Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Hypothesis of an ancient northern ocean on Mars and insights from the Zhurong rover

Abstract

Various landforms suggest the past presence of liquid water on the surface of Mars. The putative coastal landforms, outflow channels and the hemisphere-wide Vastitas Borealis Formation sediments indicate that the northern lowlands may have housed an ancient ocean. Challenges to this hypothesis are from topography analysis, mineral formation environment and climate modelling. Determining whether there was a northern ocean on Mars is crucial for understanding its climate history, geological processes and potential for ancient life, and for guiding future explorations. Recently, China’s Zhurong rover has identified marine sedimentary structures and multiple subsurface sedimentary layers. The unique in situ perspective of the Zhurong rover, along with previous orbital observations, provides strong support for an episodic northern ocean during the early Hesperian and early Amazonian (about 3.6–2.5 billion years ago). The ground truth from future sample-return missions, such as China’s Tianwen-3 or the Mars sample-return programmes by NASA, ESA and other agencies, will be required for a more unambiguous confirmation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global map of the putative Martian ancient shorelines and hydrological landforms.
Fig. 2: Morphological evidence supporting the ancient shorelines.
Fig. 3: Depositional regions of the Martian northern hemisphere.
Fig. 4: Timeline of major geologic units related to the Martian ancient northern ocean.
Fig. 5: Targets observed by Zhurong supporting an ancient northern ocean.
Fig. 6: Key targets in the Utopia Planitia.

Similar content being viewed by others

Data availability

The Tianwen-1 data used in this work are processed and produced by Ground Research and Application System (GRAS) of China’s Lunar and Planetary Exploration Program, provided by China National Space Administration (http://moon.bao.ac.cn). The HiRISE data are available in the NASA Planetary Data System (pds.jpl.nasa.gov). The CTX global mosaic is accessible at http://murray-lab.caltech.edu/CTX/. The MOLA data are available at https://astrogeology.usgs.gov/search/map/mars_mgs_mola_dem_463m.

References

  1. Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001).

    Article  ADS  Google Scholar 

  2. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

    Article  ADS  Google Scholar 

  3. Squyres, S. W. & Kasting, J. F. Early Mars: how warm and how wet?. Science 265, 744–749 (1994).

    Article  ADS  Google Scholar 

  4. Fassett, C. I. & Head, J. W. The timing of Martian valley network activity: constraints from buffered crater counting. Icarus 195, 61–89 (2008).

    Article  ADS  Google Scholar 

  5. Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. Planets 115, 2009JE003548 (2010).

    Article  Google Scholar 

  6. Duran, S. & Coulthard, T. J. The Kasei Valles, Mars: a unified record of episodic channel flows and ancient ocean levels. Sci. Rep. 10, 18571 (2020).

    Article  ADS  Google Scholar 

  7. Warner, N., Gupta, S., Muller, J.-P., Kim, J.-R. & Lin, S.-Y. A refined chronology of catastrophic outflow events in Ares Vallis, Mars. Earth Planet. Sci. Lett. 288, 58–69 (2009).

    Article  ADS  Google Scholar 

  8. Bahia, R. S., Covey-Crump, S., Jones, M. A. & Mitchell, N. Discordance analysis on a high-resolution valley network map of Mars: assessing the effects of scale on the conformity of valley orientation and surface slope direction. Icarus 383, 115041 (2022).

    Article  Google Scholar 

  9. Carr, M. H. Formation of Martian flood features by release of water from confined aquifers. J. Geophys. Res. Solid Earth 84, 2995–3007 (1979).

    Article  Google Scholar 

  10. Craddock, R. A. & Howard, A. D. The case for rainfall on a warm, wet early Mars. J. Geophys. Res. Planets 107, 21-1–21-36 (2002).

  11. Fairén, A. G. et al. Episodic flood inundations of the northern plains of Mars. Icarus 165, 53–67 (2003).

    Article  ADS  Google Scholar 

  12. Carr, M. H. & Head, J. W. Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. Planets 108, 2002JE001963 (2003).

    Article  Google Scholar 

  13. Clifford, S., & Parker, T. J. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001).

    Article  ADS  Google Scholar 

  14. Dickeson, Z. I. & Davis, J. M. Martian oceans. Astron. Geophys. 61, 3.11–3.17 (2020).

    Article  Google Scholar 

  15. Palumbo, A. M. & Head, J. W. Oceans on Mars: the possibility of a Noachian groundwater-fed ocean in a sub-freezing Martian climate. Icarus 331, 209–225 (2019).

    Article  ADS  Google Scholar 

  16. Parker, T. J., Stephen Saunders, R. & Schneeberger, D. M. Transitional morphology in West Deuteronilus Mensae, Mars: implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989).

    Article  ADS  Google Scholar 

  17. Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. C. & Schneeberger, D. M. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. Planets 98, 11061–11078 (1993).

    Article  ADS  Google Scholar 

  18. Citron, R. I., Manga, M. & Hemingway, D. J. Timing of oceans on Mars from shoreline deformation. Nature 555, 643–646 (2018).

    Article  ADS  Google Scholar 

  19. Head, J. et al. Two oceans on Mars? History, problems and prospects. In 49th Lunar and Planetary Science Conference abstr. 2083 (Lunar and Planetary Institute, 2018).

  20. Ivanov, M. A., Erkeling, G., Hiesinger, H., Bernhardt, H. & Reiss, D. Topography of the Deuteronilus contact on Mars: evidence for an ancient water/mud ocean and long-wavelength topographic readjustments. Planet. Space Sci. 144, 49–70 (2017).

    Article  ADS  Google Scholar 

  21. Parker, T. J., Grant, J. A. & Franklin, B. J. Lakes on Mars Ch. 9 (Elsevier, 2010).

  22. Costard, F. et al. Modeling tsunami propagation and the emplacement of thumbprint terrain in an early Mars ocean. J. Geophys. Res. Planets 122, 633–649 (2017).

    Article  ADS  Google Scholar 

  23. Rodriguez, J. A. P. et al. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Sci. Rep. 6, 25106 (2016).

    Article  ADS  Google Scholar 

  24. Di Achille, G. & Hynek, B. M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010).

    Article  ADS  Google Scholar 

  25. Duran, S., Coulthard, T. J. & Baynes, E. R. C. Knickpoints in Martian channels indicate past ocean levels. Sci. Rep. 9, 15153 (2019).

    Article  ADS  Google Scholar 

  26. Webb, V. E. Putative shorelines in northern Arabia Terra, Mars. J. Geophys. Res. Planets 109, 2003JE002205 (2004).

    Article  Google Scholar 

  27. Sholes, S. F., Dickeson, Z. I., Montgomery, D. R. & Catling, D. C. Where are Mars’ hypothesized ocean shorelines? Large lateral and topographic offsets between different versions of paleoshoreline maps. J. Geophys. Res. Planets 126, e2020JE006486 (2021).

    Article  ADS  Google Scholar 

  28. Salvatore, M. R. & Christensen, P. R. On the origin of the Vastitas Borealis Formation in Chryse and Acidalia planitiae, Mars. J. Geophys. Res. Planets 119, 2437–2456 (2014).

    Article  ADS  Google Scholar 

  29. Malin, M. C. & Edgett, K. S. Oceans or seas in the Martian northern lowlands: high resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999).

    Article  ADS  Google Scholar 

  30. Di Pietro, I., Séjourné, A., Costard, F., Ciążela, M. & Rodriguez, J. A. P. Evidence of mud volcanism due to the rapid compaction of Martian tsunami deposits in southeastern Acidalia Planitia, Mars. Icarus 354, 114096 (2021).

    Article  Google Scholar 

  31. Rodriguez, J. A. P. et al. Evidence of an oceanic impact and megatsunami sedimentation in Chryse Planitia, Mars. Sci. Rep. 12, 19589 (2022).

    Article  ADS  Google Scholar 

  32. Tanaka, K. L., Skinner, J. A. & Hare, T. M. Geologic Map of the Northern Plains of Mars: Pamphlet to Accompany Scientific Investigations Map 2888 (USGS, 2005).

  33. Costard, F. et al. The Lomonosov Crater impact event: a possible mega‐tsunami source on Mars. J. Geophys. Res. Planets 124, 1840–1851 (2019).

    Article  ADS  Google Scholar 

  34. Iijima, Y., Goto, K., Minoura, K., Komatsu, G. & Imamura, F. Hydrodynamics of impact-induced tsunami over the Martian ocean. Planet. Space Sci. 95, 33–44 (2014).

    Article  ADS  Google Scholar 

  35. Dohm, J. M., Fink, W., Williams, J.-P., Mahaney, W. C. & Ferris, J. C. Chicxulub-like Gale impact into an ocean/land interface on Mars: an explanation for the formation of Mount Sharp. Icarus 390, 115306 (2023).

    Article  Google Scholar 

  36. Turbet, M. & Forget, F. The paradoxes of the Late Hesperian Mars ocean. Sci. Rep. 9, 5717 (2019).

    Article  ADS  Google Scholar 

  37. Leverington, D. W. A volcanic origin for the outflow channels of Mars: key evidence and major implications. Geomorphology 132, 51–75 (2011).

    Article  ADS  Google Scholar 

  38. Mouginot, J., Pommerol, A., Beck, P., Kofman, W. & Clifford, S. M. Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, 2011GL050286 (2012).

    Article  Google Scholar 

  39. Salvatore, M. R. & Christensen, P. R. Evidence for widespread aqueous sedimentation in the northern plains of Mars. Geology 42, 423–426 (2014).

    Article  ADS  Google Scholar 

  40. Huang, H. et al. The analysis of cones within the Tianwen-1 landing area. Remote Sens. 14, 2590 (2022).

    Article  ADS  Google Scholar 

  41. Oehler, D. Z. & Allen, C. C. Evidence for pervasive mud volcanism in Acidalia Planitia, Mars. Icarus 208, 636–657 (2010).

    Article  ADS  Google Scholar 

  42. Skinner, J. A. & Tanaka, K. L. Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland–lowland boundary plain, Mars. Icarus 186, 41–59 (2007).

    Article  ADS  Google Scholar 

  43. Wang, L., Zhao, J., Huang, J. & Xiao, L. An explosive mud volcano origin for the pitted cones in southern Utopia Planitia, Mars. Sci. China Earth Sci. 66, 2045–2056 (2023).

    Article  ADS  Google Scholar 

  44. Cuřín, V., Brož, P., Hauber, E. & Markonis, Y. Mud flows in southwestern Utopia Planitia, Mars. Icarus 389, 115266 (2023).

    Article  Google Scholar 

  45. Hiesinger, H. & Head, J. W. Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J. Geophys. Res. Planets 105, 11999–12022 (2000).

    Article  ADS  Google Scholar 

  46. Buczkowski, D. L., Seelos, K. D. & Cooke, M. L. Giant polygons and circular graben in western Utopia basin, Mars: exploring possible formation mechanisms. J. Geophys. Res. Planets 117, 2011JE003934 (2012).

    Article  Google Scholar 

  47. Ivanov, M. A., Hiesinger, H., Erkeling, G. & Reiss, D. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: evidence for the ancient ocean. Icarus 228, 121–140 (2014).

    Article  ADS  Google Scholar 

  48. Ghent, R. R., Anderson, S. W. & Pithawala, T. M. The formation of small cones in Isidis Planitia, Mars through mobilization of pyroclastic surge deposits. Icarus 217, 169–183 (2012).

    Article  ADS  Google Scholar 

  49. Wilson, S. A., Morgan, A. M., Howard, A. D. & Grant, J. A. The global distribution of craters with alluvial fans and deltas on Mars. Geophys. Res. Lett. 48, e2020GL091653 (2021).

    Article  ADS  Google Scholar 

  50. DiBiase, R. A., Limaye, A. B., Scheingross, J. S., Fischer, W. W. & Lamb, M. P. Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res. Planets 118, 1285–1302 (2013).

    Article  ADS  Google Scholar 

  51. Fawdon, P. et al. The Hypanis Valles Delta: the last highstand of a sea on early Mars? Earth Planet. Sci. Lett. 500, 225–241 (2018).

    Article  ADS  Google Scholar 

  52. Cardenas, B. T. & Lamb, M. P. Paleogeographic reconstructions of an ocean margin on mars based on deltaic sedimentology at Aeolis Dorsa. J. Geophys. Res. Planets 127, e2022JE007390 (2022).

    Article  ADS  Google Scholar 

  53. Rivera‐Hernández, F. & Palucis, M. C. Do deltas along the crustal dichotomy boundary of Mars in the Gale Crater region record a northern ocean? Geophys. Res. Lett. 46, 8689–8699 (2019).

    Article  ADS  Google Scholar 

  54. De Toffoli, B., Plesa, A.-C., Hauber, E. & Breuer, D. Delta deposits on Mars: a global perspective. Geophys. Res. Lett. 48, e2021GL094271 (2021).

    Article  ADS  Google Scholar 

  55. Head, J. W. et al. Possible ancient oceans on Mars: evidence from Mars orbiter laser altimeter data. Science 286, 2134–2137 (1999).

    Article  ADS  Google Scholar 

  56. Perron, J. T., Mitrovica, J. X., Manga, M., Matsuyama, I. & Richards, M. A. Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447, 840–843 (2007).

    Article  ADS  Google Scholar 

  57. Baum, M., Sholes, S. & Hwang, A. Impact craters and the observability of ancient Martian shorelines. Icarus 387, 115178 (2022).

    Article  Google Scholar 

  58. Sholes, S. F. & Rivera-Hernández, F. Constraints on the uncertainty, timing, and magnitude of potential Mars oceans from topographic deformation models. Icarus 378, 114934 (2022).

    Article  Google Scholar 

  59. Kreslavsky, M. A. & Head, J. W. Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis Formation as a sublimation residue from frozen ponded bodies of water. J. Geophys. Res. Planets 107, 4-1–4-25 (2002).

  60. Leone, G. The absence of an ocean and the fate of water all over the Martian history. Earth Space Sci. 7, e2019EA001031 (2020).

    Article  ADS  Google Scholar 

  61. Seybold, H. J., Kite, E. & Kirchner, J. W. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate. Sci. Adv. 4, eaar6692 (2018).

    Article  ADS  Google Scholar 

  62. Shi, Y., Zhao, J., Xiao, L., Yang, Y. & Wang, J. An arid-semiarid climate during the Noachian–Hesperian transition in the Huygens region, Mars: evidence from morphological studies of valley networks. Icarus 373, 114789 (2022).

    Article  Google Scholar 

  63. Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011).

    Article  ADS  Google Scholar 

  64. Elwood Madden, M. E., Bodnar, R. J. & Rimstidt, J. D. Jarosite as an indicator of water-limited chemical weathering on Mars. Nature 431, 821–823 (2004).

    Article  ADS  Google Scholar 

  65. Bandfield, J. L. Global mineral distributions on Mars. J. Geophys. Res. Planets 107, 9-1–9-20 (2002).

  66. Bibring, J.-P. et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006).

    Article  ADS  Google Scholar 

  67. Hamilton, V. E. & Christensen, P. R. Evidence for extensive, olivine-rich bedrock on Mars. Geology 33, 433–436 (2005).

    Article  ADS  Google Scholar 

  68. Wordsworth, R. D. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    Article  ADS  Google Scholar 

  69. Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).

    Article  ADS  Google Scholar 

  70. Halevy, I. & Head Iii, J. W. Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7, 865–868 (2014).

    Article  ADS  Google Scholar 

  71. Wordsworth, R. et al. Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

    Article  ADS  Google Scholar 

  72. Forget, F. et al. 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222, 81–99 (2013).

    Article  ADS  Google Scholar 

  73. Fairén, A. G. A cold and wet Mars. Icarus 208, 165–175 (2010).

    Article  ADS  Google Scholar 

  74. Schmidt, F. et al. Circumpolar ocean stability on Mars 3 Gy ago. Proc. Natl Acad. Sci. USA 119, e2112930118 (2022).

    Article  Google Scholar 

  75. Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. Planets 110, 2005JE002460 (2005).

    Article  Google Scholar 

  76. Palumbo, A. M. & Head, J. W. Early Mars climate history: characterizing a ‘warm and wet’ Martian climate with a 3‐D global climate model and testing geological predictions. Geophys. Res. Lett. 45, 10249–10258 (2018).

    Article  ADS  Google Scholar 

  77. Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, F. & Head, J. W. Comparison of ‘warm and wet’ and ‘cold and icy’ scenarios for early Mars in a 3‐D climate model. J. Geophys. Res. Planets 120, 1201–1219 (2015).

    Article  ADS  Google Scholar 

  78. Kamada, A., Kuroda, T., Kasaba, Y., Terada, N. & Nakagawa, H. Global climate and river transport simulations of early Mars around the Noachian and Hesperian boundary. Icarus 368, 114618 (2021).

    Article  Google Scholar 

  79. Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E. & Clark, R. N. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res. Planets 105, 9609–9621 (2000).

    Article  ADS  Google Scholar 

  80. Edwards, C. S. & Ehlmann, B. L. Carbon sequestration on Mars. Geology 43, 863–866 (2015).

    Article  ADS  Google Scholar 

  81. Fairén, A. G., Fernández-Remolar, D., Dohm, J. M., Baker, V. R. & Amils, R. Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423–426 (2004).

    Article  ADS  Google Scholar 

  82. Jakosky, B. M., Pepin, R. O., Johnson, R. E. & Fox, J. L. Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994).

    Article  ADS  Google Scholar 

  83. Head, J. W., Kreslavsky, M. A. & Pratt, S. Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J. Geophys. Res. Planets 107, 3-1–3-29 (2002).

  84. Zhao, J. et al. Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars. Geophys. Res. Lett. 48, e2021GL094903 (2021).

    Article  ADS  Google Scholar 

  85. Liu, J. et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars. Nat. Astron. 6, 65–71 (2021).

    Article  ADS  Google Scholar 

  86. Xiao, L. et al. Evidence for marine sedimentary rocks in Utopia Planitia: Zhurong rover observations. Natl Sci. Rev. 10, nwad137 (2023).

    Article  Google Scholar 

  87. Yang, J.-F. et al. Design and ground verification for multispectral camera on the Mars Tianwen-1 rover. Space Sci. Rev. 218, 19 (2022).

    Article  ADS  Google Scholar 

  88. Li, C. et al. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar. Nature 610, 308–312 (2022).

    Article  ADS  Google Scholar 

  89. Zhou, B. et al. The Mars rover subsurface penetrating radar onboard China’s Mars 2020 mission. Earth Planet. Phys. 4, 345–354 (2020).

    Article  ADS  Google Scholar 

  90. Hobiger, M. et al. The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations. Nat. Commun. 12, 6756 (2021).

    Article  ADS  Google Scholar 

  91. Ruff, S. W. & Christensen, P. R. Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. Planets 107, 2-1–2-22 (2002).

  92. Mazzini, A. & Etiope, G. Mud volcanism: an updated review. Earth Sci. Rev. 168, 81–112 (2017).

    Article  ADS  Google Scholar 

  93. Oehler, D. Z. & Allen, C. C. Giant polygons and mounds in the lowlands of Mars: signatures of an ancient ocean? Astrobiology 12, 601–615 (2012).

    Article  ADS  Google Scholar 

  94. Carr, M. H. The Surface of Mars Ch. 6 (Cambridge Univ. Press, 2006).

  95. Tanaka, K. L. et al. Geologic Map of Mars: Pamphlet to Accompany Scientific Investigations Map 3292 (USGS, 2014).

  96. Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).

    Article  ADS  Google Scholar 

  97. Hauber, E. et al. Asynchronous formation of Hesperian and Amazonian‐aged deltas on Mars and implications for climate. J. Geophys. Res. Planets 118, 1529–1544 (2013).

    Article  ADS  Google Scholar 

  98. Liu, J. et al. A 76-m per pixel global color image dataset and map of Mars by Tianwen-1. Sci. Bull. 69, 2183–2186 (2024).

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (42273041). We thank L. Xiao and J. Zhao for the discussion on an Martian ancient northern ocean.

Author information

Authors and Affiliations

Authors

Contributions

J.H. designed this research. J.H. and L.W. discussed and analysed the results and their implications. L.W. prepared the figures and wrote the manuscript with edits from J.H.

Corresponding author

Correspondence to Jun Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Rickbir Bahia and Frédéric Schmidt for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Huang, J. Hypothesis of an ancient northern ocean on Mars and insights from the Zhurong rover. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02343-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing