Abstract
The hierarchical model of galaxy evolution suggests that mergers have a substantial impact on the intricate processes that drive stellar assembly within a galaxy. However, accurately measuring the contribution of accretion to a galaxy’s total stellar mass and its balance with in situ star formation poses a persistent challenge, as it is neither directly observable nor easily inferred from observational properties. Using data from MaNGA, we present theory-motivated predictions for the fraction of stellar mass originating from mergers in a statistically significant sample of nearby galaxies. Employing a robust machine learning model trained on mock MaNGA analogues (MaNGIA) obtained from a cosmological simulation (TNG50), we unveil that in situ stellar mass dominates almost across the entire stellar mass spectrum (109 M⊙ < M⋆ < 1012 M⊙). Only in more massive galaxies (M⋆ > 1011 M⊙) does accreted mass become a substantial contributor, reaching up to 35–40% of the total stellar mass. Notably, the ex situ stellar mass in the nearby Universe exhibits notable dependence on galaxy characteristics, with higher accreted fractions favoured being by elliptical, quenched galaxies and slow rotators, as well as galaxies at the centre of more massive dark matter haloes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Data directly related to this publication and its figures are available from the Strasbourg Astronomical Data Centre through anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or through the link https://cdsarc.cds.unistra.fr/viz-bin/cat/J/other/NatAs. The MaNGA products (https://www.sdss4.org/dr17/manga/) and the MaNGIA dataset (https://www.tng-project.org/data/docs/specifications) are all publicly available. The associated datasets are available via GitHub at https://github.com/eagel27/galaxy-exsitu.
Code availability
The associated code and machine learning models are available via GitHub at https://github.com/eagel27/galaxy-exsitu.
References
Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51–113 (2015).
Kormendy, J., Fisher, D. B., Cornell, M. E. & Bender, R. Structure and formation of elliptical and spheroidal galaxies. Astrophys. J. Suppl. Ser. 182, 216–309 (2009).
Patton, D. R., Ellison, S. L., Simard, L., McConnachie, A. W. & Mendel, J. T. Galaxy pairs in the Sloan Digital Sky Survey. III. Evidence of induced star formation from optical colours. Mon. Not. R. Astron. Soc. 412, 591–606 (2011).
Ellison, S. L., Patton, D. R., Simard, L. & McConnachie, A. W. Galaxy pairs in the Sloan Digital Sky Survey. I. Star formation, active galactic nucleus fraction, and the mass–metallicity relation. Astron. J. 135, 1877–1899 (2008).
Bell, E. F. et al. Dry mergers in GEMS: the dynamical evolution of massive early-type galaxies. Astrophys. J. 640, 241–251 (2006).
Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).
Barton, E. J., Geller, M. J. & Kenyon, S. J. Tidally triggered star formation in close pairs of galaxies. Astrophys. J. 530, 660–679 (2000).
Lin, L. et al. The DEEP2 galaxy redshift survey: evolution of close galaxy pairs and major-merger rates up to z ~ 1.2. Astrophys. J. Lett. 617, L9–L12 (2004).
Conselice, C. J., Bershady, M. A., Dickinson, M. & Papovich, C. A direct measurement of major galaxy mergers at z ≲ 3. Astron. J. 126, 1183–1207 (2003).
Lotz, J. M., Primack, J. & Madau, P. A new nonparametric approach to galaxy morphological classification. Astron. J. 128, 163–182 (2004).
Harmsen, B. et al. Diverse stellar haloes in nearby Milky Way mass disc galaxies. Mon. Not. R. Astron. Soc. 466, 1491–1512 (2017).
Smercina, A., Bell, E. F., Samuel, J. & D’Souza, R. Relating the diverse merger histories and satellite populations of nearby galaxies. Astrophys. J. 930, 69 (2022).
Boecker, A. et al. A galaxy’s accretion history unveiled from its integrated spectrum. Mon. Not. R. Astron. Soc. 491, 823–837 (2020).
van Dokkum, P. G. et al. The growth of massive galaxies since z = 2. Astrophys. J. 709, 1018–1041 (2010).
Oyarzún, G. A. et al. Signatures of stellar accretion in MaNGA early-type galaxies. Astrophys. J. 880, 111 (2019).
Davison, T. A. et al. Mapping accreted stars in early-type galaxies across the mass–size plane. Mon. Not. R. Astron. Soc. 507, 3089–3112 (2021).
Cannarozzo, C. et al. The contribution of in situ and ex situ star formation in early-type galaxies: MaNGA versus IllustrisTNG. Mon. Not. R. Astron. Soc. 520, 5651–5670 (2023).
Huang, S., Ho, L. C., Peng, C. Y., Li, Z.-Y. & Barth, A. J. Fossil evidence for the two-phase formation of elliptical galaxies. Astrophys. J. Lett. 768, L28 (2013).
Huang, S., Ho, L. C., Peng, C. Y., Li, Z.-Y. & Barth, A. J. The Carnegie–Irvine galaxy survey. III. The three-component structure of nearby elliptical galaxies. Astrophys. J. 766, 47 (2013).
Huang, S. et al. Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3 < z < 0.5 using Hyper Suprime-Cam. Mon. Not. R. Astron. Soc. 475, 3348–3368 (2018).
Walmsley, M., Ferguson, A. M. N., Mann, R. G. & Lintott, C. J. Identification of low surface brightness tidal features in galaxies using convolutional neural networks. Mon. Not. R. Astron. Soc. 483, 2968–2982 (2019).
Bickley, R. W. et al. Convolutional neural network identification of galaxy post-mergers in UNIONS using IllustrisTNG. Mon. Not. R. Astron. Soc. 504, 372–392 (2021).
Ćiprijanović, A., Snyder, G. F., Nord, B. & Peek, J. E. G. DeepMerge: classifying high-redshift merging galaxies with deep neural networks. Astron. Comput. 32, 100390 (2020).
Eisert, L. et al. ERGO-ML: comparing IllustrisTNG and HSC galaxy images via contrastive learning. Mon. Not. R. Astron. Soc. 528, 7411–7439 (2024).
Angeloudi, E. et al. ERGO-ML: towards a robust machine learning model for inferring the fraction of accreted stars in galaxies from integral-field spectroscopic maps. Mon. Not. R. Astron. Soc. 523, 5408–5429 (2023).
Bundy, K. et al. Overview of the SDSS-IV MaNGA survey: mapping nearby galaxies at Apache Point Observatory. Astrophys. J. 798, 7 (2015).
Sarmiento, R. et al. MaNGIA: 10,000 mock galaxies for stellar population analysis. Astron. Astrophys. 673, A23 (2023).
Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H. & Burkert, A. The two phases of galaxy formation. Astrophys. J. 725, 2312–2323 (2010).
Cappellari, M. Structure and kinematics of early-type galaxies from integral field spectroscopy. Annu. Rev. Astron. Astrophys. 54, 597–665 (2016).
Greene, J. E. et al. The MASSIVE survey. II. Stellar population trends out to large radius in massive early-type galaxies. Astrophys. J. 807, 11 (2015).
Oyarzún, G. A. et al. SDSS-IV MaNGA: how the stellar populations of passive central galaxies depend on stellar and halo mass. Astrophys. J. 933, 88 (2022).
Scholz-Díaz, L., Martín-Navarro, I., Falcón-Barroso, J., Lyubenova, M. & van de Ven, G. Baryonic properties of nearby galaxies across the stellar-to-total dynamical mass relation. Nat. Astron. 8, 648–656 (2024).
Tinker, J. L. A self-calibrating halo-based group finder: application to SDSS. Astrophys. J. 923, 154 (2021).
Wake, D. A. et al. The SDSS-IV MaNGA sample: design, optimization, and usage considerations. Astron. J. 154, 86 (2017).
Rodriguez-Gomez, V. et al. The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars. Mon. Not. R. Astron. Soc. 458, 2371–2390 (2016).
Huško, F., Lacey, C. G. & Baugh, C. M. The buildup of galaxies and their spheroids: the contributions of mergers, disc instabilities, and star formation. Mon. Not. R. Astron. Soc. 518, 5323–5339 (2023).
Bell, E. F. et al. The accretion origin of the Milky Way’s stellar halo. Astrophys. J. 680, 295–311 (2008).
Helmi, A. Streams, substructures, and the early history of the Milky Way. Annu. Rev. Astron. Astrophys. 58, 205–256 (2020).
McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).
Kruijssen, J. M. D., Pfeffer, J. L., Reina-Campos, M., Crain, R. A. & Bastian, N. The formation and assembly history of the Milky Way revealed by its globular cluster population. Mon. Not. R. Astron. Soc. 486, 3180–3202 (2019).
Conselice, C. J., Mundy, C. J., Ferreira, L. & Duncan, K. A direct measurement of galaxy major and minor merger rates and stellar mass accretion histories at z < 3 using galaxy pairs in the REFINE survey. Astrophys. J. 940, 168 (2022).
Mundy, C. J. et al. A consistent measure of the merger histories of massive galaxies using close-pair statistics. I. Major mergers at z < 3.5. Mon. Not. R. Astron. Soc. 470, 3507–3531 (2017).
Zhu, L. et al. The Fornax3D project: discovery of ancient massive merger events in the Fornax cluster galaxies NGC 1380 and NGC 1427. Astron. Astrophys. 664, A115 (2022).
Lackner, C. N., Cen, R., Ostriker, J. P. & Joung, M. R. Building galaxies by accretion and in situ star formation. Mon. Not. R. Astron. Soc. 425, 641–656 (2012).
Davison, T. A., Norris, M. A., Pfeffer, J. L., Davies, J. J. & Crain, R. A. An EAGLE’s view of ex situ galaxy growth. Mon. Not. R. Astron. Soc. 497, 81–93 (2020).
Tacchella, S. et al. Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Mon. Not. R. Astron. Soc. 487, 5416–5440 (2019).
Lee, J. & Yi, S. K. On the assembly history of stellar components in massive galaxies. Astrophys. J. 766, 38 (2013).
De Lucia, G., Springel, V., White, S. D. M., Croton, D. & Kauffmann, G. The formation history of elliptical galaxies. Mon. Not. R. Astron. Soc. 366, 499–509 (2006).
Rodriguez-Gomez, V. et al. The role of mergers and halo spin in shaping galaxy morphology. Mon. Not. R. Astron. Soc. 467, 3083–3098 (2017).
Rowlands, K. et al. Galaxy And Mass Assembly (GAMA): the mechanisms for quiescent galaxy formation at z < 1. Mon. Not. R. Astron. Soc. 473, 1168–1185 (2018).
Belli, S., Newman, A. B. & Ellis, R. S. MOSFIRE spectroscopy of quiescent galaxies at 1.5 < z < 2.5. II. Star formation histories and galaxy quenching. Astrophys. J. 874, 17 (2019).
Naab, T. et al. The ATLAS3D project. XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators. Mon. Not. R. Astron. Soc. 444, 3357–3387 (2014).
Yoon, Y., Park, C., Chung, H. & Lane, R. R. Evidence for impact of galaxy mergers on stellar kinematics of early-type galaxies. Astrophys. J. 925, 168 (2022).
Lin, L. et al. Where do wet, dry, and mixed galaxy mergers occur? A study of the environments of close galaxy pairs in the DEEP2 galaxy redshift survey. Astrophys. J. 718, 1158–1170 (2010).
Jian, H.-Y., Lin, L. & Chiueh, T. Environmental dependence of the galaxy merger rate in a ΛCDM universe. Astrophys. J. 754, 26 (2012).
Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).
Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).
Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).
Sánchez, S. F. et al. SDSS-IV MaNGA: pyPipe3D analysis release for 10,000 galaxies. Astrophys. J. Suppl. Ser. 262, 36 (2022).
Lacerda, E. A. D. et al. pyFIT3D and pyPipe3D – the new version of the integral field spectroscopy data analysis pipeline. New Astron. 97, 101895 (2022).
Liu, H., HaoChen, J. Z., Gaidon, A. & Ma, T. Self-supervised learning is more robust to dataset imbalance. Preprint at arxiv.org/Uabs/2110.05025 (2021).
Grill, J.-B. et al. Bootstrap your own latent: a new approach to self-supervised learning. In Proc. 34th Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 21271–21284 (Curran Associates, 2020).
Daddi, E. et al. Passively evolving early-type galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble ultra deep field. Astrophys. J. 626, 680–697 (2005).
van Dokkum, P. G. et al. Confirmation of the remarkable compactness of massive quiescent galaxies at z ~ 2.3: early-type galaxies did not form in a simple monolithic collapse. Astrophys. J. Lett. 677, L5 (2008).
van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size–mass distribution since z = 3. Astrophys. J. 788, 28 (2014).
Rodriguez-Gomez, V. et al. The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations. Mon. Not. R. Astron. Soc. 483, 4140–4159 (2019).
Wilkinson, D. M., Maraston, C., Goddard, D., Thomas, D. & Parikh, T. FIREFLY (Fitting Iteratively for Likelihood Analysis): a full spectral fitting code. Mon. Not. R. Astron. Soc. 472, 4297–4326 (2017).
Westfall, K. B. et al. The data analysis pipeline for the SDSS-IV MaNGA IFU galaxy survey: overview. Astron. J. 158, 231 (2019).
Nanni, L. et al. iMaNGA: mock MaNGA galaxies based on IllustrisTNG and MaStar SSPs. II. The catalogue. Mon. Not. R. Astron. Soc. 522, 5479–5499 (2023).
Domínguez Sánchez, H., Margalef, B., Bernardi, M. & Huertas-Company, M. SDSS-IV DR17: final release of MaNGA PyMorph photometric and deep-learning morphological catalogues. Mon. Not. R. Astron. Soc. 509, 4024–4036 (2022).
Sánchez, S. F. et al. Pipe3D, a pipeline to analyze integral field spectroscopy data. II. Analysis sequence and CALIFA dataproducts. Rev. Mexicana Astron. Astrofis. 52, 171–220 (2016).
Graham, M. T. et al. SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties. Mon. Not. R. Astron. Soc. 477, 4711–4737 (2018).
Acknowledgements
E.A. thanks C. Gallart, S. Faber, K. Bundy and L. Scholz-Díaz for their insightful discussions. J.F.-B. and E.A. acknowledge support from the Spanish Ministry of Science, Innovation and Universities (Grant Nos. PID2019-107427GB-C32 and PID2022-140869NB-I00) and through the project TRACES from the Instituto de Astrofísica de Canarias, which is partially supported through the state budget and the regional budget of the Consejería de Economía, Industria, Comercio y Conocimiento of the Canary Islands Autonomous Community. M.H.-C., R.S. and E.A. acknowledge financial support from the State Research Agency of the Spanish Ministry of Science and Innovation under the grants ‘Galaxy Evolution with Artificial Intelligence’ with reference PGC2018-100852-A-I00 and ‘BASALT’ with reference PID2021-126838NB-I00. This research made use of computing time available on the high-performance computing systems at the Instituto de Astrofísica de Canarias. We thankfully acknowledges the technical expertise and assistance provided by the Spanish Supercomputing Network (Red Española de Supercomputación), as well as the computer resources used: the Deimos-Diva Supercomputer and the LaPalma Supercomputer, at the Instituto de Astrofísica de Canarias.
Author information
Authors and Affiliations
Contributions
E.A. performed the data analysis and wrote the paper. E.A., M.H.-C. and J.F.-B. conceived and designed the project. A.B. provided substantial comments on the overall design of the project and the interpretation of the results. R.S. substantially assisted with the creation of the mock dataset from the EAGLE cosmological simulation. L.E. and A.P. commented on the paper and helped improve its overall focus. All authors interpreted and discussed the results and commented on the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Angeloudi, E., Falcón-Barroso, J., Huertas-Company, M. et al. Constraints on the in situ and ex situ stellar masses in nearby galaxies obtained with artificial intelligence. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02327-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-024-02327-3