Abstract
Various landforms suggest the past presence of liquid water on the surface of Mars. The putative coastal landforms, outflow channels and the hemisphere-wide Vastitas Borealis Formation sediments indicate that the northern lowlands may have housed an ancient ocean. Challenges to this hypothesis are from topography analysis, mineral formation environment and climate modelling. Determining whether there was a northern ocean on Mars is crucial for understanding its climate history, geological processes and potential for ancient life, and for guiding future explorations. Recently, China’s Zhurong rover has identified marine sedimentary structures and multiple subsurface sedimentary layers. The unique in situ perspective of the Zhurong rover, along with previous orbital observations, provides strong support for an episodic northern ocean during the early Hesperian and early Amazonian (about 3.6–2.5 billion years ago). The ground truth from future sample-return missions, such as China’s Tianwen-3 or the Mars sample-return programmes by NASA, ESA and other agencies, will be required for a more unambiguous confirmation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The Tianwen-1 data used in this work are processed and produced by Ground Research and Application System (GRAS) of China’s Lunar and Planetary Exploration Program, provided by China National Space Administration (http://moon.bao.ac.cn). The HiRISE data are available in the NASA Planetary Data System (pds.jpl.nasa.gov). The CTX global mosaic is accessible at http://murray-lab.caltech.edu/CTX/. The MOLA data are available at https://astrogeology.usgs.gov/search/map/mars_mgs_mola_dem_463m.
References
Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001).
Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).
Squyres, S. W. & Kasting, J. F. Early Mars: how warm and how wet?. Science 265, 744–749 (1994).
Fassett, C. I. & Head, J. W. The timing of Martian valley network activity: constraints from buffered crater counting. Icarus 195, 61–89 (2008).
Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. Planets 115, 2009JE003548 (2010).
Duran, S. & Coulthard, T. J. The Kasei Valles, Mars: a unified record of episodic channel flows and ancient ocean levels. Sci. Rep. 10, 18571 (2020).
Warner, N., Gupta, S., Muller, J.-P., Kim, J.-R. & Lin, S.-Y. A refined chronology of catastrophic outflow events in Ares Vallis, Mars. Earth Planet. Sci. Lett. 288, 58–69 (2009).
Bahia, R. S., Covey-Crump, S., Jones, M. A. & Mitchell, N. Discordance analysis on a high-resolution valley network map of Mars: assessing the effects of scale on the conformity of valley orientation and surface slope direction. Icarus 383, 115041 (2022).
Carr, M. H. Formation of Martian flood features by release of water from confined aquifers. J. Geophys. Res. Solid Earth 84, 2995–3007 (1979).
Craddock, R. A. & Howard, A. D. The case for rainfall on a warm, wet early Mars. J. Geophys. Res. Planets 107, 21-1–21-36 (2002).
Fairén, A. G. et al. Episodic flood inundations of the northern plains of Mars. Icarus 165, 53–67 (2003).
Carr, M. H. & Head, J. W. Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. Planets 108, 2002JE001963 (2003).
Clifford, S., & Parker, T. J. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001).
Dickeson, Z. I. & Davis, J. M. Martian oceans. Astron. Geophys. 61, 3.11–3.17 (2020).
Palumbo, A. M. & Head, J. W. Oceans on Mars: the possibility of a Noachian groundwater-fed ocean in a sub-freezing Martian climate. Icarus 331, 209–225 (2019).
Parker, T. J., Stephen Saunders, R. & Schneeberger, D. M. Transitional morphology in West Deuteronilus Mensae, Mars: implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989).
Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C. & Schneeberger, D. M. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. Planets 98, 11061–11078 (1993).
Citron, R. I., Manga, M. & Hemingway, D. J. Timing of oceans on Mars from shoreline deformation. Nature 555, 643–646 (2018).
Head, J. et al. Two oceans on Mars? History, problems and prospects. In 49th Lunar and Planetary Science Conference abstr. 2083 (Lunar and Planetary Institute, 2018).
Ivanov, M. A., Erkeling, G., Hiesinger, H., Bernhardt, H. & Reiss, D. Topography of the Deuteronilus contact on Mars: evidence for an ancient water/mud ocean and long-wavelength topographic readjustments. Planet. Space Sci. 144, 49–70 (2017).
Parker, T. J., Grant, J. A. & Franklin, B. J. Lakes on Mars Ch. 9 (Elsevier, 2010).
Costard, F. et al. Modeling tsunami propagation and the emplacement of thumbprint terrain in an early Mars ocean. J. Geophys. Res. Planets 122, 633–649 (2017).
Rodriguez, J. A. P. et al. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Sci. Rep. 6, 25106 (2016).
Di Achille, G. & Hynek, B. M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010).
Duran, S., Coulthard, T. J. & Baynes, E. R. C. Knickpoints in Martian channels indicate past ocean levels. Sci. Rep. 9, 15153 (2019).
Webb, V. E. Putative shorelines in northern Arabia Terra, Mars. J. Geophys. Res. Planets 109, 2003JE002205 (2004).
Sholes, S. F., Dickeson, Z. I., Montgomery, D. R. & Catling, D. C. Where are Mars’ hypothesized ocean shorelines? Large lateral and topographic offsets between different versions of paleoshoreline maps. J. Geophys. Res. Planets 126, e2020JE006486 (2021).
Salvatore, M. R. & Christensen, P. R. On the origin of the Vastitas Borealis Formation in Chryse and Acidalia planitiae, Mars. J. Geophys. Res. Planets 119, 2437–2456 (2014).
Malin, M. C. & Edgett, K. S. Oceans or seas in the Martian northern lowlands: high resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999).
Di Pietro, I., Séjourné, A., Costard, F., Ciążela, M. & Rodriguez, J. A. P. Evidence of mud volcanism due to the rapid compaction of Martian tsunami deposits in southeastern Acidalia Planitia, Mars. Icarus 354, 114096 (2021).
Rodriguez, J. A. P. et al. Evidence of an oceanic impact and megatsunami sedimentation in Chryse Planitia, Mars. Sci. Rep. 12, 19589 (2022).
Tanaka, K. L., Skinner, J. A. & Hare, T. M. Geologic Map of the Northern Plains of Mars: Pamphlet to Accompany Scientific Investigations Map 2888 (USGS, 2005).
Costard, F. et al. The Lomonosov Crater impact event: a possible mega‐tsunami source on Mars. J. Geophys. Res. Planets 124, 1840–1851 (2019).
Iijima, Y., Goto, K., Minoura, K., Komatsu, G. & Imamura, F. Hydrodynamics of impact-induced tsunami over the Martian ocean. Planet. Space Sci. 95, 33–44 (2014).
Dohm, J. M., Fink, W., Williams, J.-P., Mahaney, W. C. & Ferris, J. C. Chicxulub-like Gale impact into an ocean/land interface on Mars: an explanation for the formation of Mount Sharp. Icarus 390, 115306 (2023).
Turbet, M. & Forget, F. The paradoxes of the Late Hesperian Mars ocean. Sci. Rep. 9, 5717 (2019).
Leverington, D. W. A volcanic origin for the outflow channels of Mars: key evidence and major implications. Geomorphology 132, 51–75 (2011).
Mouginot, J., Pommerol, A., Beck, P., Kofman, W. & Clifford, S. M. Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, 2011GL050286 (2012).
Salvatore, M. R. & Christensen, P. R. Evidence for widespread aqueous sedimentation in the northern plains of Mars. Geology 42, 423–426 (2014).
Huang, H. et al. The analysis of cones within the Tianwen-1 landing area. Remote Sens. 14, 2590 (2022).
Oehler, D. Z. & Allen, C. C. Evidence for pervasive mud volcanism in Acidalia Planitia, Mars. Icarus 208, 636–657 (2010).
Skinner, J. A. & Tanaka, K. L. Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland–lowland boundary plain, Mars. Icarus 186, 41–59 (2007).
Wang, L., Zhao, J., Huang, J. & Xiao, L. An explosive mud volcano origin for the pitted cones in southern Utopia Planitia, Mars. Sci. China Earth Sci. 66, 2045–2056 (2023).
Cuřín, V., Brož, P., Hauber, E. & Markonis, Y. Mud flows in southwestern Utopia Planitia, Mars. Icarus 389, 115266 (2023).
Hiesinger, H. & Head, J. W. Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J. Geophys. Res. Planets 105, 11999–12022 (2000).
Buczkowski, D. L., Seelos, K. D. & Cooke, M. L. Giant polygons and circular graben in western Utopia basin, Mars: exploring possible formation mechanisms. J. Geophys. Res. Planets 117, 2011JE003934 (2012).
Ivanov, M. A., Hiesinger, H., Erkeling, G. & Reiss, D. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: evidence for the ancient ocean. Icarus 228, 121–140 (2014).
Ghent, R. R., Anderson, S. W. & Pithawala, T. M. The formation of small cones in Isidis Planitia, Mars through mobilization of pyroclastic surge deposits. Icarus 217, 169–183 (2012).
Wilson, S. A., Morgan, A. M., Howard, A. D. & Grant, J. A. The global distribution of craters with alluvial fans and deltas on Mars. Geophys. Res. Lett. 48, e2020GL091653 (2021).
DiBiase, R. A., Limaye, A. B., Scheingross, J. S., Fischer, W. W. & Lamb, M. P. Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res. Planets 118, 1285–1302 (2013).
Fawdon, P. et al. The Hypanis Valles Delta: the last highstand of a sea on early Mars? Earth Planet. Sci. Lett. 500, 225–241 (2018).
Cardenas, B. T. & Lamb, M. P. Paleogeographic reconstructions of an ocean margin on mars based on deltaic sedimentology at Aeolis Dorsa. J. Geophys. Res. Planets 127, e2022JE007390 (2022).
Rivera‐Hernández, F. & Palucis, M. C. Do deltas along the crustal dichotomy boundary of Mars in the Gale Crater region record a northern ocean? Geophys. Res. Lett. 46, 8689–8699 (2019).
De Toffoli, B., Plesa, A.-C., Hauber, E. & Breuer, D. Delta deposits on Mars: a global perspective. Geophys. Res. Lett. 48, e2021GL094271 (2021).
Head, J. W. et al. Possible ancient oceans on Mars: evidence from Mars orbiter laser altimeter data. Science 286, 2134–2137 (1999).
Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I. & Richards, M. A. Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447, 840–843 (2007).
Baum, M., Sholes, S. & Hwang, A. Impact craters and the observability of ancient Martian shorelines. Icarus 387, 115178 (2022).
Sholes, S. F. & Rivera-Hernández, F. Constraints on the uncertainty, timing, and magnitude of potential Mars oceans from topographic deformation models. Icarus 378, 114934 (2022).
Kreslavsky, M. A. & Head, J. W. Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. J. Geophys. Res. Planets 107, 4-1–4-25 (2002).
Leone, G. The absence of an ocean and the fate of water all over the Martian history. Earth Space Sci. 7, e2019EA001031 (2020).
Seybold, H. J., Kite, E. & Kirchner, J. W. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate. Sci. Adv. 4, eaar6692 (2018).
Shi, Y., Zhao, J., Xiao, L., Yang, Y. & Wang, J. An arid-semiarid climate during the Noachian–Hesperian transition in the Huygens region, Mars: evidence from morphological studies of valley networks. Icarus 373, 114789 (2022).
Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).
Elwood Madden, M. E., Bodnar, R. J. & Rimstidt, J. D. Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431, 821–823 (2004).
Bandfield, J. L. Global mineral distributions on Mars. J. Geophys. Res. Planets 107, 9-1–9-20 (2002).
Bibring, J.-P. et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006).
Hamilton, V. E. & Christensen, P. R. Evidence for extensive, olivine-rich bedrock on Mars. Geology 33, 433–436 (2005).
Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).
Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).
Halevy, I. & Head Iii, J. W. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7, 865–868 (2014).
Wordsworth, R. et al. Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).
Forget, F. et al. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).
Fairén, A. G. A cold and wet Mars. Icarus 208, 165–175 (2010).
Schmidt, F. et al. Circumpolar ocean stability on Mars 3 Gy ago. Proc. Natl Acad. Sci. USA 119, e2112930118 (2022).
Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. Planets 110, 2005JE002460 (2005).
Palumbo, A. M. & Head, J. W. Early Mars climate history: characterizing a ‘warm and wet’ Martian climate with a 3‐D global climate model and testing geological predictions. Geophys. Res. Lett. 45, 10249–10258 (2018).
Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of ‘warm and wet’ and ‘cold and icy’ scenarios for early Mars in a 3‐D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).
Kamada, A., Kuroda, T., Kasaba, Y., Terada, N. & Nakagawa, H. Global climate and river transport simulations of early Mars around the Noachian and Hesperian boundary. Icarus 368, 114618 (2021).
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E. & Clark, R. N. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res. Planets 105, 9609–9621 (2000).
Edwards, C. S. & Ehlmann, B. L. Carbon sequestration on Mars. Geology 43, 863–866 (2015).
Fairén, A. G., Fernández-Remolar, D., Dohm, J. M., Baker, V. R. & Amils, R. Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423–426 (2004).
Jakosky, B. M., Pepin, R. O., Johnson, R. E. & Fox, J. L. Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994).
Head, J. W., Kreslavsky, M. A. & Pratt, S. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J. Geophys. Res. Planets 107, 3-1–3-29 (2002).
Zhao, J. et al. Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars. Geophys. Res. Lett. 48, e2021GL094903 (2021).
Liu, J. et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars. Nat. Astron. 6, 65–71 (2021).
Xiao, L. et al. Evidence for marine sedimentary rocks in Utopia Planitia: Zhurong rover observations. Natl Sci. Rev. 10, nwad137 (2023).
Yang, J.-F. et al. Design and ground verification for multispectral camera on the Mars Tianwen-1 rover. Space Sci. Rev. 218, 19 (2022).
Li, C. et al. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar. Nature 610, 308–312 (2022).
Zhou, B. et al. The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission. Earth Planet. Phys. 4, 345–354 (2020).
Hobiger, M. et al. The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations. Nat. Commun. 12, 6756 (2021).
Ruff, S. W. & Christensen, P. R. Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. Planets 107, 2-1–2-22 (2002).
Mazzini, A. & Etiope, G. Mud volcanism: an updated review. Earth Sci. Rev. 168, 81–112 (2017).
Oehler, D. Z. & Allen, C. C. Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean? Astrobiology 12, 601–615 (2012).
Carr, M. H. The Surface of Mars Ch. 6 (Cambridge Univ. Press, 2006).
Tanaka, K. L. et al. Geologic Map of Mars: Pamphlet to Accompany Scientific Investigations Map 3292 (USGS, 2014).
Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).
Hauber, E. et al. Asynchronous formation of Hesperian and Amazonian‐aged deltas on Mars and implications for climate. J. Geophys. Res. Planets 118, 1529–1544 (2013).
Liu, J. et al. A 76-m per pixel global color image dataset and map of Mars by Tianwen-1. Sci. Bull. 69, 2183–2186 (2024).
Acknowledgements
This study was supported by the National Natural Science Foundation of China (42273041). We thank L. Xiao and J. Zhao for the discussion on an Martian ancient northern ocean.
Author information
Authors and Affiliations
Contributions
J.H. designed this research. J.H. and L.W. discussed and analysed the results and their implications. L.W. prepared the figures and wrote the manuscript with edits from J.H.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Rickbir Bahia and Frédéric Schmidt for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, L., Huang, J. Hypothesis of an ancient northern ocean on Mars and insights from the Zhurong rover. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02343-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-024-02343-3