Abstract
We present a comprehensive multi-messenger study of NGC 1068, the prototype Seyfert II galaxy associated with high-energy neutrinos following a detection by the IceCube Neutrino Observatory. Various aspects of the source, including its nuclear activity, jet, outflow and starburst region, are analysed in detail using a multi-wavelength approach and relevant luminosities are derived. We then explore its γ-ray and neutrino emissions and investigate the potential mechanisms underlying these phenomena and their relations with the different astrophysical components to try to understand which is responsible for the IceCube neutrinos. By first using simple order-of-magnitude arguments and then applying specific theoretical models, we infer that only the region close to the accretion disk around the supermassive black hole has the right density of both the X-ray photons needed to provide the targets for protons to sustain neutrino production and the optical/infrared photons required to absorb the associated, but unobserved, γ-rays. We conclude by highlighting ongoing efforts to constrain a possible broad connection between neutrinos and active galactic nuclei, as well as future synergies between astronomical and neutrino facilities.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Aartsen, M. G. et al. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013).
IceCube Collaboration. Evidence for high-energy extraterrestrial neutrinos at the IceCube Detector. Science 342, 1242856 (2013).
Icecube Collaboration. Observation of high-energy neutrinos from the Galactic plane. Science 380, 1338–1343 (2023).
IceCube Collaboration. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).
IceCube Collaboration. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018).
IceCube Collaboration. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 378, 538–543 (2022).
Fath, E. A. The spectra of some spiral nebulae and globular star clusters. Lick Obs. Bull. 149, 71–77 (1909).
Seyfert, C. K. Nuclear emission in spiral nebulae. Astrophys. J. 97, 28 (1943).
Antonucci, R. R. J. & Miller, J. S. Spectropolarimetry and the nature of NGC 1068. Astrophys. J. 297, 621–632 (1985).
Schmidt, M. 3C 273 : a star-like object with large red-shift. Nature 197, 1040 (1963).
Padovani, P. et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 25, 2 (2017).
Padovani, P. The microjansky and nanojansky radio sky: source population and multiwavelength properties. Mon. Not. R. Astron. Soc. 411, 1547–1561 (2011).
Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 1, 0194 (2017).
Greenhill, L. J., Gwinn, C. R., Antonucci, R. & Barvainis, R. VLBI imaging of water maser emission from the nuclear torus of NGC 1068. Astrophys. J. Lett. 472, L21 (1996).
Wang, J.-M., Songsheng, Y.-Y., Li, Y.-R., Du, P. & Yu, Z. Dynamical evidence from the sub-parsec counter-rotating disc for a close binary of supermassive black holes in NGC 1068. Mon. Not. R. Astron. Soc. 497, 1020–1028 (2020).
Gallimore, J. F., Baum, S. A., O’Dea, C. P. & Pedlar, A. The subarcsecond radio structure in NGC 1068. I. Observations and results. Astrophys. J. 458, 136 (1996).
García-Burillo, S. et al. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron. Astrophys. 567, A125 (2014).
Roy, A. L., Wilson, A. S., Ulvestad, J. S. & Colbert, J. M. Slow jets in Seyfert Galaxies: NGC1068. In Proc. 5th European VLBI Network Symposium (eds Conway, J. E. et al.) 7 (Onsala Space Observatory, 2000).
Park, J. et al. Kinematics of the M87 jet in the collimation zone: gradual acceleration and velocity stratification. Astrophys. J. 887, 147 (2019).
Fischer, T. C., Johnson, M. C., Secrest, N. J., Crenshaw, D. M. & Kraemer, S. B. No small-scale radio jets here: multiepoch observations of radio continuum structures in NGC 1068 with the VLBA. Astrophys. J. 953, 87 (2023).
Condon, J. J. et al. The NRAO VLA Sky Survey. Astron. J. 115, 1693–1716 (1998).
Ansoldi, S. et al. The blazar TXS 0506+056 associated with a high-energy neutrino: insights into extragalactic jets and cosmic-ray acceleration. Astrophys. J. Lett. 863, L10 (2018).
Harrison, C. M. Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017).
Cicone, C. et al. The largely unconstrained multiphase nature of outflows in AGN host galaxies. Nat. Astron. 2, 176–178 (2018).
Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).
Impellizzeri, C. M. V. et al. Counter-rotation and high-velocity outflow in the parsec-scale molecular torus of NGC 1068. Astrophys. J. Lett. 884, L28 (2019).
Viti, S. et al. Molecular line emission in NGC 1068 imaged with ALMA. II. The chemistry of the dense molecular gas. Astron. Astrophys. 570, A28 (2014).
Kelly, G. et al. Molecular shock tracers in NGC 1068: SiO and HNCO. Astron. Astrophys. 597, A11 (2017).
Huang, K. Y. et al. The chemical footprint of AGN feedback in the outflowing circumnuclear disk of NGC 1068. Astron. Astrophys. 666, A102 (2022).
Maiolino, R. et al. Evidence of strong quasar feedback in the early Universe. Mon. Not. R. Astron. Soc. 425, L66–L70 (2012).
Lamastra, A. et al. Galactic outflow driven by the active nucleus and the origin of the gamma-ray emission in NGC 1068. Astron. Astrophys. 596, A68 (2016).
Ramos Almeida, C. et al. The infrared nuclear emission of Seyfert galaxies on parsec scales: testing the clumpy torus models. Astrophys. J. 702, 1127–1149 (2009).
Markowitz, A. G., Krumpe, M. & Nikutta, R. First X-ray-based statistical tests for clumpy-torus models: eclipse events from 230 years of monitoring of Seyfert AGN. Mon. Not. R. Astron. Soc. 439, 1403–1458 (2014).
Marinucci, A. et al. NuSTAR catches the unveiling nucleus of NGC 1068. Mon. Not. R. Astron. Soc. 456, L94–L98 (2016).
GRAVITY Collaboration. An image of the dust sublimation region in the nucleus of NGC 1068. Astron. Astrophys. 634, A1 (2020).
Gámez Rosas, V. et al. Thermal imaging of dust hiding the black hole in NGC 1068. Nature 602, 403–407 (2022).
Brandt, W. N. & Alexander, D. M. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. Astron. Astrophys. Rev. 23, 1 (2015).
De Marco, B., Motta, S. E. & Belloni, T. M. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) 1–41 (Springer Nature Singapore, 2022).
Liang, E. P. T. On the hard X-ray emission mechanism of active galactic nuclei sources. Astrophys. J. Lett. 231, L111–L114 (1979).
Alston, W., Giustini, M. & Petrucci, P.-O. in Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Santangelo, A.) 1–51 (Springer Nature Singapore, 2022).
Lasota, J.-P. AGN accretion discs. Preprint at https://arxiv.org/abs/2302.07925 (2023).
Gianolli, V. E. et al. Uncovering the geometry of the hot X-ray corona in the Seyfert galaxy NGC 4151 with IXPE. Mon. Not. R. Astron. Soc. 523, 4468–4476 (2023).
Tagliacozzo, D. et al. The geometry of the hot corona in MCG-05-23-16 constrained by X-ray polarimetry. Mon. Not. R. Astron. Soc. 525, 4735–4743 (2023).
Ingram, A. et al. The X-ray polarization of the Seyfert 1 galaxy IC 4329A. Mon. Not. R. Astron. Soc. 525, 5437–5449 (2023).
Zaino, A. et al. Probing the circumnuclear absorbing medium of the buried AGN in NGC 1068 through NuSTAR observations. Mon. Not. R. Astron. Soc. 492, 3872–3884 (2020).
Duras, F. et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astron. Astrophys. 636, A73 (2020).
Spinoglio, L., Fernández-Ontiveros, J. A. & Malkan, M. A. The high-ionization IR fine structure lines as bolometric indicators of the AGN power: study of the complete 12 μm AGN Sample. Astrophys. J. 941, 46 (2022).
Abdo, A. A. et al. Fermi Large Area Telescope first source catalog. Astrophys. J. Suppl. Ser. 188, 405–436 (2010).
Lenain, J. P., Ricci, C., Türler, M., Dorner, D. & Walter, R. Seyfert 2 galaxies in the GeV band: jets and starburst. Astron. Astrophys. 524, A72 (2010).
Abdollahi, S. et al. Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 247, 33 (2020).
Aharonian, F. et al. Observations of selected AGN with HESS. Astron. Astrophys. 441, 465–472 (2005).
Acciari, V. A. et al. Constraints on gamma-ray and neutrino emission from NGC 1068 with the MAGIC Telescopes. Astrophys. J. 883, 135 (2019).
Albert, A. et al. A survey of active galaxies at TeV photon energies with the HAWC Gamma-Ray Observatory. Astrophys. J. 907, 67 (2021).
Ajello, M., Di Mauro, M., Paliya, V. S. & Garrappa, S. The γ-ray emission of star-forming galaxies. Astrophys. J. 894, 88 (2020).
Peretti, E., Blasi, P., Aharonian, F. & Morlino, G. Cosmic ray transport and radiative processes in nuclei of starburst galaxies. Mon. Not. R. Astron. Soc. 487, 168–180 (2019).
Ajello, M., Murase, K. & McDaniel, A. Disentangling the hadronic components in NGC 1068. Astrophys. J. Lett. 954, L49 (2023).
Ajello, M. et al. Gamma rays from fast black-hole winds. Astrophys. J. 921, 144 (2021).
Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).
Tombesi, F. et al. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. Astron. Astrophys. 521, A57 (2010).
McDaniel, A., Ajello, M. & Karwin, C. Gamma-ray emission from galaxies hosting molecular outflows. Astrophys. J. 943, 168 (2023).
Paiano, S. et al. The spectra of IceCube Neutrino (SIN) candidate sources – III. Optical spectroscopy and source characterization of the full sample. Mon. Not. R. Astron. Soc. 521, 2270–2289 (2023).
Abbasi, R. et al. IceCube high-energy starting event sample: description and flux characterization with 7.5 years of data. Phys. Rev. D 104, 022002 (2021).
Ballet, J., Burnett, T. H., Digel, S. W. & Lott, B. Fermi Large Area Telescope fourth source catalog data release 2. Preprint at https://arxiv.org/abs/2005.11208 (2020).
Abbasi, R. et al. first neutrino point-source results from the 22 string Icecube Detector. Astrophys. J. Lett. 701, L47–L51 (2009).
Aartsen, M. G. et al. Time-integrated neutrino source searches with 10 years of IceCube data. Phys. Rev. Lett. 124, 051103 (2020).
Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A. & Ptuskin, V. S. Astrophysics of Cosmic Rays (ed. Ginzburg, V. L.) (Amsterdam: North-Holland, 1990).
Gaisser, T. K., Engel, R. & Resconi, E. Cosmic Rays and Particle Physics (Cambridge Univ. Press, 2016).
Mücke, A., Rachen, J. P., Engel, R., Protheroe, R. J. & Stanev, T. Photohadronic processes in astrophysical environments. Publ. Astron. Soc. Aust. 16, 160–166 (1999).
Gould, R. J. & Schréder, G. P. Pair production in photon-photon collisions. Phys. Rev. 155, 1404–1407 (1967).
Aharonian, F. A. Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe (World Scientific, 2004).
Inoue, Y., Khangulyan, D., Inoue, S. & Doi, A. On high-energy particles in accretion disk coronae of supermassive black holes: implications for MeV gamma-rays and high-energy neutrinos from AGN cores. Astrophys. J. 880, 40 (2019).
Caputo, R. et al. All-sky medium energy gamma-ray observatory eXplorer mission concept. J. Astron. Telesc. Instrum. Syst. 8, 044003 (2022).
de Angelis, A. et al. Science with e-ASTROGAM. A space mission for MeV-GeV gamma-ray astrophysics. J. High Energy Astrophys. 19, 1–106 (2018).
Gabici, S. & Aharonian, F. A. Gamma ray signatures of ultra high energy cosmic ray accelerators: electromagnetic cascade versus synchrotron radiation of secondary electrons. Astrophys. Space Sci. 309, 465–469 (2007).
Murase, K. Hidden hearts of neutrino active galaxies. Astrophys. J. Lett. 941, L17 (2022).
Berezinsky, V. S. in Proc. International Conference Neutrino ’77 (eds Faissner, H. et al.) 650 (Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig, 1977).
Eichler, D. High-energy neutrino astronomy: a probe of galactic nuclei? Astrophys. J. 232, 106–112 (1979).
Silberberg, R. & Shapiro, M. M. Neutrinos as a probe for the nature of and processes in active galactic nuclei. In Proc. 16th International Cosmic Ray Conference Vol. 10 (ed. Miyake, S.) 357 (Institute for Cosmic Ray Research, 1979).
Inoue, Y., Khangulyan, D. & Doi, A. On the origin of high-energy neutrinos from NGC 1068: the role of nonthermal coronal activity. Astrophys. J. Lett. 891, L33 (2020).
Murase, K., Kimura, S. S. & Mészáros, P. Hidden cores of active galactic nuclei as the origin of medium-energy neutrinos: critical tests with the MeV gamma-ray connection. Phys. Rev. Lett. 125, 011101 (2020).
Yoast-Hull, T. M., Gallagher I, J. S., Zweibel, E. G. & Everett, J. E. Active galactic nuclei, neutrinos, and interacting cosmic rays in NGC 253 and NGC 1068. Astrophys. J. 780, 137 (2014).
Eichmann, B., Oikonomou, F., Salvatore, S., Dettmar, R.-J. & Tjus, J. B. Solving the multimessenger puzzle of the AGN-starburst composite galaxy NGC 1068. Astrophys. J. 939, 43 (2022).
Peretti, E. et al. Diffusive shock acceleration at EeV and associated multimessenger flux from ultra-fast outflows driven by active galactic nuclei. Mon. Not. R. Astron. Soc. 526, 181–192 (2023).
Inoue, S., Cerruti, M., Murase, K. & Liu, R.-Y. High-energy neutrinos and gamma rays from winds and tori in active galactic nuclei. Preprint at https://arxiv.org/abs/2207.02097 (2022).
Salvatore, S., Eichmann, B., Rodrigues, X., Dettmar, R. J. & Becker Tjus, J. On the possible jet contribution to the γ-ray luminosity in NGC 1068. Astron. Astrophys. 687, A139 (2024).
Fang, K., Lopez Rodriguez, E., Halzen, F. & Gallagher, J. S. High-energy neutrinos from the inner circumnuclear region of NGC 1068. Astrophys. J. 956, 8 (2023).
Michiyama, T., Inoue, Y., Doi, A. & Dmitry, K. ALMA detection of parsec-scale blobs at the head of a kiloparsec-scale jet in the nearby Seyfert galaxy NGC 1068. Astrophys. J. Lett. 936, L1 (2022).
Ghisellini, G., Haardt, F. & Fabian, A. C. On re-acceleration, pairs and the high-energy spectrum of AGN and galactic black hole candidates. Mon. Not. R. Astron. Soc. 263, L9–L12 (1993).
Fabian, A. C. et al. Properties of AGN coronae in the NuSTAR era. Mon. Not. R. Astron. Soc. 451, 4375–4383 (2015).
Fabian, A. C., Lohfink, A., Belmont, R., Malzac, J. & Coppi, P. Properties of AGN coronae in the NuSTAR era - II. Hybrid plasma. Mon. Not. R. Astron. Soc. 467, 2566–2570 (2017).
Olivares, H. R., Mościbrodzka, M. A. & Porth, O. General relativistic hydrodynamic simulations of perturbed transonic accretion. Astron. Astrophys. 678, A141 (2023).
Jiang, Y.-F., Blaes, O., Stone, J. M. & Davis, S. W. Global radiation magnetohydrodynamic simulations of sub-Eddington accretion disks around supermassive black holes. Astrophys. J. 885, 144 (2019).
Fiorillo, D. F. G., Petropoulou, M., Comisso, L., Peretti, E. & Sironi, L. TeV neutrinos and hard X-rays from relativistic reconnection in the corona of NGC 1068. Astrophys. J. Lett. 961, L14 (2024).
Mbarek, R., Philippov, A., Chernoglazov, A., Levinson, A. & Mushotzky, R. Interplay between accelerated protons, x-rays and neutrinos in the corona of NGC 1068: constraints from kinetic plasma simulations. Phys. Rev. D 109, L101306 (2024).
Abbasi, R. et al. Extending the IceCube search for neutrino point sources in the northern sky with additional years of data. In Proc. 38th International Cosmic Ray Conference 1060 (Proceedings of Science, 2023).
Kheirandish, A., Murase, K. & Kimura, S. S. High-energy neutrinos from magnetized coronae of active galactic nuclei and prospects for identification of Seyfert galaxies and quasars in neutrino telescopes. Astrophys. J. 922, 45 (2021).
Ricci, C. et al. BAT AGN spectroscopic survey. V. X-ray properties of the Swift/BAT 70-month AGN catalog. Astrophys. J. Suppl. Ser. 233, 17 (2017).
Abbasi, R. et al. Searching for high-energy neutrino emission from Seyfert galaxies in the northern sky with IceCube. In Proc. 38th International Cosmic Ray Conference 1052 (Proceedings of Science, 2023).
Abbasi, R. et al. Search for TeV neutrinos from Seyfert galaxies in the southern sky using starting track events in IceCube. In Proc. 38th International Cosmic Ray Conference 1533 (Proceedings of Science, 2023).
Abbasi, R. et al. Search for high-energy neutrino emission from hard X-ray AGN with IceCube. In Proc. 38th International Cosmic Ray Conference 1032 (Proceedings of Science, 2023).
Tanimoto, A., Ueda, Y., Odaka, H., Yamada, S. & Ricci, C. NuSTAR Observations of 52 Compton-thick active galactic nuclei selected by the Swift/Burst Alert Telescope all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 260, 30 (2022).
Neronov, A., Savchenko, D. & Semikoz, D. V. Neutrino signal from a population of Seyfert galaxies. Phys. Rev. Lett. 132, 101002 (2024).
Padovani, P. et al. Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source. Mon. Not. R. Astron. Soc. 480, 192–203 (2018).
Murase, K., Guetta, D. & Ahlers, M. Hidden cosmic-ray accelerators as an origin of TeV-PeV cosmic neutrinos. Phys. Rev. Lett. 116, 071101 (2016).
Acknowledgements
The idea for this Review came during a Topical Workshop on NGC 1068 organized by E.R., C.B. and P.P. and held at the Munich Institute for Astro-, Particle and BioPhysics in Garching on 6–10 March 2023. As the organizers and invited speakers, we wish to thank all of the participants in the meeting for the stimulating atmosphere and fruitful discussions. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through grant number SFB 1258 ‘Neutrinos and Dark Matter in Astro- and Particle Physics’ and by the Excellence Cluster ORIGINS, which is funded by the DFG under Germany’s Excellence Strategy EXC 2094. B.E. acknowledges support from the DFG within the Collaborative Research Center grant number SFB 1491 ‘Cosmic Interacting Matters – From Source to Signal’. E.P. acknowledges support from the Villum Fonden (grant number 18994) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 847523 ’INTERACTIONS’. S.G. and E.P. were also supported by Agence Nationale de la Recherche (grant number ANR-21-CE31-0028).
Author information
Authors and Affiliations
Contributions
P.P. coordinated the work, contributing mostly to the ‘Main’, the ‘Multi-messenger view’, the ‘Relevant powers and the case for a ‘hidden’ source scenario’ and the ‘Conclusions’ sections and the Supplementary Information, and collaborated with E.R. on finalizing the paper. E.R. also contributed to the ‘Main’ and ‘Conclusions’ sections. K.-Y.H. worked on the ‘Sub-millimetre band and molecular outflow power’ section, while V.G.R. and T.S. focused on the ‘Near-IR band and the torus’ section, S.B. on the ‘X-ray band and AGN power’ section, M.A. and A.L. on the ‘Gamma-ray band and SB power’ section, C.B. on ‘Teraelectronvolt neutrino band’ and ‘Outlook’ sections, S.G. on the ‘Relevant powers and the case for a ‘hidden’ source scenario’ section, E.P., B.E., D.G. and A.L. on the ‘Nailing down the hidden source case’ section, P.B. on the ‘Nailing down the hidden source case’ section and the Supplementary Information, and H.N. on the ‘Outlook’ section. All authors participated in discussions regarding the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Discussion.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Padovani, P., Resconi, E., Ajello, M. et al. High-energy neutrinos from the vicinity of the supermassive black hole in NGC 1068. Nat Astron 8, 1077–1087 (2024). https://doi.org/10.1038/s41550-024-02339-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-024-02339-z