Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence of a past merger of the Galactic Centre black hole

Abstract

The origin of the supermassive black holes (SMBHs) residing in the centres of most galaxies remains a mystery. The Event Horizon Telescope has provided direct imaging of the SMBH Sagittarius A* (Sgr A*) at the Milky Way’s centre, indicating that it probably spins rapidly with its spin axis substantially misaligned relative to the Galactic plane’s angular momentum. Through investigating various SMBH growth models, here we show that the inferred spin properties of Sgr A* provide evidence of a potential past SMBH merger. Inspired by the merger between the Milky Way and the Gaia-Enceladus progenitor, which had a 4:1 mass ratio as inferred from Gaia data, we have discovered that a 4:1 major merger of a SMBH with a binary angular momentum inclination angle of 145–180° with respect to the line of sight can successfully replicate the measured spin properties of Sgr A*. This possible merger event in our Galaxy’s history provides potential observational support for the theory of hierarchical black hole mergers in the formation and growth of SMBHs. The inferred merger rate, consistent with theoretical predictions, suggests a promising detection rate of SMBH mergers for the space-borne gravitational wave detectors expected to operate in the 2030s.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of mass and spin evolution of coherent accretion models and chaotic accretion models from three different SMBH seeds.
Fig. 2: Kernel density estimates of the final BH spin and orientation for Sgr A*-like SMBHs accreted from direct-collapse SMBH seeds.
Fig. 3: Schematics of the SMBH merger model.
Fig. 4: Kernel density estimates of the final BH spin and orientation from the 4:1 merger models.
Fig. 5: SMBH binary formation and merger rates (R) at different redshifts for different primary BH masses and mass ratios.

Similar content being viewed by others

Data availability

Data are available via figshare at https://figshare.com/articles/dataset/Sgr_A_data/26112379 (ref. 109).

Code availability

The code and data-processing script are available at https://github.com/YihanWangAstro/Sgr-A-PubCode.

References

  1. Richstone, D. et al. Supermassive black holes and the evolution of galaxies. Nature 385, A14 (1998).

    Google Scholar 

  2. Fan, X. et al. A survey of z > 5.8 quasars in the Sloan Digital Sky Survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z ~ 6. Astron. J. 122, 2833–2849 (2001).

    Article  ADS  Google Scholar 

  3. Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).

    Article  ADS  Google Scholar 

  4. Event Horizon Telescope Collaborationet al. First Sagittarius A* Event Horizon Telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. Astrophys. J. Lett. 930, L12 (2022).

    Article  ADS  Google Scholar 

  5. Event Horizon Telescope Collaborationet al. First Sagittarius A* Event Horizon Telescope results. V. Testing astrophysical models of the Galactic Center black hole. Astrophys. J. Lett. 930, L16 (2022).

    Article  ADS  Google Scholar 

  6. Event Horizon Telescope Collaborationet al. First Sagittarius A* Event Horizon Telescope results. VIII. Physical interpretation of the polarized ring. Astrophys. J. Lett. 964, L26 (2024).

    Article  ADS  Google Scholar 

  7. GRAVITY Collaboration. et al. Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys. 643, A56 (2020).

    Article  Google Scholar 

  8. Fragione, G. & Loeb, A. An upper limit on the spin of SgrA* based on stellar orbits in its vicinity. Astrophys. J. Lett. 901, L32 (2020).

    Article  ADS  Google Scholar 

  9. Volonteri, M., Sikora, M. & Lasota, J.-P. Black hole spin and galactic morphology. Astrophys. J. 667, 704–713 (2007).

    Article  ADS  Google Scholar 

  10. King, A. R. & Pringle, J. E. Growing supermassive black holes by chaotic accretion. Mon. Not. R. Astron. Soc. 373, L90–L92 (2006).

    Article  ADS  Google Scholar 

  11. Dubois, Y., Volonteri, M. & Silk, J. Black hole evolution. III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations. Mon. Not. R. Astron. Soc. 440, 1590–1606 (2014).

    Article  ADS  Google Scholar 

  12. Beckmann, R. S. et al. Supermassive black holes in merger-free galaxies have higher spins which are preferentially aligned with their host galaxy. Mon. Not. R. Astron. Soc. 527, 10867–10877 (2022).

  13. Sala, L., Valentini, M., Biffi, V. & Dolag, K. Supermassive black hole spin evolution in cosmological simulations with OpenGadget3. Astron. Astrophys. 685, A92 (2024).

    Article  ADS  Google Scholar 

  14. Peirani, S. et al. Cosmic evolution of black hole spin and galaxy orientations: clues from the NewHorizon and Galactica simulations. Astron. Astrophys. 686, A233 (2024).

    Article  Google Scholar 

  15. Menou, K., Haiman, Z. & Narayanan, V. K. The merger history of supermassive black holes in galaxies. Astrophys. J. 558, 535–542 (2001).

    Article  ADS  Google Scholar 

  16. Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).

    Article  ADS  Google Scholar 

  17. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

    Article  ADS  Google Scholar 

  18. Tanaka, T. & Haiman, Z. The assembly of supermassive black holes at high redshifts. Astrophys. J. 696, 1798–1822 (2009).

    Article  ADS  Google Scholar 

  19. Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    Article  ADS  Google Scholar 

  20. Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977).

    Article  ADS  Google Scholar 

  21. Lei, W.-H., Zhang, B., Wu, X.-F. & Liang, E.-W. Hyperaccreting black hole as gamma-ray burst central engine. II. Temporal evolution of the central engine parameters during the prompt and afterglow phases. Astrophys. J. 849, 47 (2017).

    Article  ADS  Google Scholar 

  22. Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563, 85–88 (2018).

    Article  ADS  Google Scholar 

  23. Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).

    Article  ADS  Google Scholar 

  24. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  25. Lang, M. et al. Can a satellite galaxy merger explain the active past of the Galactic Centre? Mon. Not. R. Astron. Soc. 430, 2574–2584 (2013).

    Article  ADS  Google Scholar 

  26. Schmitt, H. R., Pringle, J. E., Clarke, C. J. & Kinney, A. L. The orientation of jets relative to dust disks in radio galaxies. Astrophys. J. 575, 150–155 (2002).

    Article  ADS  Google Scholar 

  27. Boylan-Kolchin, M., Springel, V., White, S. D. M., Jenkins, A. & Lemson, G. Resolving cosmic structure formation with the Millennium-II simulation. Mon. Not. R. Astron. Soc. 398, 1150–1164 (2009).

    Article  ADS  Google Scholar 

  28. Milosavljević, M. & Merritt, D. Formation of galactic nuclei. Astrophys. J. 563, 34–62 (2001).

    Article  ADS  Google Scholar 

  29. Yu, Q. & Tremaine, S. Observational constraints on growth of massive black holes. Mon. Not. R. Astron. Soc. 335, 965–976 (2002).

    Article  ADS  Google Scholar 

  30. Sesana, A. & Khan, F. M. Scattering experiments meet N-body. I. A practical recipe for the evolution of massive black hole binaries in stellar environments. Mon. Not. R. Astron. Soc. 454, L66–L70 (2015).

    Article  ADS  Google Scholar 

  31. Ryu, T., Perna, R., Haiman, Z., Ostriker, J. P. & Stone, N. C. Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem. Mon. Not. R. Astron. Soc. 473, 3410–3433 (2018).

    Article  ADS  Google Scholar 

  32. Sesana, A., Haardt, F., Madau, P. & Volonteri, M. The gravitational wave signal from massive black hole binaries and its contribution to the LISA data stream. Astrophys. J. 623, 23–30 (2005).

    Article  ADS  Google Scholar 

  33. Volonteri, M. et al. Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations. Mon. Not. R. Astron. Soc. 498, 2219–2238 (2020).

    Article  ADS  Google Scholar 

  34. Li, K., Bogdanović, T., Ballantyne, D. R. & Bonetti, M. Massive black hole binaries from the TNG50-3 simulation. I. Coalescence and LISA detection rates. Astrophys. J. 933, 104 (2022).

    Article  ADS  Google Scholar 

  35. Conselice, C. J., Wilkinson, A., Duncan, K. & Mortlock, A. The evolution of galaxy number density at z < 8 and its implications. Astrophys. J. 830, 83 (2016).

    Article  ADS  Google Scholar 

  36. Reid, M. J. & Brunthaler, A. The proper motion of Sagittarius A*. II. The mass of Sagittarius A*. Astrophys. J. 616, 872–884 (2004).

    Article  ADS  Google Scholar 

  37. Ghez, A. M. et al. Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008).

    Article  ADS  Google Scholar 

  38. Reid, M. J. & Brunthaler, A. The proper motion of Sagittarius A*. III. The case for a supermassive black hole. Astrophys. J. 892, 39 (2020).

    Article  ADS  Google Scholar 

  39. Gualandris, A. & Merritt, D. Ejection of supermassive black holes from galaxy cores. Astrophys. J. 678, 780–797 (2008).

    Article  ADS  Google Scholar 

  40. Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  41. Ruan, W.-H., Guo, Z.-K., Cai, R.-G. & Zhang, Y.-Z. Taiji program: gravitational-wave sources. Int. J. Mod. Phys. A 35, 2050075 (2020).

  42. Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Gravity 33, 035010 (2016).

    Article  ADS  Google Scholar 

  43. Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982).

    Article  ADS  Google Scholar 

  44. Hirano, S. et al. One hundred first stars: protostellar evolution and the final masses. Astrophys. J. 781, 60 (2014).

    Article  ADS  Google Scholar 

  45. Bond, J. R., Arnett, W. D. & Carr, B. J. The evolution and fate of very massive objects. Astrophys. J. 280, 825–847 (1984).

    Article  ADS  Google Scholar 

  46. Madau, P. & Rees, M. J. Massive black holes as population III remnants. Astrophys. J. Lett. 551, L27–L30 (2001).

    Article  ADS  Google Scholar 

  47. Bahcall, J. N. & Ostriker, J. P. Massive black holes in globular clusters. Nature 256, 23–24 (1975).

    Article  ADS  Google Scholar 

  48. Begelman, M. C. & Rees, M. J. The fate of dense stellar systems. Mon. Not. R. Astron. Soc. 185, 847–860 (1978).

    Article  ADS  Google Scholar 

  49. Quinlan, G. D. & Shapiro, S. L. The dynamical evolution of dense star clusters in galactic nuclei. Astrophys. J. 356, 483 (1990).

    Article  ADS  Google Scholar 

  50. Lee, M. H. N-body evolution of dense clusters of compact stars. Astrophys. J. 418, 147 (1993).

    Article  ADS  Google Scholar 

  51. Ebisuzaki, T. et al. Missing link found? The ‘runaway’ path to supermassive black holes. Astrophys. J. Lett. 562, L19–L22 (2001).

    Article  ADS  Google Scholar 

  52. Miller, M. C. & Hamilton, D. P. Production of intermediate-mass black holes in globular clusters. Mon. Not. R. Astron. Soc. 330, 232–240 (2002).

    Article  ADS  Google Scholar 

  53. Portegies Zwart, S. F. & McMillan, S. L. W. The runaway growth of intermediate-mass black holes in dense star clusters. Astrophys. J. 576, 899–907 (2002).

    Article  ADS  Google Scholar 

  54. Rose, S. C., Naoz, S., Sari, R. & Linial, I. The formation of intermediate-mass black holes in galactic nuclei. Astrophys. J. Lett. 929, L22 (2022).

    Article  ADS  Google Scholar 

  55. Atallah, D. et al. Growing black holes through successive mergers in galactic nuclei. I. Methods and first results. Mon. Not. R. Astron. Soc. 523, 4227–4250 (2023).

    Article  ADS  Google Scholar 

  56. Omukai, K., Schneider, R. & Haiman, Z. Can supermassive black holes form in metal-enriched high-redshift protogalaxies? Astrophys. J. 686, 801–814 (2008).

    Article  ADS  Google Scholar 

  57. Devecchi, B. & Volonteri, M. Formation of the first nuclear clusters and massive black holes at high redshift. Astrophys. J. 694, 302–313 (2009).

    Article  ADS  Google Scholar 

  58. Loeb, A. & Rasio, F. A. Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52 (1994).

    Article  ADS  Google Scholar 

  59. Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).

    Article  ADS  Google Scholar 

  60. Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. R. Astron. Soc. 371, 1813–1823 (2006).

    Article  ADS  Google Scholar 

  61. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  62. Lynden-Bell, D. & Pringle, J. E. The evolution of viscous discs and the origin of the nebular variables. Mon. Not. R. Astron. Soc. 168, 603–637 (1974).

    Article  ADS  Google Scholar 

  63. Shapiro, S. L., Lightman, A. P. & Eardley, D. M. A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. Astrophys. J. 204, 187–199 (1976).

    Article  ADS  Google Scholar 

  64. Ichimaru, S. Bimodal behavior of accretion disks: theory and application to Cygnus X-1 transitions. Astrophys. J. 214, 840–855 (1977).

    Article  ADS  Google Scholar 

  65. Narayan, R. & Yi, I. Advection-dominated accretion: a self-similar solution. Astrophys. J. Lett. 428, L13 (1994).

    Article  ADS  Google Scholar 

  66. Narayan, R. & Yi, I. Advection-dominated accretion: self-similarity and bipolar outflows. Astrophys. J. 444, 231 (1995).

    Article  ADS  Google Scholar 

  67. Blandford, R. D. & Begelman, M. C. On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 303, L1–L5 (1999).

    Article  ADS  Google Scholar 

  68. McKinney, J. C. Total and jet Blandford–Znajek power in the presence of an accretion disk. Astrophys. J. Lett. 630, L5–L8 (2005).

    Article  ADS  Google Scholar 

  69. Ghisellini, G., Tavecchio, F., Maraschi, L., Celotti, A. & Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 515, 376–378 (2014).

    Article  ADS  Google Scholar 

  70. Narayan, R., Chael, A., Chatterjee, K., Ricarte, A. & Curd, B. Jets in magnetically arrested hot accretion flows: geometry, power, and black hole spin-down. Mon. Not. R. Astron. Soc. 511, 3795–3813 (2022).

    Article  ADS  Google Scholar 

  71. Igumenshchev, I. V., Narayan, R. & Abramowicz, M. A. Three-dimensional magnetohydrodynamic simulations of radiatively inefficient accretion Flows. Astrophys. J. 592, 1042–1059 (2003).

    Article  ADS  Google Scholar 

  72. Narayan, R., Igumenshchev, I. V. & Abramowicz, M. A. Magnetically arrested disk: an energetically efficient accretion plow. Publ. Astron. Soc. Jpn 55, L69–L72 (2003).

    Article  ADS  Google Scholar 

  73. Narayan, R., Sądowski, A., Penna, R. F. & Kulkarni, A. K. GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc. 426, 3241–3259 (2012).

    Article  ADS  Google Scholar 

  74. Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, L79–L83 (2011).

    Article  ADS  Google Scholar 

  75. Ricarte, A., Narayan, R. & Curd, B. Recipes for jet feedback and spin evolution of black holes with strongly magnetized super-Eddington accretion disks. Astrophys. J. Lett. 954, L22 (2023).

    Article  ADS  Google Scholar 

  76. Lowell, B., Jacquemin-Ide, J., Tchekhovskoy, A. & Duncan, A. Rapid black hole spin-down by thick magnetically arrested disks. Astrophys. J. 960, 82 (2024).

    Article  ADS  Google Scholar 

  77. Page, D. N. & Thorne, K. S. Disk-accretion onto a black hole. Time-averaged structure of accretion disk. Astrophys. J. 191, 499–506 (1974).

    Article  ADS  Google Scholar 

  78. King, A. R., Pringle, J. E. & Hofmann, J. A. The evolution of black hole mass and spin in active galactic nuclei. Mon. Not. R. Astron. Soc. 385, 1621–1627 (2008).

    Article  ADS  Google Scholar 

  79. Chen, Y.-X. & Lin, D. N. C. Chaotic gas accretion by black holes embedded in AGN discs as cause of low-spin signatures in gravitational wave events. Mon. Not. R. Astron. Soc. 522, 319–329 (2023).

    Article  ADS  Google Scholar 

  80. Bustamante, S. & Springel, V. Spin evolution and feedback of supermassive black holes in cosmological simulations. Mon. Not. R. Astron. Soc. 490, 4133–4153 (2019).

    Article  ADS  Google Scholar 

  81. Varma, V. et al. Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Res. 1, 033015 (2019).

    Article  ADS  Google Scholar 

  82. Boschini, M. et al. Extending black-hole remnant surrogate models to extreme mass ratios. Phys. Rev. D 108, 084015 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  83. Blackman, J. et al. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers. Phys. Rev. D 96, 024058 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  84. Varma, V., Gerosa, D., Stein, L. C., Hébert, F. & Zhang, H. High-accuracy mass, spin, and recoil predictions of generic black-hole merger remnants. Phys. Rev. Lett. 122, 011101 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  85. Tremmel, M. et al. An enhanced massive black hole occupation fraction predicted in cluster dwarf galaxies. Open J. Astrophys. 7, 26 (2024).

    Article  Google Scholar 

  86. Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980).

    Article  ADS  Google Scholar 

  87. Goldreich, P. & Tremaine, S. Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  88. Berczik, P., Merritt, D., Spurzem, R. & Bischof, H.-P. Efficient merger of binary supermassive black holes in nonaxisymmetric galaxies. Astrophys. J. Lett. 642, L21–L24 (2006).

    Article  ADS  Google Scholar 

  89. Vasiliev, E., Antonini, F. & Merritt, D. The final-parsec problem in the collisionless limit. Astrophys. J. 810, 49 (2015).

    Article  ADS  Google Scholar 

  90. Quinlan, G. D. The dynamical evolution of massive black hole binaries. I. Hardening in a fixed stellar background. New Astron. 1, 35–56 (1996).

    Article  ADS  Google Scholar 

  91. Sesana, A., Haardt, F. & Madau, P. Interaction of massive black hole binaries with their stellar environment. I. Ejection of hypervelocity stars. Astrophys. J. 651, 392–400 (2006).

    Article  ADS  Google Scholar 

  92. Peters, P. C. & Mathews, J. Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131, 435–440 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  93. Peters, P. C. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, 1224–1232 (1964).

    Article  ADS  Google Scholar 

  94. Dehnen, W. A family of potential-density pairs for spherical galaxies and bulges. Mon. Not. R. Astron. Soc. 265, 250 (1993).

    Article  ADS  Google Scholar 

  95. Dabringhausen, J., Hilker, M. & Kroupa, P. From star clusters to dwarf galaxies: the properties of dynamically hot stellar systems. Mon. Not. R. Astron. Soc. 386, 864–886 (2008).

    Article  ADS  Google Scholar 

  96. Bekenstein, J. D. Gravitational-radiation recoil and runaway black holes. Astrophys. J. 183, 657–664 (1973).

    Article  ADS  Google Scholar 

  97. Blecha, L. & Loeb, A. Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes. Mon. Not. R. Astron. Soc. 390, 1311–1325 (2008).

    ADS  Google Scholar 

  98. Merritt, D., Berczik, P. & Laun, F. Brownian motion of black holes in dense nuclei. Astron. J. 133, 553–563 (2007).

    Article  ADS  Google Scholar 

  99. Hansen, B. M. S. & Milosavljević, M. The need for a second black hole at the Galactic Center. Astrophys. J. Lett. 593, L77–L80 (2003).

    Article  ADS  Google Scholar 

  100. Maillard, J. P., Paumard, T., Stolovy, S. R. & Rigaut, F. The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared. Astron. Astrophys. 423, 155–167 (2004).

    Article  ADS  Google Scholar 

  101. Gürkan, M. A. & Rasio, F. A. The disruption of stellar clusters containing massive black holes near the Galactic Center. Astrophys. J. 628, 236–245 (2005).

    Article  ADS  Google Scholar 

  102. Gualandris, A. & Merritt, D. Perturbations of intermediate-mass black holes on stellar orbits in the Galactic Center. Astrophys. J. 705, 361–371 (2009).

    Article  ADS  Google Scholar 

  103. Chen, X. & Liu, F. K. Is there an intermediate massive black hole in the Galactic Center: imprints on the stellar tidal-disruption rate. Astrophys. J. 762, 95 (2013).

    Article  ADS  Google Scholar 

  104. Generozov, A. & Madigan, A.-M. The Hills mechanism and the Galactic Center S-stars. Astrophys. J. 896, 137 (2020).

    Article  ADS  Google Scholar 

  105. Naoz, S. et al. A hidden friend for the Galactic Center black hole, Sgr A*. Astrophys. J. Lett. 888, L8 (2020).

    Article  ADS  Google Scholar 

  106. Zheng, X., Lin, D. N. C. & Mao, S. The influence of the secular perturbation of an intermediate-mass companion. I. Eccentricity excitation of disk stars at the Galactic Center. Astrophys. J. 905, 169 (2020).

    Article  ADS  Google Scholar 

  107. Will, C. M. et al. Constraining a companion of the Galactic Center black hole Sgr A*. Astrophys. J. 959, 58 (2023).

    Article  ADS  Google Scholar 

  108. Gravity Collaboration. et al. Where intermediate-mass black holes could hide in the Galactic Centre. A full parameter study with the S2 orbit. Astron. Astrophys. 672, A63 (2023).

    Article  Google Scholar 

  109. Wang, Y. Data set for Sgr* A. figshare https://figshare.com/articles/dataset/Sgr_A_data/26112379 (2024).

Download references

Acknowledgements

Y.W. and B.Z. acknowledge support from NASA (Grant No. 80NSSC23M0104) and the Nevada Center for Astrophysics. Y.W. acknowledges useful discussions with T. Bogdanovic regarding the recoil velocity of major mergers, with D. N. C. Lin on subsequent accretions following the merger, as well as with B. McKernan and D. Stern concerning coherent accretions.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. proposed the idea of this paper. Y.W. developed the theoretical models. Y.W. and B.Z. analysed the results and discussed the theoretical models. Both authors contributed to the analysis or interpretation of the data and to the final version of the manuscript.

Corresponding authors

Correspondence to Yihan Wang or Bing Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SMBH seeds mass distribution from three different formation channels.

This figure presents the mass distribution of SMBH seeds derived from three distinct formation channels. The blue distribution represents SMBH seeds formed from population-III stars. The orange distribution illustrates the SMBH seeds resulting from cluster runaway collisions. The green distribution shows the mass distribution from direct collapse of clouds and dark matter.

Extended Data Fig. 2 Distribution of the accretion disk misalignment angle for different values of k in Mises function.

k = 0 indicates isotropically distributed accretion model, while large value of k (~ > 30) is asymptotic to coherent accretion model.

Extended Data Fig. 3 Kernel density estimates of the final BH spin and orientation for Sgr A*-like SMBHs accreted from Pop-III SMBH seeds.

The blue contours represent the chaotic accretion models with isotropic disk orientation, while the yellow contours represent the coherent accretion models. The left panels show the jet-free case, the middle panels show the weak BZ jet case, and the right panels show the strong BZ jet case. From top to bottom, the effective accretion rate increases. The red blocks represent regions disfavored by EHT constraints, whereas the green blocks indicate the ‘best-bet’ regions of parameter space that perform well and explain nearly all observed data, excluding polarization. The region marked with slashes highlights the ‘best-bet’ area, taking into account the polarization constraints. The absence of contours indicates failures to accrete to Sgr A* mass within the Hubble time.

Extended Data Fig. 4 Kernel density estimates of the final BH spin and orientation for Sgr A*-like SMBHs accreted from star cluster runaway SMBH seeds.

The blue contours represent the chaotic accretion models with isotropic disk orientation, while the yellow contours represent the coherent accretion models. The left panels show the jet-free case, the middle panels show the weak BZ jet case, and the right panels show the strong BZ jet case. From top to bottom, the effective accretion rate increases. The red blocks represent regions disfavored by EHT constraints, whereas the green blocks indicate the ‘best-bet’ regions of parameter space that perform well and explain nearly all observed data, excluding polarization. The region marked with slashes highlights the ‘best-bet’ area, taking into account the polarization constraints.

Extended Data Fig. 5 Final spin magnitude and spin-orbital misalignment angle for 4:1 SMBH binary major mergers, differentiated by pre-merger spin vectors a1 and a2.

The color coding corresponds to different initial magnitudes of a1. The left panel displays scenarios where the secondary SMBH has a negligible initial spin, whereas the right panel represents cases with a nearly maximally spinning secondary SMBH. The pre-merger spins a1 and a2 are assumed to be isotropically distributed.

Extended Data Fig. 6 Kernel density estimates of the final BH spin and orientation from the 8:1 merger models.

a1 indicates the spin magnitudes of the primary and secondary SMBHs before the merger, respectively. The value of ϕ represents different binary SMBH orientations with respect to the LOS. The orientations of a1 are isotropically distributed to encompass both the accretion-only and merger progenitor cases. The final spin distributions show very weak dependency on a2.

Extended Data Fig. 7 Kernel density estimates of the final BH spin and orientation from the 16:1 merger models.

a1 indicate the spin magnitudes of the primary and secondary SMBHs before the merger, respectively. The value of ϕ represents different binary SMBH orientations with respect to the LOS. The orientations of a1 are isotropically distributed to encompass both the accretion-only and merger progenitor cases. The final spin distributions show very weak dependency on a2.

Extended Data Fig. 8 Velocity Distribution and Settling Time Post-4:1 Merger.

The left panel displays the distribution of the recoil kick velocities immediately following the 4:1 merger. The right panel depicts the required settling time for Sgr A* to return to the observed Brownian motion level at the Galactic Center.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, B. Evidence of a past merger of the Galactic Centre black hole. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02358-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02358-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing