Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constraints on the in situ and ex situ stellar masses in nearby galaxies obtained with artificial intelligence

Abstract

The hierarchical model of galaxy evolution suggests that mergers have a substantial impact on the intricate processes that drive stellar assembly within a galaxy. However, accurately measuring the contribution of accretion to a galaxy’s total stellar mass and its balance with in situ star formation poses a persistent challenge, as it is neither directly observable nor easily inferred from observational properties. Using data from MaNGA, we present theory-motivated predictions for the fraction of stellar mass originating from mergers in a statistically significant sample of nearby galaxies. Employing a robust machine learning model trained on mock MaNGA analogues (MaNGIA) obtained from a cosmological simulation (TNG50), we unveil that in situ stellar mass dominates almost across the entire stellar mass spectrum (109M < M < 1012M). Only in more massive galaxies (M > 1011M) does accreted mass become a substantial contributor, reaching up to 35–40% of the total stellar mass. Notably, the ex situ stellar mass in the nearby Universe exhibits notable dependence on galaxy characteristics, with higher accreted fractions favoured being by elliptical, quenched galaxies and slow rotators, as well as galaxies at the centre of more massive dark matter haloes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The contributions of the in situ stellar mass and the ex situ stellar mass to the total stellar mass for ~10,000 MaNGA galaxies predicted by the neural network model trained on the MaNGIA mock dataset.
Fig. 2: Secondary dependencies of the ex situ stellar mass on galaxy characteristics.
Fig. 3: Dependencies of the ex situ stellar mass on rotation.
Fig. 4: Dependencies of the ex situ stellar mass on environment.

Similar content being viewed by others

Data availability

Data directly related to this publication and its figures are available from the Strasbourg Astronomical Data Centre through anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or through the link https://cdsarc.cds.unistra.fr/viz-bin/cat/J/other/NatAs. The MaNGA products (https://www.sdss4.org/dr17/manga/) and the MaNGIA dataset (https://www.tng-project.org/data/docs/specifications) are all publicly available. The associated datasets are available via GitHub at https://github.com/eagel27/galaxy-exsitu.

Code availability

The associated code and machine learning models are available via GitHub at https://github.com/eagel27/galaxy-exsitu.

References

  1. Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51–113 (2015).

    Article  ADS  Google Scholar 

  2. Kormendy, J., Fisher, D. B., Cornell, M. E. & Bender, R. Structure and formation of elliptical and spheroidal galaxies. Astrophys. J. Suppl. Ser. 182, 216–309 (2009).

    Article  ADS  Google Scholar 

  3. Patton, D. R., Ellison, S. L., Simard, L., McConnachie, A. W. & Mendel, J. T. Galaxy pairs in the Sloan Digital Sky Survey. III. Evidence of induced star formation from optical colours. Mon. Not. R. Astron. Soc. 412, 591–606 (2011).

    Article  ADS  Google Scholar 

  4. Ellison, S. L., Patton, D. R., Simard, L. & McConnachie, A. W. Galaxy pairs in the Sloan Digital Sky Survey. I. Star formation, active galactic nucleus fraction, and the mass–metallicity relation. Astron. J. 135, 1877–1899 (2008).

    Article  ADS  Google Scholar 

  5. Bell, E. F. et al. Dry mergers in GEMS: the dynamical evolution of massive early-type galaxies. Astrophys. J. 640, 241–251 (2006).

    Article  ADS  Google Scholar 

  6. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article  ADS  Google Scholar 

  7. Barton, E. J., Geller, M. J. & Kenyon, S. J. Tidally triggered star formation in close pairs of galaxies. Astrophys. J. 530, 660–679 (2000).

    Article  ADS  Google Scholar 

  8. Lin, L. et al. The DEEP2 galaxy redshift survey: evolution of close galaxy pairs and major-merger rates up to z ~ 1.2. Astrophys. J. Lett. 617, L9–L12 (2004).

    Article  ADS  Google Scholar 

  9. Conselice, C. J., Bershady, M. A., Dickinson, M. & Papovich, C. A direct measurement of major galaxy mergers at z  3. Astron. J. 126, 1183–1207 (2003).

    Article  ADS  Google Scholar 

  10. Lotz, J. M., Primack, J. & Madau, P. A new nonparametric approach to galaxy morphological classification. Astron. J. 128, 163–182 (2004).

    Article  ADS  Google Scholar 

  11. Harmsen, B. et al. Diverse stellar haloes in nearby Milky Way mass disc galaxies. Mon. Not. R. Astron. Soc. 466, 1491–1512 (2017).

    Article  ADS  Google Scholar 

  12. Smercina, A., Bell, E. F., Samuel, J. & D’Souza, R. Relating the diverse merger histories and satellite populations of nearby galaxies. Astrophys. J. 930, 69 (2022).

    Article  ADS  Google Scholar 

  13. Boecker, A. et al. A galaxy’s accretion history unveiled from its integrated spectrum. Mon. Not. R. Astron. Soc. 491, 823–837 (2020).

    ADS  Google Scholar 

  14. van Dokkum, P. G. et al. The growth of massive galaxies since z = 2. Astrophys. J. 709, 1018–1041 (2010).

    Article  ADS  Google Scholar 

  15. Oyarzún, G. A. et al. Signatures of stellar accretion in MaNGA early-type galaxies. Astrophys. J. 880, 111 (2019).

    Article  ADS  Google Scholar 

  16. Davison, T. A. et al. Mapping accreted stars in early-type galaxies across the mass–size plane. Mon. Not. R. Astron. Soc. 507, 3089–3112 (2021).

    Article  ADS  Google Scholar 

  17. Cannarozzo, C. et al. The contribution of in situ and ex situ star formation in early-type galaxies: MaNGA versus IllustrisTNG. Mon. Not. R. Astron. Soc. 520, 5651–5670 (2023).

    Article  ADS  Google Scholar 

  18. Huang, S., Ho, L. C., Peng, C. Y., Li, Z.-Y. & Barth, A. J. Fossil evidence for the two-phase formation of elliptical galaxies. Astrophys. J. Lett. 768, L28 (2013).

    Article  ADS  Google Scholar 

  19. Huang, S., Ho, L. C., Peng, C. Y., Li, Z.-Y. & Barth, A. J. The Carnegie–Irvine galaxy survey. III. The three-component structure of nearby elliptical galaxies. Astrophys. J. 766, 47 (2013).

    Article  ADS  Google Scholar 

  20. Huang, S. et al. Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3 < z < 0.5 using Hyper Suprime-Cam. Mon. Not. R. Astron. Soc. 475, 3348–3368 (2018).

    Article  ADS  Google Scholar 

  21. Walmsley, M., Ferguson, A. M. N., Mann, R. G. & Lintott, C. J. Identification of low surface brightness tidal features in galaxies using convolutional neural networks. Mon. Not. R. Astron. Soc. 483, 2968–2982 (2019).

    Article  ADS  Google Scholar 

  22. Bickley, R. W. et al. Convolutional neural network identification of galaxy post-mergers in UNIONS using IllustrisTNG. Mon. Not. R. Astron. Soc. 504, 372–392 (2021).

    Article  ADS  Google Scholar 

  23. Ćiprijanović, A., Snyder, G. F., Nord, B. & Peek, J. E. G. DeepMerge: classifying high-redshift merging galaxies with deep neural networks. Astron. Comput. 32, 100390 (2020).

    Article  ADS  Google Scholar 

  24. Eisert, L. et al. ERGO-ML: comparing IllustrisTNG and HSC galaxy images via contrastive learning. Mon. Not. R. Astron. Soc. 528, 7411–7439 (2024).

    Article  ADS  Google Scholar 

  25. Angeloudi, E. et al. ERGO-ML: towards a robust machine learning model for inferring the fraction of accreted stars in galaxies from integral-field spectroscopic maps. Mon. Not. R. Astron. Soc. 523, 5408–5429 (2023).

    Article  ADS  Google Scholar 

  26. Bundy, K. et al. Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory. Astrophys. J. 798, 7 (2015).

    Article  ADS  Google Scholar 

  27. Sarmiento, R. et al. MaNGIA: 10,000 mock galaxies for stellar population analysis. Astron. Astrophys. 673, A23 (2023).

    Article  Google Scholar 

  28. Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H. & Burkert, A. The two phases of galaxy formation. Astrophys. J. 725, 2312–2323 (2010).

    Article  ADS  Google Scholar 

  29. Cappellari, M. Structure and kinematics of early-type galaxies from integral field spectroscopy. Annu. Rev. Astron. Astrophys. 54, 597–665 (2016).

    Article  ADS  Google Scholar 

  30. Greene, J. E. et al. The MASSIVE survey. II. Stellar population trends out to large radius in massive early-type galaxies. Astrophys. J. 807, 11 (2015).

    Article  ADS  Google Scholar 

  31. Oyarzún, G. A. et al. SDSS-IV MaNGA: how the stellar populations of passive central galaxies depend on stellar and halo mass. Astrophys. J. 933, 88 (2022).

    Article  ADS  Google Scholar 

  32. Scholz-Díaz, L., Martín-Navarro, I., Falcón-Barroso, J., Lyubenova, M. & van de Ven, G. Baryonic properties of nearby galaxies across the stellar-to-total dynamical mass relation. Nat. Astron. 8, 648–656 (2024).

  33. Tinker, J. L. A self-calibrating halo-based group finder: application to SDSS. Astrophys. J. 923, 154 (2021).

    Article  ADS  Google Scholar 

  34. Wake, D. A. et al. The SDSS-IV MaNGA sample: design, optimization, and usage considerations. Astron. J. 154, 86 (2017).

    Article  ADS  Google Scholar 

  35. Rodriguez-Gomez, V. et al. The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars. Mon. Not. R. Astron. Soc. 458, 2371–2390 (2016).

    Article  ADS  Google Scholar 

  36. Huško, F., Lacey, C. G. & Baugh, C. M. The buildup of galaxies and their spheroids: the contributions of mergers, disc instabilities, and star formation. Mon. Not. R. Astron. Soc. 518, 5323–5339 (2023).

    Article  ADS  Google Scholar 

  37. Bell, E. F. et al. The accretion origin of the Milky Way’s stellar halo. Astrophys. J. 680, 295–311 (2008).

    Article  ADS  Google Scholar 

  38. Helmi, A. Streams, substructures, and the early history of the Milky Way. Annu. Rev. Astron. Astrophys. 58, 205–256 (2020).

    Article  ADS  Google Scholar 

  39. McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article  ADS  Google Scholar 

  40. Kruijssen, J. M. D., Pfeffer, J. L., Reina-Campos, M., Crain, R. A. & Bastian, N. The formation and assembly history of the Milky Way revealed by its globular cluster population. Mon. Not. R. Astron. Soc. 486, 3180–3202 (2019).

    Article  ADS  Google Scholar 

  41. Conselice, C. J., Mundy, C. J., Ferreira, L. & Duncan, K. A direct measurement of galaxy major and minor merger rates and stellar mass accretion histories at z < 3 using galaxy pairs in the REFINE survey. Astrophys. J. 940, 168 (2022).

    Article  ADS  Google Scholar 

  42. Mundy, C. J. et al. A consistent measure of the merger histories of massive galaxies using close-pair statistics. I. Major mergers at z < 3.5. Mon. Not. R. Astron. Soc. 470, 3507–3531 (2017).

    Article  ADS  Google Scholar 

  43. Zhu, L. et al. The Fornax3D project: discovery of ancient massive merger events in the Fornax cluster galaxies NGC 1380 and NGC 1427. Astron. Astrophys. 664, A115 (2022).

    Article  Google Scholar 

  44. Lackner, C. N., Cen, R., Ostriker, J. P. & Joung, M. R. Building galaxies by accretion and in situ star formation. Mon. Not. R. Astron. Soc. 425, 641–656 (2012).

    Article  ADS  Google Scholar 

  45. Davison, T. A., Norris, M. A., Pfeffer, J. L., Davies, J. J. & Crain, R. A. An EAGLE’s view of ex situ galaxy growth. Mon. Not. R. Astron. Soc. 497, 81–93 (2020).

    Article  ADS  Google Scholar 

  46. Tacchella, S. et al. Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Mon. Not. R. Astron. Soc. 487, 5416–5440 (2019).

    Article  ADS  Google Scholar 

  47. Lee, J. & Yi, S. K. On the assembly history of stellar components in massive galaxies. Astrophys. J. 766, 38 (2013).

    Article  ADS  Google Scholar 

  48. De Lucia, G., Springel, V., White, S. D. M., Croton, D. & Kauffmann, G. The formation history of elliptical galaxies. Mon. Not. R. Astron. Soc. 366, 499–509 (2006).

    Article  ADS  Google Scholar 

  49. Rodriguez-Gomez, V. et al. The role of mergers and halo spin in shaping galaxy morphology. Mon. Not. R. Astron. Soc. 467, 3083–3098 (2017).

    Article  ADS  Google Scholar 

  50. Rowlands, K. et al. Galaxy And Mass Assembly (GAMA): the mechanisms for quiescent galaxy formation at z < 1. Mon. Not. R. Astron. Soc. 473, 1168–1185 (2018).

    Article  ADS  Google Scholar 

  51. Belli, S., Newman, A. B. & Ellis, R. S. MOSFIRE spectroscopy of quiescent galaxies at 1.5 < z < 2.5. II. Star formation histories and galaxy quenching. Astrophys. J. 874, 17 (2019).

    Article  ADS  Google Scholar 

  52. Naab, T. et al. The ATLAS3D project. XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators. Mon. Not. R. Astron. Soc. 444, 3357–3387 (2014).

    Article  ADS  Google Scholar 

  53. Yoon, Y., Park, C., Chung, H. & Lane, R. R. Evidence for impact of galaxy mergers on stellar kinematics of early-type galaxies. Astrophys. J. 925, 168 (2022).

    Article  ADS  Google Scholar 

  54. Lin, L. et al. Where do wet, dry, and mixed galaxy mergers occur? A study of the environments of close galaxy pairs in the DEEP2 galaxy redshift survey. Astrophys. J. 718, 1158–1170 (2010).

    Article  ADS  Google Scholar 

  55. Jian, H.-Y., Lin, L. & Chiueh, T. Environmental dependence of the galaxy merger rate in a ΛCDM universe. Astrophys. J. 754, 26 (2012).

    Article  ADS  Google Scholar 

  56. Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  57. Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    Article  ADS  Google Scholar 

  58. Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).

    Article  ADS  Google Scholar 

  59. Sánchez, S. F. et al. SDSS-IV MaNGA: pyPipe3D analysis release for 10,000 galaxies. Astrophys. J. Suppl. Ser. 262, 36 (2022).

    Article  ADS  Google Scholar 

  60. Lacerda, E. A. D. et al. pyFIT3D and pyPipe3D – the new version of the integral field spectroscopy data analysis pipeline. New Astron. 97, 101895 (2022).

    Article  Google Scholar 

  61. Liu, H., HaoChen, J. Z., Gaidon, A. & Ma, T. Self-supervised learning is more robust to dataset imbalance. Preprint at arxiv.org/Uabs/2110.05025 (2021).

  62. Grill, J.-B. et al. Bootstrap your own latent: a new approach to self-supervised learning. In Proc. 34th Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 21271–21284 (Curran Associates, 2020).

  63. Daddi, E. et al. Passively evolving early-type galaxies at 1.4 z 2.5 in the Hubble ultra deep field. Astrophys. J. 626, 680–697 (2005).

    Article  ADS  Google Scholar 

  64. van Dokkum, P. G. et al. Confirmation of the remarkable compactness of massive quiescent galaxies at z ~ 2.3: early-type galaxies did not form in a simple monolithic collapse. Astrophys. J. Lett. 677, L5 (2008).

    Article  ADS  Google Scholar 

  65. van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size–mass distribution since z = 3. Astrophys. J. 788, 28 (2014).

    Article  ADS  Google Scholar 

  66. Rodriguez-Gomez, V. et al. The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations. Mon. Not. R. Astron. Soc. 483, 4140–4159 (2019).

    Article  ADS  Google Scholar 

  67. Wilkinson, D. M., Maraston, C., Goddard, D., Thomas, D. & Parikh, T. FIREFLY (Fitting Iteratively for Likelihood Analysis): a full spectral fitting code. Mon. Not. R. Astron. Soc. 472, 4297–4326 (2017).

    Article  ADS  Google Scholar 

  68. Westfall, K. B. et al. The data analysis pipeline for the SDSS-IV MaNGA IFU galaxy survey: overview. Astron. J. 158, 231 (2019).

    Article  ADS  Google Scholar 

  69. Nanni, L. et al. iMaNGA: mock MaNGA galaxies based on IllustrisTNG and MaStar SSPs. II. The catalogue. Mon. Not. R. Astron. Soc. 522, 5479–5499 (2023).

    Article  ADS  Google Scholar 

  70. Domínguez Sánchez, H., Margalef, B., Bernardi, M. & Huertas-Company, M. SDSS-IV DR17: final release of MaNGA PyMorph photometric and deep-learning morphological catalogues. Mon. Not. R. Astron. Soc. 509, 4024–4036 (2022).

    Article  ADS  Google Scholar 

  71. Sánchez, S. F. et al. Pipe3D, a pipeline to analyze integral field spectroscopy data. II. Analysis sequence and CALIFA dataproducts. Rev. Mexicana Astron. Astrofis. 52, 171–220 (2016).

    ADS  Google Scholar 

  72. Graham, M. T. et al. SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties. Mon. Not. R. Astron. Soc. 477, 4711–4737 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.A. thanks C. Gallart, S. Faber, K. Bundy and L. Scholz-Díaz for their insightful discussions. J.F.-B. and E.A. acknowledge support from the Spanish Ministry of Science, Innovation and Universities (Grant Nos. PID2019-107427GB-C32 and PID2022-140869NB-I00) and through the project TRACES from the Instituto de Astrofísica de Canarias, which is partially supported through the state budget and the regional budget of the Consejería de Economía, Industria, Comercio y Conocimiento of the Canary Islands Autonomous Community. M.H.-C., R.S. and E.A. acknowledge financial support from the State Research Agency of the Spanish Ministry of Science and Innovation under the grants ‘Galaxy Evolution with Artificial Intelligence’ with reference PGC2018-100852-A-I00 and ‘BASALT’ with reference PID2021-126838NB-I00. This research made use of computing time available on the high-performance computing systems at the Instituto de Astrofísica de Canarias. We thankfully acknowledges the technical expertise and assistance provided by the Spanish Supercomputing Network (Red Española de Supercomputación), as well as the computer resources used: the Deimos-Diva Supercomputer and the LaPalma Supercomputer, at the Instituto de Astrofísica de Canarias.

Author information

Authors and Affiliations

Authors

Contributions

E.A. performed the data analysis and wrote the paper. E.A., M.H.-C. and J.F.-B. conceived and designed the project. A.B. provided substantial comments on the overall design of the project and the interpretation of the results. R.S. substantially assisted with the creation of the mock dataset from the EAGLE cosmological simulation. L.E. and A.P. commented on the paper and helped improve its overall focus. All authors interpreted and discussed the results and commented on the paper.

Corresponding author

Correspondence to Eirini Angeloudi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angeloudi, E., Falcón-Barroso, J., Huertas-Company, M. et al. Constraints on the in situ and ex situ stellar masses in nearby galaxies obtained with artificial intelligence. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02327-3

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics