. each contributed to the methodology and interpretation of the results. M.R. designed the JWST/NIRCam instrument used for the observations and provided the observing time necessary for completing these observations.

Corresponding author

Correspondence to Matthew M. Murphy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Leen Decin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Uniform-limb Injection Test Results.

We generated ten realizations of synthetic light curve data with the same Gaussian light curve scatter and cadence of our real observations, based around a transit model with identical evening and morning limb radii corresponding to the observed combined transit depth. We fit these synthetic data with catwoman just as we did with the real data. Shown are the best-fit evening-limb (orange) and morning-limb (blue) spectra. Panels A - D show the results of four individual tests. Panel E shows all ten tests overlaid, and Panel F shows the average limb depth in each channel. In Panels A - E, error bars are the standard deviation (1-σ) of the transit depth posterior distributions. In Panel F, error bars are the standard error on the mean.

Extended Data Table 1 Joint-Fit Priors and Best-Fit Parameter Values
Extended Data Table 2 Best-Fit Limb Transit Depths

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, M.M., Beatty, T.G., Schlawin, E. et al. Evidence for morning-to-evening limb asymmetry on the cool low-density exoplanet WASP-107 b. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02367-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing