Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Guidelines for radiation-safe human activities on the Moon

Abstract

The effects of harmful space radiation are one of the biggest concerns for future lunar explorers. Here, we use a data-validated model, the Radiation Environment and Dose on the Moon (REDMoon), to create mission schedules for different scenarios of lunar bases limited by radiation constraints. We consider habitats at the surface and subsurface of the Moon with different regolith and aluminium shielding using the last two solar cycles (2000–2022) as a baseline. The exposure due to background galactic cosmic rays (GCRs) is about 66% on the lunar surface than in interplanetary space and can even slightly increase beneath the surface before it decreases to a negligible value at about 3 m depth. If the shielding is insufficient, the surface dose during a single solar particle event could sometimes exceed annual GCR exposure, leading to an immediate replacement of the crew. Our work provides radiation-mitigation considerations for future human lunar bases and exploration cost estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dependence of the effective dose rate on the lunar soil depth for spacesuits and bases with different Al shielding thicknesses.
Fig. 2: Radiation restrictions for lunar missions.
Fig. 3: Radiation-safe environments.
Fig. 4: Measured and predicted dose rates.
Fig. 5: Total dose rate and its uncertainty.

Similar content being viewed by others

Data availability

The datasets generated during this study are available via Zenodo at https://doi.org/10.5281/zenodo.7504128 (ref. 23).

Code availability

For this work, we used the open-source Geant4 code available at https://geant4.org.

References

  1. Cucinotta, F. et al. Space radiation and cataracts in astronauts. Radiat. Res. 156, 460–466 (2001).

    Article  ADS  Google Scholar 

  2. Sridharan, D. M. et al. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation. Radiat. Res. 183, 1–26 (2015).

    Article  ADS  Google Scholar 

  3. Cucinotta, F. A. Review of NASA approach to space radiation risk assessments for mars exploration. Health Phys. 108, 131–142 (2015).

    Article  Google Scholar 

  4. Jandial, R., Hoshide, R., Waters, J. D. & Limoli, C. L. Space-brain: the negative effects of space exposure on the central nervous system. Surg. Neurol. Int. https://doi.org/10.4103/sni.sni_250_17 (2018).

  5. Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).

    Article  Google Scholar 

  6. Wu, H., Huff, J. L., Casey, R., Kim, M.-H. & Cucinotta, F. A. Risk of Acute Radiation Syndromes due to Solar Particle Events Report No. SP-2009-3405 (NASA, 2009).

  7. Simpson, J. Elemental and isotopic composition of the galactic cosmic rays. Annu. Rev. Nucl. Part. Sci. 33, 323–382 (1983).

    Article  ADS  Google Scholar 

  8. Gleeson, L. & Axford, W. Solar modulation of galactic cosmic rays. Astrophys. J. 154, 1011 (1968).

    Article  ADS  Google Scholar 

  9. Lim, S. et al. Investigating the microwave heating behaviour of lunar soil simulant JSC-1A at different input powers. Sci. Rep. 11, 2133 (2021).

    Article  ADS  Google Scholar 

  10. De Angelis, G. et al. Lunar lava tube radiation safety analysis. J. Radiat. Res. 43 (Suppl.), 41–45 (2002).

  11. Dobynde, M. I., Shprits, Y. Y., Drozdov, A. Y., Hoffman, J. & Li, J. Beating 1 sievert: optimal radiation shielding of astronauts on a mission to Mars. Space Weather 19, e2021SW002749 (2021).

    Article  ADS  Google Scholar 

  12. ICRP. The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann. ICRP 37, 1–332 (2007).

    Google Scholar 

  13. Schwadron, N. A. et al. Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration? Space Weather 12, 622–632 (2014).

    Article  ADS  Google Scholar 

  14. Slaba, T. C. et al. Optimal shielding thickness for galactic cosmic ray environments. Life Sci. Space Res. 12, 1–15 (2017).

    Article  ADS  Google Scholar 

  15. Horst, F. et al. Thick shielding against galactic cosmic radiation: a Monte Carlo study with focus on the role of secondary neutrons. Life Sci. Space Res. 33, 58–68 (2022).

    Article  ADS  Google Scholar 

  16. Dobynde, M. I. & Guo, J. Radiation environment at the surface and subsurface of the Moon: model development and validation. J. Geophys. Res.: Planets https://doi.org/10.1029/2021JE006930 (2021).

  17. Zeitlin, C. et al. Comparisons of high-linear energy transfer spectra on the ISS and in deep space. Space Weather 17, 396–418 (2019).

    Article  ADS  Google Scholar 

  18. Richard, S. & Williams, M. NASA Spaceflight Human-System Standard Vol. 1, Revision c: Crew Health NASA-STD-3001 VOL 1 (NASA, 2023); https://standards.nasa.gov/standard/NASA/NASA-STD-3001-VOL-1

  19. Limitation of Astronaut’s Exposure During Near-Earth Space Flights, Methodical Recommendations Report MR-17.01-2001 (in Russian) (Roscosmos, 2021).

  20. Badavi, F. F., Nealy, J. E. & Wilson, J. W. The low Earth orbit validation of a dynamic and anisotropic trapped radiation model through ISS measurements. Adv. Space Res. 48, 1441–1458 (2011).

    Article  ADS  Google Scholar 

  21. Ojovan, M. I., Lee, W. E. & Kalmykov, S. N. in An Introduction to Nuclear Waste Immobilisation 3rd edn (eds Ojovan, M. I. et al.) Ch. 5 (Elsevier, 2019); https://www.sciencedirect.com/science/article/pii/B9780081027028000054

  22. Märki, A. Radiation analysis for Moon and Mars missions. Int. J. Astrophys. Space Sci. 8, 16–26 (2020).

  23. Dobynde, M. & Guo, J. Dataset for ‘Guidelines for radiation-safe human activities on the Moon’. Zenodo https://doi.org/10.5281/zenodo.7504128 (2024).

  24. Slaba, T. C., Blattnig, S. R. & Clowdsley, M. S. Variation in lunar neutron dose estimates. Radiat. Res. 176, 827–841 (2011).

    Article  ADS  Google Scholar 

  25. Shavers, M. R. et al. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the service module crew quarters. Adv. Space Res. 34, 1333–1337 (2004).

    Article  ADS  Google Scholar 

  26. Cucinotta, F. A., Kim, M.-H. Y., Chappell, L. J. & Huff, J. L. How safe is safe enough? Radiation risk for a human mission to Mars. PLoS ONE 8, 74988 (2013).

    Article  ADS  Google Scholar 

  27. Röstel, L., Guo, J., Banjac, S., Wimmer-Schweingruber, R. F. & Heber, B. Subsurface radiation environment of Mars and its implication for shielding protection of future habitats. J. Geophys. Res.: Planets 125, 2019–006246 (2020).

    Article  Google Scholar 

  28. McKinney, G. W. et al. MCNPX benchmark for cosmic ray interactions with the Moon. J. Geophys. Res.: Planets https://doi.org/10.1029/2005JE002551 (2006).

  29. Adamczyk, A. et al. Full mission astronaut radiation exposure assessments for long duration lunar surface missions. In Proc. IEEE Conference on Aerospace (IEEE, 2011).

  30. Whitman, K. et al. Review of solar energetic particle models. Adv. Space Res. 72, 5161–5242 (2022).

  31. Nymmik, R. A., Panasyuk, M. I. & Suslov, A. A. Galactic cosmic ray flux simulation and prediction. Adv. Space Res. 17, 19–30 (1996).

  32. Wang, Y., Guo, J., Li, G., Roussos, E. & Zhao, J. Variation in cosmic-ray intensity lags sunspot number: implications of late opening of solar magnetic field. Astrophys. J. 928, 157 (2022).

    Article  ADS  Google Scholar 

  33. Kuznetsov, N. V., Popova, H. & Panasyuk, M. I. Empirical model of long-time variations of galactic cosmic ray particle fluxes. J. Geophys. Res.: Space Physics 122, 1463–1472 (2017).

    Article  ADS  Google Scholar 

  34. Guo, J. et al. A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars. Astrophys. J. 155, 49 (2018).

    ADS  Google Scholar 

  35. Agostinelli, S. et al. Geant4: a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250–303 (2003).

    Article  ADS  Google Scholar 

  36. Slaba, T. C. & Whitman, K. The Badhwar–O’Neill 2020 GCR model. Space Weather 18, e2020SW002456 (2020).

    Article  ADS  Google Scholar 

  37. O’Neill, P., Golge, S. & Slaba, T. Badhwar–O’Neill 2014 Galactic Cosmic Ray Flux Model Report NASA/TP 218569 (NASA, 2015); https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150003026.pdf

  38. Band, D. et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281 (1993).

    Article  ADS  Google Scholar 

  39. Raukunen, O. et al. Two solar proton fluence models based on ground level enhancement observations. J. Space Weather Space Clim. 8, A04 (2018).

    Article  Google Scholar 

  40. Guo, J. et al. The first ground level enhancement seen on three planetary surfaces: Earth, Moon and Mars. Geophys. Res. Lett. 50, 2023–103069 (2023).

    Article  Google Scholar 

  41. Interaction of Ionizing Radiation with Matter. Chemical Composition of the Tissue-Equivalent Matter Report GOST-18622-79 (in Russian) (GOST, 2003).

  42. ICRP. Recommendations of the International Commission on Radiological Protection. Ann. ICRP 21, 1–201 (1991).

  43. Matthiä, D., Berger, T. & Reitz, G. Organ shielding and doses in low-Earth orbit calculated for spherical and anthropomorphic phantoms. Adv. Space Res. 52, 528–535 (2013).

    Article  ADS  Google Scholar 

  44. Adams, J. H., Bhattacharya, M., Lin, Z. W., Pendleton, G. & Watts, J. W. The ionizing radiation environment on the Moon. Adv. Space Res. 40, 338–341 (2007).

    Article  ADS  Google Scholar 

  45. Naito, M. et al. Radiation dose and its protection in the Moon from galactic cosmic rays and solar energetic particles: at the lunar surface and in a lava tube. J. Radiol. Prot. 40, 947–961 (2020).

    Article  Google Scholar 

  46. Zhang, S. et al. First measurements of the radiation dose on the lunar surface. Sci. Adv. 6, eaaz1334 (2020).

  47. Xu, Z. et al. Primary and albedo protons detected by the Lunar Lander Neutron and Dosimetry experiment on the lunar farside. Front. Astron. Space Sci. https://doi.org/10.3389/fspas.2022.974946 (2022).

  48. Spence, H. E. et al. Relative contributions of galactic cosmic rays and lunar proton ‘albedo’ to dose and dose rates near the Moon. Space Weather 11, 643–650 (2013).

    Article  ADS  Google Scholar 

  49. Banjac, S. et al. Galactic cosmic ray induced absorbed dose rate in deep space—Accounting for detector size, shape, material, as well as for the solar modulation. J. Space Weather Space Clim. 9, A14 (2019).

  50. Parker, E. N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9–49 (1965).

    Article  ADS  Google Scholar 

  51. Mesick, K. E., Feldman, W. C., Coupland, D. D. S. & Stonehill, L. C. Benchmarking Geant4 for simulating galactic cosmic ray interactions within planetary bodies. Earth Space Sci. 5, 324–338 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Research Program and Strategic Priority Programme of the Chinese Academy of Sciences (Grant No. ZDBS-SSW-TLC00103 and XDB41000000) and the National Natural Science Foundation of China (Grant Nos. 42074222, 42188101 and 42130204). This work used computational and storage services associated with the Hoffman2 Shared Cluster provided by the Institute for Digital Research and Education’s Research Technology Group at the University of California, Los Angeles.

Author information

Authors and Affiliations

Authors

Contributions

M.D. developed the REDMoon model, performed all the calculations, made all the illustrations, wrote the text and communicated with the reviewers. J.G. conceived the idea for the project, secured the funding, contributed equally to the text and replies to reviewers, discussed the results and how to present the results.

Corresponding authors

Correspondence to Mikhail Dobynde or Jingnan Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Steve Blattnig, Masayuki Naito, Lim Sungwoo and Kathryn Whitman for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobynde, M., Guo, J. Guidelines for radiation-safe human activities on the Moon. Nat Astron 8, 991–999 (2024). https://doi.org/10.1038/s41550-024-02287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02287-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing