Abstract
The origin of the supermassive black holes (SMBHs) residing in the centres of most galaxies remains a mystery. The Event Horizon Telescope has provided direct imaging of the SMBH Sagittarius A* (Sgr A*) at the Milky Way’s centre, indicating that it probably spins rapidly with its spin axis substantially misaligned relative to the Galactic plane’s angular momentum. Through investigating various SMBH growth models, here we show that the inferred spin properties of Sgr A* provide evidence of a potential past SMBH merger. Inspired by the merger between the Milky Way and the Gaia-Enceladus progenitor, which had a 4:1 mass ratio as inferred from Gaia data, we have discovered that a 4:1 major merger of a SMBH with a binary angular momentum inclination angle of 145–180° with respect to the line of sight can successfully replicate the measured spin properties of Sgr A*. This possible merger event in our Galaxy’s history provides potential observational support for the theory of hierarchical black hole mergers in the formation and growth of SMBHs. The inferred merger rate, consistent with theoretical predictions, suggests a promising detection rate of SMBH mergers for the space-borne gravitational wave detectors expected to operate in the 2030s.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Data are available via figshare at https://figshare.com/articles/dataset/Sgr_A_data/26112379 (ref. 109).
Code availability
The code and data-processing script are available at https://github.com/YihanWangAstro/Sgr-A-PubCode.
References
Richstone, D. et al. Supermassive black holes and the evolution of galaxies. Nature 385, A14 (1998).
Fan, X. et al. A survey of z > 5.8 quasars in the Sloan Digital Sky Survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z ~ 6. Astron. J. 122, 2833–2849 (2001).
Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).
Event Horizon Telescope Collaborationet al. First Sagittarius A* Event Horizon Telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. Astrophys. J. Lett. 930, L12 (2022).
Event Horizon Telescope Collaborationet al. First Sagittarius A* Event Horizon Telescope results. V. Testing astrophysical models of the Galactic Center black hole. Astrophys. J. Lett. 930, L16 (2022).
Event Horizon Telescope Collaborationet al. First Sagittarius A* Event Horizon Telescope results. VIII. Physical interpretation of the polarized ring. Astrophys. J. Lett. 964, L26 (2024).
GRAVITY Collaboration. et al. Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys. 643, A56 (2020).
Fragione, G. & Loeb, A. An upper limit on the spin of SgrA* based on stellar orbits in its vicinity. Astrophys. J. Lett. 901, L32 (2020).
Volonteri, M., Sikora, M. & Lasota, J.-P. Black hole spin and galactic morphology. Astrophys. J. 667, 704–713 (2007).
King, A. R. & Pringle, J. E. Growing supermassive black holes by chaotic accretion. Mon. Not. R. Astron. Soc. 373, L90–L92 (2006).
Dubois, Y., Volonteri, M. & Silk, J. Black hole evolution. III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations. Mon. Not. R. Astron. Soc. 440, 1590–1606 (2014).
Beckmann, R. S. et al. Supermassive black holes in merger-free galaxies have higher spins which are preferentially aligned with their host galaxy. Mon. Not. R. Astron. Soc. 527, 10867–10877 (2022).
Sala, L., Valentini, M., Biffi, V. & Dolag, K. Supermassive black hole spin evolution in cosmological simulations with OpenGadget3. Astron. Astrophys. 685, A92 (2024).
Peirani, S. et al. Cosmic evolution of black hole spin and galaxy orientations: clues from the NewHorizon and Galactica simulations. Astron. Astrophys. 686, A233 (2024).
Menou, K., Haiman, Z. & Narayanan, V. K. The merger history of supermassive black holes in galaxies. Astrophys. J. 558, 535–542 (2001).
Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).
Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).
Tanaka, T. & Haiman, Z. The assembly of supermassive black holes at high redshifts. Astrophys. J. 696, 1798–1822 (2009).
Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).
Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).
Lei, W.-H., Zhang, B., Wu, X.-F. & Liang, E.-W. Hyperaccreting black hole as gamma-ray burst central engine. II. Temporal evolution of the central engine parameters during the prompt and afterglow phases. Astrophys. J. 849, 47 (2017).
Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563, 85–88 (2018).
Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).
Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).
Lang, M. et al. Can a satellite galaxy merger explain the active past of the Galactic Centre? Mon. Not. R. Astron. Soc. 430, 2574–2584 (2013).
Schmitt, H. R., Pringle, J. E., Clarke, C. J. & Kinney, A. L. The orientation of jets relative to dust disks in radio galaxies. Astrophys. J. 575, 150–155 (2002).
Boylan-Kolchin, M., Springel, V., White, S. D. M., Jenkins, A. & Lemson, G. Resolving cosmic structure formation with the Millennium-II simulation. Mon. Not. R. Astron. Soc. 398, 1150–1164 (2009).
Milosavljević, M. & Merritt, D. Formation of galactic nuclei. Astrophys. J. 563, 34–62 (2001).
Yu, Q. & Tremaine, S. Observational constraints on growth of massive black holes. Mon. Not. R. Astron. Soc. 335, 965–976 (2002).
Sesana, A. & Khan, F. M. Scattering experiments meet N-body. I. A practical recipe for the evolution of massive black hole binaries in stellar environments. Mon. Not. R. Astron. Soc. 454, L66–L70 (2015).
Ryu, T., Perna, R., Haiman, Z., Ostriker, J. P. & Stone, N. C. Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem. Mon. Not. R. Astron. Soc. 473, 3410–3433 (2018).
Sesana, A., Haardt, F., Madau, P. & Volonteri, M. The gravitational wave signal from massive black hole binaries and its contribution to the LISA data stream. Astrophys. J. 623, 23–30 (2005).
Volonteri, M. et al. Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations. Mon. Not. R. Astron. Soc. 498, 2219–2238 (2020).
Li, K., Bogdanović, T., Ballantyne, D. R. & Bonetti, M. Massive black hole binaries from the TNG50-3 simulation. I. Coalescence and LISA detection rates. Astrophys. J. 933, 104 (2022).
Conselice, C. J., Wilkinson, A., Duncan, K. & Mortlock, A. The evolution of galaxy number density at z < 8 and its implications. Astrophys. J. 830, 83 (2016).
Reid, M. J. & Brunthaler, A. The proper motion of Sagittarius A*. II. The mass of Sagittarius A*. Astrophys. J. 616, 872–884 (2004).
Ghez, A. M. et al. Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008).
Reid, M. J. & Brunthaler, A. The proper motion of Sagittarius A*. III. The case for a supermassive black hole. Astrophys. J. 892, 39 (2020).
Gualandris, A. & Merritt, D. Ejection of supermassive black holes from galaxy cores. Astrophys. J. 678, 780–797 (2008).
Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).
Ruan, W.-H., Guo, Z.-K., Cai, R.-G. & Zhang, Y.-Z. Taiji program: gravitational-wave sources. Int. J. Mod. Phys. A 35, 2050075 (2020).
Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Gravity 33, 035010 (2016).
Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982).
Hirano, S. et al. One hundred first stars: protostellar evolution and the final masses. Astrophys. J. 781, 60 (2014).
Bond, J. R., Arnett, W. D. & Carr, B. J. The evolution and fate of very massive objects. Astrophys. J. 280, 825–847 (1984).
Madau, P. & Rees, M. J. Massive black holes as population III remnants. Astrophys. J. Lett. 551, L27–L30 (2001).
Bahcall, J. N. & Ostriker, J. P. Massive black holes in globular clusters. Nature 256, 23–24 (1975).
Begelman, M. C. & Rees, M. J. The fate of dense stellar systems. Mon. Not. R. Astron. Soc. 185, 847–860 (1978).
Quinlan, G. D. & Shapiro, S. L. The dynamical evolution of dense star clusters in galactic nuclei. Astrophys. J. 356, 483 (1990).
Lee, M. H. N-body evolution of dense clusters of compact stars. Astrophys. J. 418, 147 (1993).
Ebisuzaki, T. et al. Missing link found? The ‘runaway’ path to supermassive black holes. Astrophys. J. Lett. 562, L19–L22 (2001).
Miller, M. C. & Hamilton, D. P. Production of intermediate-mass black holes in globular clusters. Mon. Not. R. Astron. Soc. 330, 232–240 (2002).
Portegies Zwart, S. F. & McMillan, S. L. W. The runaway growth of intermediate-mass black holes in dense star clusters. Astrophys. J. 576, 899–907 (2002).
Rose, S. C., Naoz, S., Sari, R. & Linial, I. The formation of intermediate-mass black holes in galactic nuclei. Astrophys. J. Lett. 929, L22 (2022).
Atallah, D. et al. Growing black holes through successive mergers in galactic nuclei. I. Methods and first results. Mon. Not. R. Astron. Soc. 523, 4227–4250 (2023).
Omukai, K., Schneider, R. & Haiman, Z. Can supermassive black holes form in metal-enriched high-redshift protogalaxies? Astrophys. J. 686, 801–814 (2008).
Devecchi, B. & Volonteri, M. Formation of the first nuclear clusters and massive black holes at high redshift. Astrophys. J. 694, 302–313 (2009).
Loeb, A. & Rasio, F. A. Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52 (1994).
Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).
Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. R. Astron. Soc. 371, 1813–1823 (2006).
Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).
Lynden-Bell, D. & Pringle, J. E. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603–637 (1974).
Shapiro, S. L., Lightman, A. P. & Eardley, D. M. A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. Astrophys. J. 204, 187–199 (1976).
Ichimaru, S. Bimodal behavior of accretion disks: theory and application to Cygnus X-1 transitions. Astrophys. J. 214, 840–855 (1977).
Narayan, R. & Yi, I. Advection-dominated accretion: a self-similar solution. Astrophys. J. Lett. 428, L13 (1994).
Narayan, R. & Yi, I. Advection-dominated accretion: self-similarity and bipolar outflows. Astrophys. J. 444, 231 (1995).
Blandford, R. D. & Begelman, M. C. On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 303, L1–L5 (1999).
McKinney, J. C. Total and jet Blandford–Znajek power in the presence of an accretion disk. Astrophys. J. Lett. 630, L5–L8 (2005).
Ghisellini, G., Tavecchio, F., Maraschi, L., Celotti, A. & Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 515, 376–378 (2014).
Narayan, R., Chael, A., Chatterjee, K., Ricarte, A. & Curd, B. Jets in magnetically arrested hot accretion flows: geometry, power, and black hole spin-down. Mon. Not. R. Astron. Soc. 511, 3795–3813 (2022).
Igumenshchev, I. V., Narayan, R. & Abramowicz, M. A. Three-dimensional magnetohydrodynamic simulations of radiatively inefficient accretion Flows. Astrophys. J. 592, 1042–1059 (2003).
Narayan, R., Igumenshchev, I. V. & Abramowicz, M. A. Magnetically arrested disk: an energetically efficient accretion plow. Publ. Astron. Soc. Jpn 55, L69–L72 (2003).
Narayan, R., Sądowski, A., Penna, R. F. & Kulkarni, A. K. GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc. 426, 3241–3259 (2012).
Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, L79–L83 (2011).
Ricarte, A., Narayan, R. & Curd, B. Recipes for jet feedback and spin evolution of black holes with strongly magnetized super-Eddington accretion disks. Astrophys. J. Lett. 954, L22 (2023).
Lowell, B., Jacquemin-Ide, J., Tchekhovskoy, A. & Duncan, A. Rapid black hole spin-down by thick magnetically arrested disks. Astrophys. J. 960, 82 (2024).
Page, D. N. & Thorne, K. S. Disk-accretion onto a black hole. Time-averaged structure of accretion disk. Astrophys. J. 191, 499–506 (1974).
King, A. R., Pringle, J. E. & Hofmann, J. A. The evolution of black hole mass and spin in active galactic nuclei. Mon. Not. R. Astron. Soc. 385, 1621–1627 (2008).
Chen, Y.-X. & Lin, D. N. C. Chaotic gas accretion by black holes embedded in AGN discs as cause of low-spin signatures in gravitational wave events. Mon. Not. R. Astron. Soc. 522, 319–329 (2023).
Bustamante, S. & Springel, V. Spin evolution and feedback of supermassive black holes in cosmological simulations. Mon. Not. R. Astron. Soc. 490, 4133–4153 (2019).
Varma, V. et al. Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Res. 1, 033015 (2019).
Boschini, M. et al. Extending black-hole remnant surrogate models to extreme mass ratios. Phys. Rev. D 108, 084015 (2023).
Blackman, J. et al. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers. Phys. Rev. D 96, 024058 (2017).
Varma, V., Gerosa, D., Stein, L. C., Hébert, F. & Zhang, H. High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants. Phys. Rev. Lett. 122, 011101 (2019).
Tremmel, M. et al. An enhanced massive black hole occupation fraction predicted in cluster dwarf galaxies. Open J. Astrophys. 7, 26 (2024).
Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).
Goldreich, P. & Tremaine, S. Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980).
Berczik, P., Merritt, D., Spurzem, R. & Bischof, H.-P. Efficient merger of binary supermassive black holes in nonaxisymmetric galaxies. Astrophys. J. Lett. 642, L21–L24 (2006).
Vasiliev, E., Antonini, F. & Merritt, D. The final-parsec problem in the collisionless limit. Astrophys. J. 810, 49 (2015).
Quinlan, G. D. The dynamical evolution of massive black hole binaries. I. Hardening in a fixed stellar background. New Astron. 1, 35–56 (1996).
Sesana, A., Haardt, F. & Madau, P. Interaction of massive black hole binaries with their stellar environment. I. Ejection of hypervelocity stars. Astrophys. J. 651, 392–400 (2006).
Peters, P. C. & Mathews, J. Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131, 435–440 (1963).
Peters, P. C. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, 1224–1232 (1964).
Dehnen, W. A family of potential-density pairs for spherical galaxies and bulges. Mon. Not. R. Astron. Soc. 265, 250 (1993).
Dabringhausen, J., Hilker, M. & Kroupa, P. From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. Mon. Not. R. Astron. Soc. 386, 864–886 (2008).
Bekenstein, J. D. Gravitational-radiation recoil and runaway black holes. Astrophys. J. 183, 657–664 (1973).
Blecha, L. & Loeb, A. Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes. Mon. Not. R. Astron. Soc. 390, 1311–1325 (2008).
Merritt, D., Berczik, P. & Laun, F. Brownian motion of black holes in dense nuclei. Astron. J. 133, 553–563 (2007).
Hansen, B. M. S. & Milosavljević, M. The need for a second black hole at the Galactic Center. Astrophys. J. Lett. 593, L77–L80 (2003).
Maillard, J. P., Paumard, T., Stolovy, S. R. & Rigaut, F. The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared. Astron. Astrophys. 423, 155–167 (2004).
Gürkan, M. A. & Rasio, F. A. The disruption of stellar clusters containing massive black holes near the Galactic Center. Astrophys. J. 628, 236–245 (2005).
Gualandris, A. & Merritt, D. Perturbations of intermediate-mass black holes on stellar orbits in the Galactic Center. Astrophys. J. 705, 361–371 (2009).
Chen, X. & Liu, F. K. Is there an intermediate massive black hole in the Galactic Center: imprints on the stellar tidal-disruption rate. Astrophys. J. 762, 95 (2013).
Generozov, A. & Madigan, A.-M. The Hills mechanism and the Galactic Center S-stars. Astrophys. J. 896, 137 (2020).
Naoz, S. et al. A hidden friend for the Galactic Center black hole, Sgr A*. Astrophys. J. Lett. 888, L8 (2020).
Zheng, X., Lin, D. N. C. & Mao, S. The influence of the secular perturbation of an intermediate-mass companion. I. Eccentricity excitation of disk stars at the Galactic Center. Astrophys. J. 905, 169 (2020).
Will, C. M. et al. Constraining a companion of the Galactic Center black hole Sgr A*. Astrophys. J. 959, 58 (2023).
Gravity Collaboration. et al. Where intermediate-mass black holes could hide in the Galactic Centre. A full parameter study with the S2 orbit. Astron. Astrophys. 672, A63 (2023).
Wang, Y. Data set for Sgr* A. figshare https://figshare.com/articles/dataset/Sgr_A_data/26112379 (2024).
Acknowledgements
Y.W. and B.Z. acknowledge support from NASA (Grant No. 80NSSC23M0104) and the Nevada Center for Astrophysics. Y.W. acknowledges useful discussions with T. Bogdanovic regarding the recoil velocity of major mergers, with D. N. C. Lin on subsequent accretions following the merger, as well as with B. McKernan and D. Stern concerning coherent accretions.
Author information
Authors and Affiliations
Contributions
B.Z. proposed the idea of this paper. Y.W. developed the theoretical models. Y.W. and B.Z. analysed the results and discussed the theoretical models. Both authors contributed to the analysis or interpretation of the data and to the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 SMBH seeds mass distribution from three different formation channels.
This figure presents the mass distribution of SMBH seeds derived from three distinct formation channels. The blue distribution represents SMBH seeds formed from population-III stars. The orange distribution illustrates the SMBH seeds resulting from cluster runaway collisions. The green distribution shows the mass distribution from direct collapse of clouds and dark matter.
Extended Data Fig. 2 Distribution of the accretion disk misalignment angle for different values of k in Mises function.
k = 0 indicates isotropically distributed accretion model, while large value of k (~ > 30) is asymptotic to coherent accretion model.
Extended Data Fig. 3 Kernel density estimates of the final BH spin and orientation for Sgr A*-like SMBHs accreted from Pop-III SMBH seeds.
The blue contours represent the chaotic accretion models with isotropic disk orientation, while the yellow contours represent the coherent accretion models. The left panels show the jet-free case, the middle panels show the weak BZ jet case, and the right panels show the strong BZ jet case. From top to bottom, the effective accretion rate increases. The red blocks represent regions disfavored by EHT constraints, whereas the green blocks indicate the ‘best-bet’ regions of parameter space that perform well and explain nearly all observed data, excluding polarization. The region marked with slashes highlights the ‘best-bet’ area, taking into account the polarization constraints. The absence of contours indicates failures to accrete to Sgr A* mass within the Hubble time.
Extended Data Fig. 4 Kernel density estimates of the final BH spin and orientation for Sgr A*-like SMBHs accreted from star cluster runaway SMBH seeds.
The blue contours represent the chaotic accretion models with isotropic disk orientation, while the yellow contours represent the coherent accretion models. The left panels show the jet-free case, the middle panels show the weak BZ jet case, and the right panels show the strong BZ jet case. From top to bottom, the effective accretion rate increases. The red blocks represent regions disfavored by EHT constraints, whereas the green blocks indicate the ‘best-bet’ regions of parameter space that perform well and explain nearly all observed data, excluding polarization. The region marked with slashes highlights the ‘best-bet’ area, taking into account the polarization constraints.
Extended Data Fig. 5 Final spin magnitude and spin-orbital misalignment angle for 4:1 SMBH binary major mergers, differentiated by pre-merger spin vectors a1 and a2.
The color coding corresponds to different initial magnitudes of a1. The left panel displays scenarios where the secondary SMBH has a negligible initial spin, whereas the right panel represents cases with a nearly maximally spinning secondary SMBH. The pre-merger spins a1 and a2 are assumed to be isotropically distributed.
Extended Data Fig. 6 Kernel density estimates of the final BH spin and orientation from the 8:1 merger models.
a1 indicates the spin magnitudes of the primary and secondary SMBHs before the merger, respectively. The value of ϕ represents different binary SMBH orientations with respect to the LOS. The orientations of a1 are isotropically distributed to encompass both the accretion-only and merger progenitor cases. The final spin distributions show very weak dependency on a2.
Extended Data Fig. 7 Kernel density estimates of the final BH spin and orientation from the 16:1 merger models.
a1 indicate the spin magnitudes of the primary and secondary SMBHs before the merger, respectively. The value of ϕ represents different binary SMBH orientations with respect to the LOS. The orientations of a1 are isotropically distributed to encompass both the accretion-only and merger progenitor cases. The final spin distributions show very weak dependency on a2.
Extended Data Fig. 8 Velocity Distribution and Settling Time Post-4:1 Merger.
The left panel displays the distribution of the recoil kick velocities immediately following the 4:1 merger. The right panel depicts the required settling time for Sgr A* to return to the observed Brownian motion level at the Galactic Center.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, Y., Zhang, B. Evidence of a past merger of the Galactic Centre black hole. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02358-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-024-02358-w