Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread CO2 and CO ices in the trans-Neptunian population revealed by JWST/DiSCo-TNOs

Abstract

Carbon dioxide (CO2) is one of the most abundant ices in the Solar System. It has been detected in giant planet atmospheres and on their moons, on and around comets, and even in regions of Mercury, the Moon and Mars. However, despite formation in the coldest regions of the protoplanetary disk, CO2 has not previously been detected throughout the trans-Neptunian objects (TNOs). Furthermore, carbon monoxide (CO) was detected to be present on the surface of only the largest TNOs. Out of 59 TNOs and centaurs observed by the James Webb Space Telescope (JWST) and the NIRSpec Integral Field Unit as part of the DiSCo-TNOs project (PID 2418), we report the widespread detection of CO2 ice in 95% of the sample and CO ice in 47% of the sample. CO is predominantly found in objects where the abundance of CO2 is higher. The abundance and characteristics of these ices suggest the prevalence of at least two types of TNO surfaces. The differences in compositions between these groups can be attributed to different formation regions in the protoplanetary disk, where the ability to accrete or maintain the CO2 ice played a major role in the subsequent evolution of TNO surfaces. Although the nature of the CO remains elusive, its correlation with an augmented abundance of CO2 suggests a potential production mechanism involving the irradiation of carbon-bearing ices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CO2 and CO signatures in the spectra of TNOs observed by DiSCo-JWST.
Fig. 2: CO2 and CO detections among TNOs.
Fig. 3: Distribution of CO2 fundamental band depth in relation to the visible slope and diameter.
Fig. 4: The CO2 absorption band centre position.
Fig. 5: CO2 reflectance models.

Similar content being viewed by others

Data availability

The JWST data used in this analysis are publicly available from the archive STScI MAST.

References

  1. Schaller, E. L. Volatile loss and retention on Kuiper belt objects. Astrophys. J. Lett. 659, L61–L64 (2007).

    Article  ADS  Google Scholar 

  2. Johnson, R. E., Oza, A., Young, L. A., Volkov, A. N. & Schmidt, C. Volatile loss and classification of Kuiper belt objects. Astrophys. J. 809, 43 (2015).

    Article  ADS  Google Scholar 

  3. Young, L. A., Braga-Ribas, F. & Johnson, R. E. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 127–151 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816490-7.00006-0

  4. Fray, N. & Schmitt, B. Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57, 2053–2080 (2009).

    Article  ADS  Google Scholar 

  5. Strazzulla, G. & Johnson, R. E. in Comets in the Post-Halley Era Vol. 167 (eds Newburn, R. L. et al.) 243 (Springer, 1991); https://doi.org/10.1007/978-94-011-3378-4_11

  6. Brunetto, R., Barucci, M. A., Dotto, E. & Strazzulla, G. Ion irradiation of frozen methanol, methane, and benzene: linking to the colors of centaurs and trans-Neptunian objects. Astrophys. J. 644, 646–650 (2006).

    Article  ADS  Google Scholar 

  7. de Bergh, C., Schmitt, B., Moroz, L. V., Quirico, E. & Cruikshank, D. P. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 483–506 (Univ. of Arizona Press, 2008).

  8. Quirico, E. et al. On a radiolytic origin of red organics at the surface of the Arrokoth trans-Neptunian object. Icarus 394, 115396 (2023).

    Article  Google Scholar 

  9. Barkume, K. M., Brown, M. E. & Schaller, E. L. Near-infrared spectra of centaurs and Kuiper belt objects. Astron. J. 135, 55–67 (2008).

    Article  ADS  Google Scholar 

  10. Guilbert, A. et al. ESO-large program on TNOs: near-infrared spectroscopy with SINFONI. Icarus 201, 272–283 (2009).

    Article  ADS  Google Scholar 

  11. Barucci, M. A. et al. New insights on ices in centaur and transneptunian populations. Icarus 214, 297–307 (2011).

    Article  ADS  Google Scholar 

  12. Cruikshank, D. P. et al. The composition of centaur 5145 Pholus. Icarus 135, 389–407 (1998).

    Article  ADS  Google Scholar 

  13. Barucci, M. A., Merlin, F., Dotto, E., Doressoundiram, A. & de Bergh, C. TNO surface ices. Observations of the TNO 55638 (2002 VE95) and analysis of the population’s spectral properties. Astron. Astrophys. 455, 725–730 (2006).

    Article  ADS  Google Scholar 

  14. Stern, S. A. et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object. Science 364, aaw9771 (2019).

    Article  ADS  Google Scholar 

  15. Cook, J. C., Desch, S. J., Roush, T. L., Trujillo, C. A. & Geballe, T. R. Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper belt objects. Astrophys. J. 663, 1406–1419 (2007).

    Article  ADS  Google Scholar 

  16. Cook, J. C. et al. Composition of Pluto’s small satellites: analysis of New Horizons spectral images. Icarus 315, 30–45 (2018).

    Article  ADS  Google Scholar 

  17. Clark, R. N., Carlson, R., Grundy, W. & Noll, K. Observed Ices in the Solar System 3–46 (Springer, 2013); https://doi.org/10.1007/978-1-4614-3076-6_1

  18. Rubanenko, L., Mazarico, E., Neumann, G. A. & Paige, D. A. Ice in micro cold traps on Mercury: implications for age and origin. J. Geophys. Res.: Planets 123, 2178–2191 (2018).

    Article  ADS  Google Scholar 

  19. Schorghofer, N., Williams, J.-P., Martinez-Camacho, J., Paige, D. A. & Siegler, M. A. Carbon dioxide cold traps on the Moon. Geophys. Res. Lett. 48, e95533 (2021).

    Article  ADS  Google Scholar 

  20. Phillips, R. J. et al. Massive CO2 ice deposits sequestered in the South Polar layered deposits of Mars. Science 332, 838 (2011).

    Article  ADS  Google Scholar 

  21. McCord, T. B. et al. Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. 103, 8603–8626 (1998).

    Article  ADS  Google Scholar 

  22. Grundy, W. M. et al. Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus 184, 543–555 (2006).

    Article  ADS  Google Scholar 

  23. Cruikshank, D. P. et al. Carbon dioxide on the satellites of Saturn: results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus 206, 561–572 (2010).

    Article  ADS  Google Scholar 

  24. Pinilla-Alonso, N., Roush, T. L., Marzo, G. A., Cruikshank, D. P. & Dalle Ore, C. M. Iapetus surface variability revealed from statistical clustering of a VIMS mosaic: the distribution of CO2. Icarus 215, 75–82 (2011).

    Article  ADS  Google Scholar 

  25. Cartwright, R. J., Emery, J. P., Rivkin, A. S., Trilling, D. E. & Pinilla-Alonso, N. Distribution of CO2 ice on the large moons of Uranus and evidence for compositional stratification of their near-surfaces. Icarus 257, 428–456 (2015).

    Article  ADS  Google Scholar 

  26. Harrington Pinto, O., Womack, M., Fernandez, Y. & Bauer, J. A survey of CO, CO2, and H2O in comets and centaurs. Planet. Sci. J. 3, 247 (2022).

    Article  Google Scholar 

  27. Cruikshank, D. P. et al. Ices on the surface of Triton. Science 261, 742–745 (1993).

    Article  ADS  Google Scholar 

  28. Grundy, W. M. & Young, L. A. Near-infrared spectral monitoring of Triton with IRTF/SpeX I: establishing a baseline for rotational variability. Icarus 172, 455–465 (2004).

    Article  ADS  Google Scholar 

  29. Agnor, C. B. & Hamilton, D. P. Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441, 192–194 (2006).

    Article  ADS  Google Scholar 

  30. Pinilla-Alonso, N. et al. A DiSCo-TNOs portrait of the primordial Solar System. Nat. Astron.

  31. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astron. Astrophys. 661, A82 (2022).

    Article  Google Scholar 

  32. Lisse, C. M. et al. A predicted dearth of majority hypervolatile ices in Oort cloud comets. Planet. Sci. J. 3, 112 (2022).

    Article  Google Scholar 

  33. Licandro, J. et al. Surface composition of centaurs: insights into the thermal evolution of TNOs. Preprint at www.researchsquare.com/article/rs-3606680/v1 (2023).

  34. Gkotsinas, A., Guilbert-Lepoutre, A., Raymond, S. N. & Nesvorny, D. Thermal processing of Jupiter-family comets during their chaotic orbital evolution. Astrophys. J. 928, 43 (2022).

    Article  ADS  Google Scholar 

  35. Brown, M. E. The compositions of Kuiper belt objects. Annu. Rev. Earth Planet. Sci. 40, 467–494 (2012).

    Article  ADS  Google Scholar 

  36. Brown, M. E. & Fraser, W. C. The state of CO and CO2 ices in the Kuiper belt as seen by JWST. Planet. Sci. J. 4, 130 (2023).

    Article  Google Scholar 

  37. Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, 2012); https://doi.org/10.1017/CBO9781139025683

  38. Choy, T. C. Effective Medium Theory: Principles and Applications (Oxford Univ. Press, 2015); https://doi.org/10.1093/acprof:oso/9780198705093.001.0001

  39. Brown, M. E., Schaller, E. L. & Fraser, W. C. A hypothesis for the color diversity of the Kuiper belt. Astrophys. J. Lett. 739, L60 (2011).

    Article  ADS  Google Scholar 

  40. Peixinho, N., Delsanti, A., Guilbert-Lepoutre, A., Gafeira, R. & Lacerda, P. The bimodal colors of centaurs and small Kuiper belt objects. Astron. Astrophys. 546, A86 (2012).

    Article  ADS  Google Scholar 

  41. Peixinho, N., Delsanti, A. & Doressoundiram, A. Reanalyzing the visible colors of centaurs and KBOs: what is there and what we might be missing. Astron. Astrophys. 577, A35 (2015).

    Article  ADS  Google Scholar 

  42. Tegler, S. C., Romanishin, W., Consolmagno, G. J. & J, S. Two color populations of Kuiper belt and centaur objects and the smaller orbital inclinations of red centaur objects. Astron. J. 152, 210 (2016).

    Article  ADS  Google Scholar 

  43. Marsset, M. et al. Col-OSSOS: color and inclination are correlated throughout the Kuiper belt. Astron. J. 157, 94 (2019).

    Article  ADS  Google Scholar 

  44. Fraser, W. C. et al. Col-OSSOS: the two types of Kuiper belt surfaces. Planet. Sci. J. https://doi.org/10.3847/PSJ/acc844 (2022).

  45. Dodson-Robinson, S. E., Willacy, K., Bodenheimer, P., Turner, N. J. & Beichman, C. A. Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus 200, 672–693 (2009).

    Article  ADS  Google Scholar 

  46. Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012).

    Article  ADS  Google Scholar 

  47. Nesvorný, D. et al. OSSOS XX: the meaning of Kuiper belt colors. Astron. J. 160, 46 (2020).

    Article  ADS  Google Scholar 

  48. Strazzulla, G., Cooper, J. F., Christian, E. R. & Johnson, R. E. Ion irradiation of TNOs: from the fluxes measured in space to the laboratory experiments. C. R. Phys. 4, 791–801 (2003).

    Article  ADS  Google Scholar 

  49. Hénault, E. et al. Spectroscopic study of proton-irradiated water-methanol ice mixtures in support of TNOs’ and centaurs’ observations. In Proc. 44th COSPAR Scientific Assembly B1.2-0008-22 (2022).

  50. Grundy, W. M. et al. Surface compositions across Pluto and Charon. Science 351, aad9189 (2016).

    Article  ADS  Google Scholar 

  51. Ahrens, C., Meraviglia, H. & Bennett, C. A geoscientific review on CO and CO2 ices in the outer Solar System. Geosciences 12, 51 (2022).

    Article  ADS  Google Scholar 

  52. Grundy, W. M. et al. Measurement of D/H and 13C/12C ratios in methane ice on Eris and Makemake: evidence for internal activity. Icarus https://doi.org/10.1016/j.icarus.2023.115923 (2023).

  53. Birch, S. P. D. and Umurhan, O. M. Retention of CO ice and gas within 486958 Arrokoth. Icarus https://doi.org/10.1016/j.icarus.2024.116027 (2023).

  54. Brucato, J. R., Palumbo, M. E. & Strazzulla, G. Carbonic acid by ion implantation in water/carbon dioxide ice mixtures. Icarus 125, 135–144 (1997).

    Article  ADS  Google Scholar 

  55. Mejía, C. et al. Radiolysis and sputtering of carbon dioxide ice induced by swift Ti, Ni, and Xe ions. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater Atoms 365, 477–481 (2015).

  56. Bauer, J. M. et al. Centaurs and scattered disk objects in the thermal infrared: analysis of WISE/NEOWISE observations. Astrophys. J. 773, 22 (2013).

    Article  ADS  Google Scholar 

  57. Mommert, M. et al. TNOs are cool: a survey of the trans-Neptunian region. V. Physical characterization of 18 plutinos using Herschel-PACS observations. Astron. Astrophys. 541, A93 (2012).

    Article  Google Scholar 

  58. Santos-Sanz, P. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. IV. Size/albedo characterization of 15 scattered disk and detached objects observed with Herschel-PACS. Astron. Astrophys. 541, A92 (2012).

    Article  Google Scholar 

  59. Kiss, C. et al. A portrait of the extreme Solar System object 2012 DR30. Astron. Astrophys. 555, A3 (2013).

    Article  Google Scholar 

  60. Lellouch, E. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and centaurs from combined Herschel and Spitzer observations. Astron. Astrophys. 557, A60 (2013).

    Article  Google Scholar 

  61. Fornasier, S. et al. TNOs are cool: a survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm. Astron. Astrophys. 555, A15 (July 2013).

    Article  Google Scholar 

  62. Duffard, R. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. XI. A Herschel-PACS view of 16 centaurs. Astron. Astrophys. 564, A92 (2014).

    Article  Google Scholar 

  63. Vilenius, E. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations. Astron. Astrophys. 564, A35 (2014).

    Article  Google Scholar 

  64. Vilenius, E. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. XIV. Size/albedo characterization of the Haumea family observed with Herschel and Spitzer. Astron. Astrophys. 618, A136 (2018).

    Article  Google Scholar 

  65. Müller, T., Lellouch, E. & Fornasier, S. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 153–181 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816490-7.00007-2

  66. Gladman, B., Marsden, B. G. & Vanlaerhoven, C. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 43–57 (Univ. of Arizona Press, 2008).

  67. Bonett, D. G. & Wright, T. A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65, 23–28 (2000).

    Article  Google Scholar 

  68. Toplak, M., Read, S. T., Sandt, C. & Borondics, F. Quasar: easy machine learning for biospectroscopy. Cells 10, 2300 (2021).

    Article  Google Scholar 

  69. Rocha, W. R. M. et al. LIDA: the Leiden ice database for astrochemistry. Astron. Astrophys. 668, A63 (2022).

    Article  Google Scholar 

  70. Ehrenfreund, P., Boogert, A. C. A., Gerakines, P. A., Tielens, A. G. G. M. & van Dishoeck, E. F. Infrared spectroscopy of interstellar apolar ice analogs. Astron. Astrophys. 328, 649–669 (1997).

    ADS  Google Scholar 

  71. Van Broekhuizen, F. A., Groot, I. M. N., Fraser, H. J., van Dishoeck, E. F. & Schlemmer, S. Infrared spectroscopy of solid CO–CO2 mixtures and layers. Astron. Astrophys. 451, 723–731 (2006).

    Article  ADS  Google Scholar 

  72. Ehrenfreund, P. et al. Laboratory studies of thermally processed H2O–CH3OH–CO2 ice mixtures and their astrophysical implications. Astron. Astrophys. 350, 240–253 (1999).

    ADS  Google Scholar 

  73. Baratta, G. A. & Palumbo, M. E. Infrared optical constants of CO and CO2 thin icy films. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 15, 3076–3085 (1998).

    Article  ADS  Google Scholar 

  74. Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus 137, 235–246 (1999).

    Article  ADS  Google Scholar 

  75. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

  76. Koposov, S. et al. joshspeagle/dynesty: v.2.1.1. Zenodo https://doi.org/10.5281/zenodo.7832419 (2023).

  77. Skilling, J. Nested sampling. In Proc. Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (eds Fischer, R. et al.) 395–405 (AIP, 2004); https://doi.org/10.1063/1.1835238

  78. Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).

    Article  MathSciNet  Google Scholar 

  79. Executable Books Community. Jupyter book. Zenodo https://doi.org/10.5281/zenodo.4539666 (2020).

  80. De Pra, M., Carvano, J., Morate, D., Licandro, J. & Pinilla-Alonso, N. CANA: An open-source Python tool to study hydration in the Solar System. DPS meeting #50, id.315.02 (American Astronomical Society, 2018).

  81. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  Google Scholar 

  82. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  83. McKinney, W. et al. Data structures for statistical computing in Python. Scipy. In Proc. 9th Python in Science Conference (eds Bergstra, J. et al.) 51–56 (2010).

  84. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The DiSCo-TNO team would like to thank W. Eck and A. Henry of the Space Telescope Science Institute (STScI) for their help in preparing the observations for execution, B. Blacker for his almost invisible and always helpful presence from submission to publication at the STScI office, and the Time Allocation and Executive Committees of the JWST because their generous effort and good work are essential for the scientific success of this impressive telescope. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from MAST at STScI, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with programme 2418. Support for programme 2418 was provided by NASA through a grant from STScI. This work used several open-source Python programming language tools68,79,80,81,82,83,84. R.B. and E.H. acknowledge support from the French National Centre for Scientific Research (JWST mission). N.P. acknowledges funding from the Foundation for Science and Technology, Portugal (Research Grant Nos. UIDB/04434/2020 and UIDP/04434/2020).

Author information

Authors and Affiliations

Authors

Contributions

N.P.A., V.L., M.D.P., B.H. and J.S. designed the observational programme. N.P.A., R.B., M.D.P., J.L., Y.P., D.C., T.M., J.S. and J.E. conceived the science goals of DiSCo. B.H., N.P.A., A.C.d.S.F., M.D.P. and C.S. reduced and validated the data. M.D.P. performed the statistical analysis, ran the compositional models, and did the overall analysis and interpretation of the results. E.H. calculated the band parameters, did the comparison with laboratory data, and performed the overall analysis and interpretation of results. N.P.A., B.J.H., R.B. and A.C.d.S.F. contributed significantly to the reduction of the data, the assessment of the quality of the data and the discussion and interpretation of the results. J.C. participated in the development and discussion of the modelling technique. T.M. provided the size, albedo and temperature calculation. All authors reviewed the manuscript and contributed to the discussion of the results.

Corresponding author

Correspondence to Mário N. De Prá.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks David Jewitt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Prá, M.N., Hénault, E., Pinilla-Alonso, N. et al. Widespread CO2 and CO ices in the trans-Neptunian population revealed by JWST/DiSCo-TNOs. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02276-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing