Abstract
The atmospheric properties of hot exoplanets are expected to be different between the morning and the evening limbs due to their global atmospheric circulation. Ground-based observations at high spectral resolution have detected this limb asymmetry in several ultra-hot (>2,000 K) exoplanets, but the prevalence of the phenomenon in the broader exoplanetary population remains unexplored. Here we use JWST/NIRCam transmission spectra between 2.5 and 4.0 μm to find evidence of limb asymmetry on exoplanet WASP-107 b. With its equilibrium temperature of 770 K and low density of 0.126 g cm−3, WASP-107 b probes a very different regime compared to ultra-hot giant planets and was not expected to exhibit substantial spatial heterogeneity according to atmospheric models. We infer instead a morning-to-evening temperature difference of the order of 100 K with a hotter evening limb. Further observations of other cooler exoplanets are needed to determine whether WASP-107 b is an outlier or whether the models have underestimated the presence of limb asymmetry in exoplanets.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The JWST/NIRCam data (JWST GTO programme 1185; PI Greene; Observations 8 and 9), JWST/MIRI data (JWST GTO programme 1280; PI Lagage; Observation 1) and TESS data (PI Caldwell; Observation hlsp_tess-spoc_tess_phot_0000000429302040-s0010_tess_v1) are publicly available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu). The Spitzer/IRAC data (Programme 13052; PI Werner; AORKEY 62712320) are publicly available from the Spitzer Heritage Archive (https://irsa.ipac.caltech.edu/applications/Spitzer/SHA/). The SOAR data (Programme N23A-840705; PI Murphy) are available from Zenodo at https://doi.org/10.5281/zenodo.12747273 (ref. 72).
Code availability
The three reduction pipelines used in this work (Eureka!, tshirt and Pegasus) are either already open source or planned to be made open source. The codes for each are hosted on GitHub, and there are links for each in Methods.
References
Močnik, T., Hellier, C., Anderson, D. R., Clark, B. J. M. & Southworth, J. Starspots on WASP-107 and pulsations of WASP-118. Mon. Not. R. Astron. Soc. 469, 1622–1629 (2017).
Dai, F. & Winn, J. N. The oblique orbit of WASP-107b from K2 photometry. Astron. J. 153, 205 (2017).
Hejazi, N. et al. Elemental abundances of the super-Neptune WASP-107b’s host star using high-resolution, near-infrared spectroscopy. Astrophys. J. 949, 79 (2023).
Anderson, D. R. et al. The discoveries of WASP-91b, WASP-105b and WASP-107b: two warm Jupiters and a planet in the transition region between ice giants and gas giants. Astron. Astrophys. 604, A110 (2017).
Piaulet, C. et al. WASP-107b’s density is even lower: a case study for the physics of planetary gas envelope accretion and orbital migration. Astron. J. 161, 70 (2021).
Kataria, T. et al. The atmospheric circulation of a nine-hot-Jupiter sample: probing circulation and chemistry over a wide phase space. Astrophys. J. 821, 9 (2016).
Line, M. R. & Parmentier, V. The influence of nonuniform cloud cover on transit transmission spectra. Astrophys. J. 820, 78 (2016).
Schwartz, J. C., Kashner, Z., Jovmir, D. & Cowan, N. B. Phase offsets and the energy budgets of hot Jupiters. Astrophys. J. 850, 154 (2017).
Powell, D. et al. Transit signatures of inhomogeneous clouds on hot Jupiters: insights from microphysical cloud modeling. Astrophys. J. 887, 170 (2019).
Powell, D., Zhang, X., Gao, P. & Parmentier, V. Formation of silicate and titanium clouds on hot Jupiters. Astrophys. J. 860, 18 (2018).
Feng, Y. K. et al. The impact of non-uniform thermal structure on the interpretation of exoplanet emission spectra. Astrophys. J. 829, 52 (2016).
Caldas, A. et al. Effects of a fully 3D atmospheric structure on exoplanet transmission spectra: retrieval biases due to day-night temperature gradients. Astron. Astrophys. 623, A161 (2019).
Welbanks, L. & Madhusudhan, N. On atmospheric retrievals of exoplanets with inhomogeneous terminators. Astrophys. J. 933, 79 (2022).
MacDonald, R. J., Goyal, J. M. & Lewis, N. K. Why is it so cold in here? Explaining the cold temperatures retrieved from transmission spectra of exoplanet atmospheres. Astrophys. J. Lett. 893, L43 (2020).
Schlawin, E., Greene, T. P., Line, M., Fortney, J. J. & Rieke, M. Clear and cloudy exoplanet forecasts for JWST: maps, retrieved composition, and constraints on formation with MIRI and NIRCam. Astron. J. 156, 40 (2018).
Greene, T. et al. NIRCam: development and testing of the JWST near-infrared camera. In Proc. SPIE Conference Series, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave Vol. 7731 (eds Oschmann, J. et al.) 77310C (SPIE, 2010).
Rieke, M. J. et al. Performance of NIRCam on JWST in flight. Publ. Astron. Soc. Pac. 135, 028001 (2023).
Bell, T. et al. Eureka!: an end-to-end pipeline for JWST time-series observations. J. Open Source Softw. 7, 4503 (2022).
Beatty, T. G. et al. Sulfur dioxide and other molecular species in the atmosphere of the sub-Neptune GJ 3470 b. Astrophys. J. Lett. 970, L10 (2024).
Schlawin, E. et al. JWST noise floor. I. Random error sources in JWST NIRCam time series. Astron. J. 160, 231 (2020).
von Paris, P., Gratier, P., Bordé, P., Leconte, J. & Selsis, F. Inferring asymmetric limb cloudiness on exoplanets from transit light curves. Astron. Astrophys. 589, A52 (2016).
Espinoza, N. & Jones, K. Constraining mornings and evenings on distant worlds: a new semianalytical approach and prospects with transmission spectroscopy. Astron. J. 162, 165 (2021).
Clemens, J. C., Crain, J. A. & Anderson, R. The Goodman spectrograph. In Proc. SPIE Conference Series, Ground-based Instrumentation for Astronomy Vol. 5492 (eds Moorwood, A. F. M. & Iye, M.) 331–340 (SPIE, 2004).
Jones, K. & Espinoza, N. catwoman: a transit modelling Python package for asymmetric light curves. J. Open Source Softw. 7, 2382 (2022).
Kreidberg, L., Line, M. R., Thorngren, D., Morley, C. V. & Stevenson, K. B. Water, high-altitude condensates, and possible methane depletion in the atmosphere of the warm super-Neptune WASP-107b. Astrophys. J. Lett. 858, L6 (2018).
Dyrek, A. et al. SO2, silicate clouds, but no CH4 detected in a warm Neptune. Nature 625, 51–54 (2024).
Welbanks, L. et al. A high internal heat flux and large core in a warm Neptune exoplanet. Nature 630, 836–840 (2024).
Benneke, B. & Seager, S. How to distinguish between cloudy mini-Neptunes and water/volatile-dominated super-Earths. Astrophys. J. 778, 153 (2013).
Welbanks, L. & Madhusudhan, N. Aurora: a generalized retrieval framework for exoplanetary transmission spectra. Astrophys. J. 913, 114 (2021).
Agol, E. & Deck, K. Transit timing to first order in eccentricity. Astrophys. J. 818, 177 (2016).
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars. Astron. J. 157, 96 (2019).
Oshagh, M. et al. Effect of stellar spots on high-precision transit light-curve. Astron. Astrophys. 556, A19 (2013).
Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).
Kesseli, A. Y. & Snellen, I. A. G. Confirmation of asymmetric iron absorption in WASP-76b with HARPS. Astrophys. J. Lett. 908, L17 (2021).
Gandhi, S. et al. Spatially resolving the terminator: variation of Fe, temperature, and winds in WASP-76 b across planetary limbs and orbital phase. Mon. Not. R. Astron. Soc. 515, 749–766 (2022).
Maguire, C. et al. High-resolution atmospheric retrievals of WASP-76b transmission spectroscopy with ESPRESSO: monitoring limb asymmetries across multiple transits. Astron. Astrophys. 687, A49 (2024).
Hoeijmakers, H. J. et al. High-resolution transmission spectroscopy of MASCARA-2 b with EXPRES. Astron. Astrophys. 641, A120 (2020).
Bourrier, V. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). III. Atmospheric structure of the misaligned ultra-hot Jupiter WASP-121b. Astron. Astrophys. 635, A205 (2020).
Borsa, F. et al. Atmospheric Rossiter-McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO. Astron. Astrophys. 645, A24 (2021).
Espinoza, N. et al. Inhomogeneous terminators on the exoplanet WASP-39 b. Nature https://doi.org/10.1038/s41586-024-07768-4 (2024).
Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 210, 642–646 (1976).
Wall, J. V. & Jenkins, C. R. Practical Statistics for Astronomers (Cambridge Univ. Press, 2012).
Tsai, S.-M., Moses, J. I., Powell, D. & Lee, E. K. H. Day-night transport-induced chemistry and clouds on WASP-39b: gas-phase composition. Astrophys. J. Lett. 959, L30 (2023).
Perez-Becker, D. & Showman, A. P. Atmospheric heat redistribution on hot Jupiters. Astrophys. J. 776, 134 (2013).
Bell, T. J. et al. Methane throughout the atmosphere of the warm exoplanet WASP-80b. Nature 623, 709–712 (2023).
Schlawin, E. et al. JWST NIRCam defocused imaging: photometric stability performance and how it can sense mirror tilts. Publ. Astron. Soc. Pac. 135, 018001 (2023).
Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).
Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m telescope. In Proc. SPIE Conference Series, Instrumentation in Astronomy VIII Vol. 2198 (eds Crawford, D. L. & Craine, E. R.) 362 (SPIE, 1994).
Collins, K. A., Kielkopf, J. F., Stassun, K. G. & Hessman, F. V. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).
Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W. & O'Neil, M. Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell 38, 252–265 (2015).
Beatty, T. G. et al. A significant overluminosity in the transiting brown dwarf CWW 89ab. Astron. J. 156, 168 (2018).
Howell, S. B. Handbook of CCD Astronomy 2nd edn (Cambridge Univ. Press, 2006).
Bell, T. J. et al. Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b. Nat. Astron. 8, 879–898 (2024).
Bourque, M. et al. The exoplanet characterization toolkit (exoctk). Zenodo https://doi.org/10.5281/zenodo.4556063 (2021).
Kreidberg, L. batman: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).
Rubenzahl, R. A. et al. The TESS-Keck survey. IV. A retrograde, polar orbit for the ultra-low-density, hot super-Neptune WASP-107b. Astron. J. 161, 119 (2021).
Carteret, Y., Bourrier, V. & Dethier, W. The Rossiter–McLaughlin effect and exoplanet transits: a delicate association at medium and low spectral resolution. Astron. Astrophys. 683, A63 (2024).
Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).
Peale, S. J. Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37, 533–602 (1999).
Fabrycky, D. C., Johnson, E. T. & Goodman, J. Cassini states with dissipation: why obliquity tides cannot inflate hot Jupiters. Astrophys. J. 665, 754–766 (2007).
Correia, A. C. M. & Laskar, J. in Exoplanets (eds Dotson, R. & Seager, S.) 239–266 (Univ. Arizona Press, 2010).
Guillot, T., Burrows, A., Hubbard, W. B., Lunine, J. I. & Saumon, D. Giant planets at small orbital distances. Astrophys. J. Lett. 459, L35 (1996).
Rauscher, E., Cowan, N. B. & Luger, R. Warm Jupiters beyond the tidal synchronization limit may exhibit a wide range of secondary eclipse depths. Astron. J. 165, 261 (2023).
Kokori, A. et al. ExoClock project. II. A large-scale integrated study with 180 updated exoplanet ephemerides. Astrophys. J. Suppl. Ser. 258, 40 (2022).
Piskorz, D. et al. Ground- and space-based detection of the thermal emission spectrum of the transiting hot Jupiter KELT-2Ab. Astron. J. 156, 133 (2018).
Gharib-Nezhad, E. & Line, M. R. The influence of H2O pressure broadening in high-metallicity exoplanet atmospheres. Astrophys. J. 872, 27 (2019).
Mansfield, M. et al. A unique hot Jupiter spectral sequence with evidence for compositional diversity. Nat. Astron. 5, 1224–1232 (2021).
Iyer, A. R., Line, M. R., Muirhead, P. S., Fortney, J. J. & Gharib-Nezhad, E. The SPHINX M-dwarf spectral grid. I. Benchmarking new model atmospheres to derive fundamental M-dwarf properties. Astrophys. J. 944, 41 (2023).
Tsai, S.-M. et al. VULCAN: an open-source, validated chemical kinetics Python code for exoplanetary atmospheres. Astrophys. J. Suppl. Ser. 228, 20 (2017).
Line, M. R. et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013).
Murphy, Matthew. SOAR/Goodman spectrograph observations of a transit of WASP-107 b. Zenodo https://doi.org/10.5281/zenodo.12747273 (2024).
Fulton, B. J., Petigura, E. A., Blunt, S. & Sinukoff, E. RadVel: the radial velocity modeling toolkit. Publ. Astron. Soc. Pac. 130, 044504 (2018).
Acknowledgements
We acknowledge N. Espinoza and K. Misselt for assistance in verifying the reliability of JWST’s instrument timestamps, P.-O. Lagage for providing the JWST/MIRI LRS data observed in JWST programme 1280, C. Beichman for suggesting we observe this planet as part of our JWST guaranteed time programme, K. Hardegree-Ullman for help with using the package TTVFaster and N. Espinoza for a helpful discussion about this paper. T.P.G. and T.J.B. acknowledge funding from NASA (WBS 411672.07.05.05.03.02). M.M.M., E.S. and M.R. acknowledge funding from NASA Goddard Space Flight Center (NASA Contract NAS5-02105). This work benefited from the 2023 Exoplanet Summer Program in the Other Worlds Laboratory at the University of California, Santa Cruz, a programme funded by the Heising–Simons Foundation and NASA.
Author information
Authors and Affiliations
Contributions
M.M.M. led this analysis including formulating the idea and performing the data and supporting analyses and was the primary author of the paper. T.G.B. contributed the Pegasus reduction of the NIRCam data, E.S. contributed the tshirt reduction, and T.J.B. contributed the Eureka! reduction of the NIRCam F322W2 spectra and the broadband reduction of the MIRI/LRS data. T.J.B., E.S., and T.G.B. also contributed to the interpretation of our results and the writing of the paper. M.R.L. contributed the modelling analysis using ScCHIMERA. T.P.G. selected the object, devised the observing strategy and contributed to the analysis. V.P., E.R., J.J.F., M.R.L. and L.W. each contributed to the methodology and interpretation of the results. M.R. designed the JWST/NIRCam instrument used for the observations and provided the observing time necessary for completing these observations.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Leen Decin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Uniform-limb Injection Test Results.
We generated ten realizations of synthetic light curve data with the same Gaussian light curve scatter and cadence of our real observations, based around a transit model with identical evening and morning limb radii corresponding to the observed combined transit depth. We fit these synthetic data with catwoman just as we did with the real data. Shown are the best-fit evening-limb (orange) and morning-limb (blue) spectra. Panels A - D show the results of four individual tests. Panel E shows all ten tests overlaid, and Panel F shows the average limb depth in each channel. In Panels A - E, error bars are the standard deviation (1-σ) of the transit depth posterior distributions. In Panel F, error bars are the standard error on the mean.
Supplementary information
Supplementary Information
Supplementary Figs. 1–4 and Table 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Murphy, M.M., Beatty, T.G., Schlawin, E. et al. Evidence for morning-to-evening limb asymmetry on the cool low-density exoplanet WASP-107 b. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02367-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-024-02367-9