Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The coevolution of migrating planets and their pulsating stars through episodic resonance locking

Subjects

Abstract

Hot Jupiters are expected to form far from their host star and move to a close-in, circular orbit through a smooth, monotonic decay due to mild and constant tidal dissipation. Yet, systems exhibiting planet-induced stellar pulsations have recently been found, suggesting unexpectedly strong tidal interactions. Here we combine stellar evolution and tide models to show that dynamical tides raised by eccentric gas giants can excite chains of resonance locks with several modes, which enriches the dynamics seen in single-mode resonance locking of circularized systems. These series of resonance locks yield orders of magnitude larger changes in eccentricity and harmonic pulsations relative to those expected from a single episode of resonance locking or non-resonant tidal interactions. Resonances become more frequent as a star evolves off the main sequence, which provides an alternative explanation for the origin of some stellar pulsators and leads to the concept of ‘dormant migrating giants’. Evolution trajectories are characterized by competing episodes of inward and outward migration and the spin-up or spin-down of the star, which are sensitive to the system parameters. This is a new challenge in modelling migration paths and in contextualizing the observed populations of giant exoplanets and stellar binaries. This sensitivity, however, offers a new window for constraining the stellar properties of planetary hosts through tidal asteroseismology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The rich tidal forcing spectrum of eccentric orbits.
Fig. 2: Episodic and wandering tidal migration by alternating resonance locks.
Fig. 3: Diversity of senses of orbital evolution.
Fig. 4: Sensitivity of orbital evolution to stellar and orbital initial conditions.
Fig. 5: Observability of tidally excited oscillations.

Similar content being viewed by others

Data availability

We made use of the orbital configuration of HAT-P-2b and the stellar properties of HAT-P-2 (refs. 15,63). The stellar tidal response was converted to synthetic photometry using the CAP18 photospheric grids71. Simulation results are available via Zenodo at https://doi.org/10.5281/zenodo.11509036 (ref. 68).

Code availability

This work made use of the following publicly available codes: MESA53,54,55,56,57,58 for stellar evolution, GYRE35,60,61,62 for calculating stellar pulsation properties and orbital evolution rates and MSG72 for converting the stellar tidal response into synthetic photometric observables. Tools for coupling these codes for live-planet simulations are publicly available at https://github.com/jaredbryan881/orbev.

References

  1. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).

    Article  ADS  Google Scholar 

  2. Batygin, K., Bodenheimer, P. H. & Laughlin, G. P. In situ formation and dynamical evolution of hot Jupiter systems. Astrophys. J. 829, 114 (2016).

    Article  ADS  Google Scholar 

  3. Goldreich, P. & Tremaine, S. Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  4. Lin, D. N. & Papaloizou, J. On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986).

    Article  ADS  Google Scholar 

  5. Rasio, F. A. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996).

    Article  ADS  Google Scholar 

  6. Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591–598 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  7. Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962).

    Article  ADS  Google Scholar 

  8. Wu, Y. & Lithwick, Y. Secular chaos and the production of hot Jupiters. Astrophys. J. 735, 109 (2011).

    Article  ADS  Google Scholar 

  9. Barker, A. J. & Ogilvie, G. I. On the tidal evolution of hot Jupiters on inclined orbits. Mon. Not. R. Astron. Soc. 395, 2268–2287 (2009).

    Article  ADS  Google Scholar 

  10. Dawson, R. I. & Johnson, J. A. Origins of hot Jupiters. Annu. Rev. Astron. Astrophys. 56, 175–221 (2018).

    Article  ADS  Google Scholar 

  11. Eggleton, P. P., Kiseleva, L. G. & Hut, P. The equilibrium tide model for tidal friction. Astrophys. J. 499, 853 (1998).

    Article  ADS  Google Scholar 

  12. Jackson, B., Greenberg, R. & Barnes, R. Tidal evolution of close-in extrasolar planets. Astrophys. J. 678, 1396 (2008).

    Article  ADS  Google Scholar 

  13. Fuller, J., Hambleton, K., Shporer, A., Isaacson, H. & Thompson, S. Accelerated tidal circularization via resonance locking in KIC 8164262. Mon. Not. R. Astron. Soc. Lett. 472, L25–L29 (2017).

    Article  ADS  Google Scholar 

  14. Hambleton, K. et al. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking. Mon. Not. R. Astron. Soc. 473, 5165–5176 (2018).

    Article  ADS  Google Scholar 

  15. Bonomo, A. S. et al. The GAPS programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets. Astron. Astrophys. 602, A107 (2017).

    Article  Google Scholar 

  16. Bakos, G. et al. HD 147506b: a supermassive planet in an eccentric orbit transiting a bright star. Astrophys. J. 670, 826 (2007).

    Article  ADS  Google Scholar 

  17. De Wit, J. et al. Planet-induced stellar pulsations in HAT-P-2’s eccentric system. Astrophys. J. Lett. 836, L17 (2017).

    Article  ADS  Google Scholar 

  18. de Beurs, Z. L. et al. Revisiting orbital evolution in HAT-P-2 b and confirmation of HAT-P-2 c. Astron. J. 166, 136 (2023).

    Article  ADS  Google Scholar 

  19. Herrero, E., Morales, J. C., Ribas, I. & Naves, R. WASP-33: the first δ Scuti exoplanet host star. Astron. Astrophys. 526, L10 (2011).

    Article  ADS  Google Scholar 

  20. Kálmán, S. et al. Gravity darkening and tidally perturbed stellar pulsation in the misaligned exoplanet system WASP-33. Astron. Astrophys. 660, L2 (2022).

    Article  ADS  Google Scholar 

  21. Kálmán, S. et al. Discovery of a substellar companion in the TESS light curve of the δ Scuti/γ Doradus hybrid pulsator HD 31221. Astron Astrophys. 673, L14 (2023).

  22. De, K. et al. An infrared transient from a star engulfing a planet. Nature 617, 55–60 (2023).

    Article  ADS  Google Scholar 

  23. Zahn, J.-P. Tidal friction in close binary stars. Astron. Astrophys. 57, 383–394 (1977).

    ADS  Google Scholar 

  24. Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).

    ADS  Google Scholar 

  25. Cowling, T. G. The non-radial oscillations of polytropic stars. Mon. Not. R. Astron. Soc. 101, 367 (1941).

    Article  ADS  MathSciNet  Google Scholar 

  26. Goodman, J. & Dickson, E. S. Dynamical tide in solar-type binaries. Astrophys. J. 507, 938 (1998).

    Article  ADS  Google Scholar 

  27. Ogilvie, G. & Lin, D. Tidal dissipation in rotating solar-type stars. Astrophys. J. 661, 1180 (2007).

    Article  ADS  Google Scholar 

  28. Barker, A. J. Tidal dissipation due to inertial waves can explain the circularization periods of solar-type binaries. Astrophys. J. Lett. 927, L36 (2022).

    Article  ADS  Google Scholar 

  29. Weinberg, N. N., Arras, P., Quataert, E. & Burkart, J. Nonlinear tides in close binary systems. Astrophys. J. 751, 136 (2012).

    Article  ADS  Google Scholar 

  30. Weinberg, N. N., Sun, M., Arras, P. & Essick, R. Tidal dissipation in WASP-12. Astrophys. J. Lett. 849, L11 (2017).

    Article  ADS  Google Scholar 

  31. MacLeod, M., Vick, M. & Loeb, A. Tidal wave breaking in the eccentric lead-in to mass transfer and common envelope phases. Astrophys. J. 937, 37 (2022).

    Article  ADS  Google Scholar 

  32. Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

    Article  ADS  Google Scholar 

  33. Ogilvie, G. I. & Lin, D. Tidal dissipation in rotating giant planets. Astrophys. J. 610, 477 (2004).

    Article  ADS  Google Scholar 

  34. Witte, M. G. & Savonije, G. J. Tidal evolution of eccentric orbits in massive binary systems; a study of resonance locking. Astron. Astrophys. 350, 129–147 (1999).

    ADS  Google Scholar 

  35. Sun, M., Townsend, R. & Guo, Z. gyre_tides: modeling binary tides within the GYRE stellar oscillation code. Astrophys. J. 945, 43 (2023).

    Article  ADS  Google Scholar 

  36. Willems, B., Van Hoolst, T. & Smeyers, P. Nonadiabatic resonant dynamic tides and orbital evolution in close binaries. Astron. Astrophys. 397, 973–985 (2003).

    Article  ADS  Google Scholar 

  37. Fuller, J. Inverse tides in pulsating binary stars. Mon. Not. R. Astron. Soc. 501, 483–490 (2021).

    Article  ADS  Google Scholar 

  38. Witte, M. & Savonije, G. Orbital evolution by dynamical tides in solar type stars – application to binary stars and planetary orbits. Astron. Astrophys. 386, 222–236 (2002).

    Article  ADS  Google Scholar 

  39. Ivanov, P. & Papaloizou, J. On the tidal interaction of massive extrasolar planets on highly eccentric orbits. Mon. Not. R. Astron. Soc. 347, 437–453 (2004).

    Article  ADS  Google Scholar 

  40. Wu, Y. Diffusive tidal evolution for migrating hot Jupiters. Astron. J. 155, 118 (2018).

    Article  ADS  Google Scholar 

  41. Veras, D. & Fuller, J. Tidal circularization of gaseous planets orbiting white dwarfs. Mon. Not. R. Astron. Soc. 489, 2941–2953 (2019).

    Article  ADS  Google Scholar 

  42. Vick, M., Lai, D. & Anderson, K. R. Chaotic tides in migrating gas giants: forming hot and transient warm Jupiters via Lidov–Kozai migration. Mon. Not. R. Astron. Soc. 484, 5645–5668 (2019).

    ADS  Google Scholar 

  43. Millholland, S. & Laughlin, G. Obliquity-driven sculpting of exoplanetary systems. Nat. Astron. 3, 424–433 (2019).

    Article  ADS  Google Scholar 

  44. Alexander, M. E. Orbital precession in short-period hot Jupiter exoplanet systems. Mon. Not. R. Astron. Soc. 522, 1968–1986 (2023).

    Article  ADS  Google Scholar 

  45. Burkart, J., Quataert, E. & Arras, P. Dynamical resonance locking in tidally interacting binary systems. Mon. Not. R. Astron. Soc. 443, 2957–2973 (2014).

    Article  ADS  Google Scholar 

  46. Ma, L. & Fuller, J. Orbital decay of short-period exoplanets via tidal resonance locking. Astrophys. J. 918, 16 (2021).

    Article  ADS  Google Scholar 

  47. Fuller, J. & Lai, D. Dynamical tides in eccentric binaries and tidally excited stellar pulsations in Kepler KOI-54. Mon. Not. R. Astron. Soc. 420, 3126–3138 (2012).

    Article  ADS  Google Scholar 

  48. Burkart, J., Quataert, E., Arras, P. & Weinberg, N. N. Tidal asteroseismology: Kepler’s KOI-54. Mon. Not. R. Astron. Soc. 421, 983–1006 (2012).

    Article  ADS  Google Scholar 

  49. Burkart, J., Quataert, E., Arras, P. & Weinberg, N. N. Tidal resonance locks in inspiraling white dwarf binaries. Mon. Not. R. Astron. Soc. 433, 332–352 (2013).

    Article  ADS  Google Scholar 

  50. Barker, A. J. & Ogilvie, G. I. On internal wave breaking and tidal dissipation near the centre of a solar-type star. Mon. Not. R. Astron. Soc. 404, 1849–1868 (2010).

    ADS  Google Scholar 

  51. Fuller, J., Luan, J. & Quataert, E. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astron. Soc. 458, 3867–3879 (2016).

    Article  ADS  Google Scholar 

  52. Lainey, V. et al. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan. Nat. Astron. 4, 1053–1058 (2020).

    Article  ADS  Google Scholar 

  53. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2010).

    Article  ADS  Google Scholar 

  54. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  55. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    Article  ADS  Google Scholar 

  56. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    Article  ADS  Google Scholar 

  57. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    Article  ADS  Google Scholar 

  58. Jermyn, A. S. et al. Modules for experiments in stellar astrophysics (MESA): time-dependent convection, energy conservation, automatic differentiation, and infrastructure. Astrophys. J. Suppl. Ser. 265, 15 (2023).

    Article  ADS  Google Scholar 

  59. Gossage, S., Kalogera, V. & Sun, M. Magnetic braking with MESA evolutionary models in the single star and low-mass X-ray binary regimes. Astrophys. J. 950, 27 (2023).

    Article  ADS  Google Scholar 

  60. Townsend, R. & Teitler, S. GYRE: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme. Mon. Not. R. Astron. Soc. 435, 3406–3418 (2013).

    Article  ADS  Google Scholar 

  61. Townsend, R., Goldstein, J. & Zweibel, E. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars. Mon. Not. R. Astron. Soc. 475, 879–893 (2018).

    Article  ADS  Google Scholar 

  62. Goldstein, J. & Townsend, R. The contour method: a new approach to finding modes of nonadiabatic stellar pulsations. Astrophys. J. 899, 116 (2020).

    Article  ADS  Google Scholar 

  63. Stassun, K. G. et al. The revised TESS input catalog and candidate target list. Astron. J. 158, 138 (2019).

    Article  ADS  Google Scholar 

  64. Townsend, R. & Sun, M. Discrepant approaches to modeling stellar tides and the blurring of pseudosynchronization. Astrophys. J. 953, 48 (2023).

    Article  ADS  Google Scholar 

  65. Guo, Z., Ogilvie, G. I., Li, G., Townsend, R. H. & Sun, M. A new window to tidal asteroseismology: non-linearly excited stellar eigenmodes and the period spacing pattern in KOI-54. Mon. Not. R. Astron. Soc. 517, 437–446 (2022).

    Article  ADS  Google Scholar 

  66. Townsend, R. A semi-analytical formula for the light variations due to low-frequency g modes in rotating stars. Mon. Not. R. Astron. Soc. 343, 125–136 (2003).

    Article  ADS  Google Scholar 

  67. Penoyre, Z. & Sandford, E. Higher order harmonics in the light curves of eccentric planetary systems. Mon. Not. R. Astron. Soc. 488, 4181–4194 (2019).

    Article  ADS  Google Scholar 

  68. Bryan, J., de Wit, J., Sun, M., de Beurs, Z. & Townsend, R. The coevolution of migrating planets and their pulsating stars through episodic resonance locking. Zenodo https://doi.org/10.5281/zenodo.11509036 (2024).

  69. Willems, B., Deloye, C. J. & Kalogera, V. Energy dissipation through quasi-static tides in white dwarf binaries. Astrophys. J. 713, 239 (2010).

    Article  ADS  Google Scholar 

  70. Smeyers, P., Willems, B. & Van Hoolst, T. Resonant dynamic tides and apsidal motion in close binaries. Astron. Astrophys. 335, 622–636 (1998).

    ADS  Google Scholar 

  71. Prieto, C. A. et al. A collection of model stellar spectra for spectral types B to early-M. Astron. Astrophys. 618, A25 (2018).

    Article  Google Scholar 

  72. Townsend, R. & Lopez, A. Msg: a software package for interpolating stellar spectra in pre-calculated grids. J. Open Source Softw. 8, 4602 (2023).

    Article  ADS  Google Scholar 

  73. Press, W. H. & Teukolsky, S. A. Adaptive stepsize Runge–Kutta integration. Comput. Phys. 6, 188–191 (1992).

    Article  ADS  Google Scholar 

  74. Chewi, S. et al. Fast and smooth interpolation on Wasserstein space. In Proc. International Conference on Artificial Intelligence and Statistics (eds Banerjee, A. & Fukumizu, K.) 3061–3069 (PMLR, 2021).

  75. Bryan, J., Frank, W. B. & Audet, P. Capturing seismic velocity changes in receiver functions with optimal transport. Geophys. J. Int. 234, 1282–1306 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.B. and Z.L.d.B. acknowledge the National Science Foundation for supporting this work through the Graduate Research Fellowship programme (grant no. 1745302) and the Massachusetts Institute of Technology Presidential Fellowship. The simulations presented in this paper were performed on the Engaging cluster at the Massachusetts Green High Performance Computing Center.

Author information

Authors and Affiliations

Authors

Contributions

J.d.W. designed the study. J.B. developed the computational framework for the study with notable support from M.S. and R.H.D.T regarding the stellar and orbital modelling and from J.d.W. and Z.L.d.B. regarding the exoplanetary context and observables. All authors contributed to the manuscript writing, which was led by J.B.

Corresponding authors

Correspondence to Jared Bryan or Julien de Wit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Alexander Mustill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Coherence of single mode damping rates across stellar models.

HR diagram showing the contribution to de/dt of the m = 2, k = 10 orbital harmonic excited by tidal forcing with a fixed orbital configuration and a fixed Z = 0.02 for a range of masses.

Extended Data Fig. 2 Coherence of individual modes across stellar models.

HR diagrams of the amplitude of the (a) k = 10 and (b) k = 30 orbital harmonics excited by tidal forcing of a host star with M = 1.36M and Z = 0.02262 with a fixed orbital configuration. Amplitudes are for an edge-on view angle.

Extended Data Fig. 3 Decomposition of tidal response of a slowly rotating star into different modes.

(a-b) Rate-change of the orbital eccentricity induced by excitation of quadrupolar (l=2) modes with m = 0, 2 in a host star with M = 1.36M and Z = 0.02262 by a tidal perturber with evolving orbital configuration. The tidal migration in this case begins at t0 + 1σ. Red and blue points correspond to positive and negative de/dt, respectively. (c-d) Rate-change of the orbital eccentricity decomposed into orbital harmonics k = σm,k/Ωorb. The baseline Ωrot is set to the value estimated for HAT-P-2 by Bonomo et al. (2017). Colors correspond to those in Fig. 2.

Extended Data Fig. 4 Accelerated tidal evolution by intermittent resonance locking.

Comparison between GYRE-tides and constant-Q tidal evolution models. Forward and time-reversed orbital evolution trajectories (left column: eccentricity \(e\) / right column; semi-major axis \(a\)) with perturbations in each of the system parameters: eccentricity \(e\) (a, b), semi-major axis \(a\) (c, d), stellar rotation frequency \(\Omega_{rot}\) (e, f), initial stellar age \(t_0\) (g, h), stellar mass \(M\) (i, j), and stellar metallicity \(Z\) (k, l). The baseline \(\Omega_\mathrm{rot}\) is set to the value estimated for HAT-P-2 by Ref.\cite{bonomo2017gaps}. The solid black line corresponds to the baseline GYRE-tides model. Colored lines correspond to perturbations in the initial orbital and stellar initial conditions as in Fig. 4b. The dotted black line corresponds to the best-fit constant-Q model from Jackson et al.12. Gray lines are evenly spaced between \(\pm 3 \sigma\) in the given parameter except for \(Q_\ast\) (m, n) and \(Q_p\) (o, p), which span the full range considered by Jackson et al.12.

Extended Data Fig. 5 Limits of tidal evolution predictability for small stellar perturbations.

(a-p) Rate-change of orbital eccentricity from 2.6 Gyr to the end of the main sequence for a Z = 0.02262 star with a range of mass perturbations, using a base mass of M = 1.36M, decomposed into m = 0 and m = 2 modes. The orbital evolution rate is calculated with a fixed-orbit tidal perturber with e = 0.575, a = 0.153 and a pseudo synchronous stellar rotation rate. (q) Distribution of \(\dot{e}\) and (r) distribution of \(\dot{a}\) for each mass perturbation in (a-p). (s) Distribution of \(\Delta \dot{e}\) and (t) distribution of \(\Delta \dot{a}\). (u) Distribution of time needed to accumulate a 1σ deviation in e and (v) distribution of time needed to accumulate a 1σ deviation in a. The different colors of distributions are given by the colorbar and denote the perturbations in stellar mass.

Extended Data Fig. 6 Limits of tidal evolution predictability for small stellar perturbations.

(a-p) Rate-change of orbital eccentricity from 2.6 Gyr to the end of the main sequence for a M = 1.36M star with a range of metallicity perturbations, using a base metallicity of Z = 0.02262, decomposed into m = 0 and m = 2 modes. The orbital evolution rate is calculated with a fixed-orbit tidal perturber with e = 0.575, a = 0.153 and a pseudo synchronous stellar rotation rate. (q) Distribution of \(\dot{e}\) and (r) distribution of \(\dot{a}\) for each metallicity perturbation in (a-p). (s) Distribution of \(\Delta \dot{e}\) and (t) distribution of \(\Delta \dot{a}\). (u) Distribution of time needed to accumulate a 1σ deviation in e and (v) distribution of time needed to accumulate a 1σ deviation in a. The different colors of distributions are given by the colorbar and denote the perturbations in stellar metallicity.

Extended Data Fig. 7 Limits of tidal evolution predictability within observational bounds.

(a-f) Distribution of \(\dot{e}\) and (g-l) distribution of \(\dot{a}\) corresponding to the orbital evolution trajectories of Fig. 4b in the main text. The panels follow Fig. 4b with trajectories differing by perturbations to the initial eccentricity e0, semi-major axis a0, stellar rotation rate Ωrot0, stellar age t0, stellar mass M0, and stellar metallicity Z0. The distribution of time needed to accumulate a 1σ deviation in e is given by Te (m-r) and the distribution of time needed to accumulate a 1σ deviation in a is given by Ta (s-x). The panels follow Fig. 4b with trajectories differing by perturbations to the initial stellar and orbital parameters. The colors are given by the legend on the right and denote perturbations to the stellar and orbital parameters.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryan, J., de Wit, J., Sun, M. et al. The coevolution of migrating planets and their pulsating stars through episodic resonance locking. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02351-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing