Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mature quasar at cosmic dawn revealed by JWST rest-frame infrared spectroscopy

Abstract

The rapid assembly of the first supermassive black holes is an enduring mystery. Until now, it was not known whether quasar ‘feeding’ structures (the ‘hot torus’) could assemble as fast as the smaller-scale quasar structures. We present JWST/MRS (rest-frame infrared) spectroscopic observations of the quasar J1120+0641 at z = 7.0848 (well within the epoch of reionization). The hot torus dust was clearly detected at λrest 1.3 μm, with a black-body temperature of \({T}_{{{{\rm{dust}}}}}=\text{1,413.5}_{-7.4}^{+5.7}\) K, slightly elevated compared to similarly luminous quasars at lower redshifts. Importantly, the supermassive black hole mass of J1120+0641 based on the Hα line (accessible only with JWST), MBH = 1.52 ± 0.17 × 109M, is in good agreement with previous ground-based rest-frame ultraviolet Mg ii measurements. Comparing the ratios of the Hα, Paα and Paβ emission lines to predictions from a simple one-phase Cloudy model, we find that they are consistent with originating from a common broad-line region with physical parameters that are consistent with lower-redshift quasars. Together, this implies that J1120+0641’s accretion structures must have assembled very quickly, as they appear fully ‘mature’ less than 760 Myr after the Big Bang.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: JWST spectrum of the quasar.
Fig. 2: Hot torus dust temperature across redshift.
Fig. 3: Broad emission lines of the quasar.
Fig. 4: Measurements of the BH mass of J1120+0641 using different tracers.
Fig. 5: Ratio of the hydrogen emission lines.

Similar content being viewed by others

Data availability

All raw data used in this work can be retrieved from the public Mikulski Archive for Space Telescopes, filed under Program ID 1263 (P.I. Colina).

Code availability

The tools used in the data analysis are publicly available: the JWST MRS data-reduction pipeline81 (with improvements as described and referenced in Methods) and the fitting and visualization tool Sculptor89.

References

  1. Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

    Article  ADS  Google Scholar 

  2. Wang, F. et al. The discovery of a luminous broad absorption line quasar at a redshift of 7.02. Astrophys. J. Lett. 869, L9 (2018).

    Article  ADS  Google Scholar 

  3. Yang, J. et al. Exploring reionization-era quasars. IV. Discovery of six new z  6.5 quasars with DES, VHS, and unWISE photometry. Astron. J. 157, 236 (2019).

    Article  ADS  Google Scholar 

  4. Yang, J. et al. Pōniuā’ena: a luminous z = 7.5 quasar hosting a 1.5 billion solar mass black hole. Astrophys. J. Lett. 897, L14 (2020).

    Article  ADS  Google Scholar 

  5. Yang, J. et al. Probing early supermassive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3 < z ≤ 7.64. Astrophys. J. 923, 262 (2021).

  6. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).

    Article  ADS  Google Scholar 

  7. Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012).

    Article  ADS  Google Scholar 

  8. Pacucci, F., Natarajan, P., Volonteri, M., Cappelluti, N. & Urry, C. M. Conditions for optimal growth of black hole seeds. Astrophys. J. Lett. 850, L42 (2017).

    Article  ADS  Google Scholar 

  9. Inayoshi, K., Visbal, E. & Haiman, Z. The assembly of the first massive black holes. Annu. Rev. Astron. Astrophys. 58, 27–97 (2020).

    Article  ADS  Google Scholar 

  10. Shen, Y. et al. Gemini GNIRS near-infrared spectroscopy of 50 quasars at z  5.7. Astrophys. J. 873, 35 (2019).

    Article  ADS  Google Scholar 

  11. Farina, E. P. et al. The X-shooter/ALMA sample of quasars in the epoch of reionization. II. Black hole masses, Eddington ratios, and the formation of the first quasars. Astrophys. J. 941, 106 (2022).

    Article  ADS  Google Scholar 

  12. Lai, S. et al. Chemical abundance of z ~ 6 quasar broad-line regions in the XQR-30 sample. Mon. Not. R. Astron. Soc. 513, 1801–1819 (2022).

    Article  ADS  Google Scholar 

  13. De Rosa, G. et al. Evidence for non-evolving Fe ii/Mg ii ratios in rapidly accreting z ~ 6 QSOs. Astrophys. J. 739, 56 (2011).

    Article  ADS  Google Scholar 

  14. Mazzucchelli, C. et al. Physical properties of 15 quasars at z > 6.5. Astrophys. J. 849, 91 (2017).

    Article  ADS  Google Scholar 

  15. Meyer, R. A., Bosman, S. E. I. & Ellis, R. S. New constraints on quasar evolution: broad-line velocity shifts over 1.5 z 7.5. Mon. Not. R. Astron. Soc. 487, 3305–3323 (2019).

    Article  ADS  Google Scholar 

  16. Schindler, J.-T. et al. The X-SHOOTER/ALMA sample of quasars in the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. Astrophys. J. 905, 51 (2020).

    Article  ADS  Google Scholar 

  17. Bischetti, M. et al. Suppression of black-hole growth by strong outflows at redshifts 5.8–6.6. Nature 605, 244–247 (2022).

    Article  ADS  Google Scholar 

  18. Bischetti, M. et al. The fraction and kinematics of broad absorption line quasars across cosmic time. Astrophys. J. 952, 44 (2023).

    Article  ADS  Google Scholar 

  19. Vito, F. et al. High-redshift AGN in the Chandra deep fields: the obscured fraction and space density of the sub-L* population. Mon. Not. R. Astron. Soc. 473, 2378–2406 (2018).

    Article  ADS  Google Scholar 

  20. Trebitsch, M., Volonteri, M. & Dubois, Y. Black hole obscuration and duty-cycles mediated by AGN feedback in high-redshift galaxies. Mon. Not. R. Astron. Soc. 487, 819–831 (2019).

    Article  ADS  Google Scholar 

  21. Davies, F. B., Hennawi, J. F. & Eilers, A.-C. Evidence for low radiative efficiency or highly obscured growth of z > 7 quasars. Astrophys. J. Lett. 884, L19 (2019).

    Article  ADS  Google Scholar 

  22. Eilers, A.-C., Davies, F. B. & Hennawi, J. F. The opacity of the intergalactic medium measured along quasar sightlines at z ~ 6. Astrophys. J. 864, 53 (2018).

    Article  ADS  Google Scholar 

  23. Eilers, A.-C. et al. Detecting and characterizing young quasars. I. Systemic redshifts and proximity zone measurements. Astrophys. J. 900, 37 (2020).

    Article  ADS  Google Scholar 

  24. Eilers, A.-C., Hennawi, J. F., Davies, F. B. & Simcoe, R. A. Detecting and characterizing young quasars. II. Four quasars at z ~ 6 with lifetimes <104 yr. Astrophys. J. 917, 38 (2021).

    Article  ADS  Google Scholar 

  25. Rieke, G. H. et al. The mid-infrared instrument for the James Webb Space Telescope. I. Introduction. Publ. Astron. Soc. Pac. 127, 584 (2015).

    Article  ADS  Google Scholar 

  26. Wright, G. S. et al. The mid-infrared instrument for the James Webb Space Telescope. II. Design and build. Publ. Astron. Soc. Pac. 127, 595 (2015).

    Article  ADS  Google Scholar 

  27. Wright, G. S. et al. The mid-infrared instrument for JWST and its in-flight performance. Publ. Astron. Soc. Pac. 135, 048003 (2023).

    Article  ADS  Google Scholar 

  28. Bañados, E. et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 553, 473–476 (2018).

    Article  ADS  Google Scholar 

  29. Matsuoka, Y. et al. Discovery of the first low-luminosity quasar at z > 7. Astrophys. J. Lett. 872, L2 (2019).

    Article  ADS  Google Scholar 

  30. Bosman, S. All z > 5.7 quasars currently known. Zenodo https://doi.org/10.5281/zenodo.3634964 (2020).

  31. Guilloteau, S. et al. The IRAM interferometer on Plateau de Bure. Astron. Astrophys. 262, 624 (1992).

    ADS  Google Scholar 

  32. Wootten, A. & Thompson, A. R. The Atacama Large Millimeter/Submillimeter Array. Proc. IEEE. 97, 1463–1471 (2009).

    Article  ADS  Google Scholar 

  33. Venemans, B. P. et al. Detection of atomic carbon [C ii] 158 μm and dust emission from a z = 7.1 quasar host galaxy. Astrophys. J. Lett. 751, L25 (2012).

    Article  ADS  Google Scholar 

  34. Venemans, B. P. et al. Kiloparsec-scale ALMA imaging of [C ii] and dust continuum emission of 27 quasar host galaxies at z ~ 6. Astrophys. J. 904, 130 (2020).

    Article  ADS  Google Scholar 

  35. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Article  Google Scholar 

  36. Bosman, S. E. I. et al. A deep search for metals near redshift 7: the line of sight towards ULAS J1120+0641. Mon. Not. R. Astron. Soc. 470, 1919 (2017).

    Article  ADS  Google Scholar 

  37. Bosman, S. E. I. & Becker, G. D. Re-examining the case for neutral gas near the redshift 7 quasar ULAS J1120+0641. Mon. Not. R. Astron. Soc. 452, 1105–1111 (2015).

    Article  ADS  Google Scholar 

  38. Momjian, E., Carilli, C. L., Walter, F. & Venemans, B. The highest redshift quasar at z = 7.085: a radio-quiet source. Astron. J. 147, 6 (2014).

    Article  ADS  Google Scholar 

  39. Bañados, E. et al. Constraining the radio-loud fraction of quasars at z > 5.5. Astrophys. J. 804, 118 (2015).

    Article  ADS  Google Scholar 

  40. Page, M. J. et al. X-rays from the redshift 7.1 quasar ULAS J1120+0641. Mon. Not. R. Astron. Soc. 440, L91–L95 (2014).

    Article  ADS  Google Scholar 

  41. Moretti, A. et al. X-ray observation of ULAS J1120+0641, the most distant quasar at z = 7.08. Astron. Astrophys. 563, A46 (2014).

    Article  Google Scholar 

  42. Wang, F. et al. A significantly neutral intergalactic medium around the luminous z = 7 quasar J0252-0503. Astrophys. J. 896, 23 (2020).

    Article  ADS  Google Scholar 

  43. Gardner, J. P. et al. The James Webb Space Telescope mission. Publ. Astron. Soc. Pac. 135, 068001 (2023).

    Article  ADS  Google Scholar 

  44. Wells, M. et al. The mid-infrared instrument for the James Webb Space Telescope. VI. The medium resolution spectrometer. Publ. Astron. Soc. Pac. 127, 646 (2015).

    Article  ADS  Google Scholar 

  45. Argyriou, I. et al. JWST MIRI flight performance: the medium-resolution spectrometer. Astron. Astrophys. 675, A111 (2023).

    Article  Google Scholar 

  46. Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI medium resolution spectrometer. Astron. Astrophys. 656, A57 (2021).

    Article  Google Scholar 

  47. Jones, O. C. et al. Observations of the planetary nebula SMP LMC 058 with the JWST MIRI medium resolution spectrometer. Mon. Not. R. Astron. Soc. 523, 2519–2529 (2023).

    ADS  Google Scholar 

  48. Planck Collaboration. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  49. Barvainis, R. Hot dust and the near-infrared bump in the continuum spectra of quasars and active galactic nuclei. Astrophys. J. 320, 537 (1987).

    Article  ADS  Google Scholar 

  50. Kishimoto, M., Hönig, S. F., Beckert, T. & Weigelt, G. The innermost region of AGN tori: implications from the HST/NICMOS type 1 point sources and near-IR reverberation. Astron. Astrophys. 476, 713–721 (2007).

    Article  ADS  Google Scholar 

  51. Mor, R. & Netzer, H. Hot graphite dust and the infrared spectral energy distribution of active galactic nuclei. Mon. Not. R. Astron. Soc. 420, 526–541 (2012).

    Article  ADS  Google Scholar 

  52. Minezaki, T. et al. Inner size of a dust torus in the Seyfert 1 galaxy NGC 4151. Astrophys. J. Lett. 600, L35–L38 (2004).

    Article  ADS  Google Scholar 

  53. Suganuma, M. et al. Reverberation measurements of the inner radius of the dust torus in nearby Seyfert 1 galaxies. Astrophys. J. 639, 46–63 (2006).

    Article  ADS  Google Scholar 

  54. Efstathiou, A. & Rowan-Robinson, M. Dusty discs in active galactic nuclei. Mon. Not. R. Astron. Soc. 273, 649–661 (1995).

    Article  ADS  Google Scholar 

  55. Manske, V. & Henning, T. Two-dimensional radiative transfer with transiently heated particles: methods and applications. Astron. Astrophys. 337, 85–95 (1998).

    ADS  Google Scholar 

  56. Schartmann, M., Meisenheimer, K., Camenzind, M., Wolf, S. & Henning, T. Towards a physical model of dust tori in active galactic nuclei. Radiative transfer calculations for a hydrostatic torus model. Astron. Astrophys. 437, 861–881 (2005).

    Article  ADS  Google Scholar 

  57. Schartmann, M. et al. Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies. Astron. Astrophys. 482, 67–80 (2008).

    Article  ADS  Google Scholar 

  58. Hönig, S. F. & Kishimoto, M. The dusty heart of nearby active galaxies. II. From clumpy torus models to physical properties of dust around AGN. Astron. Astrophys. 523, A27 (2010).

    Article  ADS  Google Scholar 

  59. Riffel, R. A., Storchi-Bergmann, T., Dors, O. L. & Winge, C. AGN-starburst connection in NGC7582: Gemini near-infrared spectrograph integral field unit observations. Mon. Not. R. Astron. Soc. 393, 783–797 (2009).

    Article  ADS  Google Scholar 

  60. Mor, R. & Trakhtenbrot, B. Hot-dust clouds with pure-graphite composition around type-I active galactic nuclei. Astrophys. J. Lett. 737, L36 (2011).

    Article  ADS  Google Scholar 

  61. Landt, H. et al. A near-infrared relationship for estimating black hole masses in active galactic nuclei. Mon. Not. R. Astron. Soc. 432, 113–126 (2013).

    Article  ADS  Google Scholar 

  62. Jiang, L. et al. Dust-free quasars in the early Universe. Nature 464, 380–383 (2010).

    Article  ADS  Google Scholar 

  63. Leipski, C. et al. Spectral energy distributions of QSOs at z > 5: common active galactic nucleus-heated dust and occasionally strong star-formation. Astrophys. J. 785, 154 (2014).

    Article  ADS  Google Scholar 

  64. Hernán-Caballero, A., Hatziminaoglou, E., Alonso-Herrero, A. & Mateos, S. The near-to-mid infrared spectrum of quasars. Mon. Not. R. Astron. Soc. 463, 2064–2078 (2016).

    Article  ADS  Google Scholar 

  65. Gehrels, N. Confidence limits for small numbers of events in astrophysical data. Astrophys. J. 303, 336–346 (1986).

    Article  ADS  Google Scholar 

  66. Soifer, B. T. et al. Spitzer infrared spectrograph (IRS) observations of the redshift 3.91 quasar APM 08279+5255. Astrophys. J. Suppl. Ser. 154, 151–154 (2004).

    Article  ADS  Google Scholar 

  67. Kim, D., Im, M. & Kim, M. New estimators of black hole mass in active galactic nuclei with hydrogen Paschen lines. Astrophys. J. 724, 386–399 (2010).

    Article  ADS  Google Scholar 

  68. Oyabu, S. et al. AKARI near- and mid-infrared spectroscopy of APM 08279+5255 at z = 3.91. Astrophys. J. 697, 452–457 (2009).

    Article  ADS  Google Scholar 

  69. Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).

    Article  ADS  Google Scholar 

  70. Coatman, L. et al. Correcting C iv-based virial black hole masses. Mon. Not. R. Astron. Soc. 465, 2120–2142 (2017).

    Article  ADS  Google Scholar 

  71. Marshall, M. A. et al. GA-NIFS: black hole and host galaxy properties of two z 6.8 quasars from the NIRSpec IFU. Astron. Astrophys. 678, A191 (2023).

    Article  Google Scholar 

  72. Loiacono, F. et al. A quasar-galaxy merger at z ~ 6.2: black hole mass and quasar properties from the NIRSpec spectrum. Preprint at https://doi.org/10.48550/arXiv.2402.13319 (2024).

  73. Kim, Y. et al. discovery of a faint quasar at z = 6 and implications for cosmic reionization. Astrophys. J. Lett. 813, L35 (2015).

    Article  ADS  Google Scholar 

  74. Kwan, J. & Krolik, J. H. The formation of emission lines in quasars and Seyfert nuclei. Astrophys. J. 250, 478–507 (1981).

    Article  ADS  Google Scholar 

  75. Grandi, S. A. Reddening indicators for quasars and Seyfert 1 galaxies. Astrophys. J. 268, 591–601 (1983).

    Article  ADS  Google Scholar 

  76. Matsuoka, Y., Oyabu, S., Tsuzuki, Y. & Kawara, K. Observations of O i and Ca ii emission lines in quasars: implications for the site of Fe ii line emission. Astrophys. J. 663, 781–798 (2007).

    Article  ADS  Google Scholar 

  77. Landt, H. et al. The near-infrared broad emission line region of active galactic nuclei. I. The observations. Astrophys. J. Suppl. Ser. 174, 282–312 (2008).

    Article  ADS  Google Scholar 

  78. Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, 1989).

  79. Yang, J. et al. A spectroscopic survey of biased halos in the reionization era (ASPIRE): a first look at the rest-frame optical spectra of z > 6.5 quasars using JWST. Astrophys. J. Lett. 951, L5 (2023).

    Article  ADS  Google Scholar 

  80. Campanelli, M., Lousto, C., Zlochower, Y. & Merritt, D. Large merger recoils and spin flips from generic black hole binaries. Astrophys. J. Lett. 659, L5–L8 (2007).

    Article  ADS  Google Scholar 

  81. Labiano, A. et al. The MIRI medium resolution spectrometer calibration pipeline. In Proc. SPIE Conference Series Vol. 9910 (eds Peck, A. B. et al.) 99102W (SPIE, 2016).

  82. Álvarez-Márquez, J. et al. MIRI/JWST observations reveal an extremely obscured starburst in the z = 6.9 system SPT0311-58. Astron. Astrophys. 671, A105 (2023).

    Article  Google Scholar 

  83. Álvarez-Márquez, J. et al. Nuclear high-ionisation outflow in the Compton-thick AGN NGC 6552 as seen by the JWST mid-infrared instrument. Astron. Astrophys. 672, A108 (2023).

    Article  Google Scholar 

  84. Morrison, J. E. et al. JWST MIRI flight performance: detector effects and data reduction algorithms. Publ. Astron. Soc. Pac. https://doi.org/10.1088/1538-3873/acdea6 (2024).

  85. Patapis, P. et al. Geometric distortion and astrometric calibration of the JWST MIRI medium resolution spectrometer. Astron. Astrophys. 682, A53 (2024).

    Article  Google Scholar 

  86. Gasman, D. et al. JWST MIRI/MRS in-flight absolute flux calibration and tailored fringe correction for unresolved sources. Astron. Astrophys. 673, A102 (2023).

    Article  Google Scholar 

  87. Law, D. R. et al. A 3D drizzle algorithm for JWST and practical application to the MIRI medium resolution spectrometer. Astron. J. 166, 45 (2023).

    Article  ADS  Google Scholar 

  88. Patapis, P. et al. Geometric distortion and astrometric calibration of the JWST MIRI Medium Resolution Spectrometer. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202347339 (2024).

  89. Schindler, J.-T. Sculptor: interactive modeling of astronomical spectra. Astrophysics Source Code Library, record ascl:2202.018 (ASCL, 2022).

  90. Glikman, E., Helfand, D. J. & White, R. L. A near-infrared spectral template for quasars. Astrophys. J. 640, 579–591 (2006).

    Article  ADS  Google Scholar 

  91. Salpeter, E. E. Formation and destruction of dust grains. Annu. Rev. Astron. Astrophys. 15, 267–293 (1977).

    Article  ADS  Google Scholar 

  92. Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article  ADS  Google Scholar 

  93. Landt, H., Ward, M. J., Steenbrugge, K. C. & Ferland, G. J. Strong variability of the coronal line region in NGC 5548. Mon. Not. R. Astron. Soc. 454, 3688–3696 (2015).

    Article  ADS  Google Scholar 

  94. GRAVITY CollaborationFirst light for GRAVITY: phase referencing optical interferometry for the Very Large Telescope Interferometer. Astron. Astrophys. 602, A94 (2017).

    Article  Google Scholar 

  95. López-Gonzaga, N., Burtscher, L., Tristram, K. R. W., Meisenheimer, K. & Schartmann, M. Mid-infrared interferometry of 23 AGN tori: on the significance of polar-elongated emission. Astron. Astrophys. 591, A47 (2016).

    Article  ADS  Google Scholar 

  96. Hönig, S. F. & Kishimoto, M. Dusty winds in active galactic nuclei: reconciling observations with models. Astrophys. J. Lett. 838, L20 (2017).

    Article  ADS  Google Scholar 

  97. GRAVITY Collaboration The resolved size and structure of hot dust in the immediate vicinity of AGN. Astron. Astrophys. 635, A92 (2020).

    Article  Google Scholar 

  98. GRAVITY Collaboration An image of the dust sublimation region in the nucleus of NGC 1068. Astron. Astrophys. 634, A1 (2020).

    Article  Google Scholar 

  99. Gámez Rosas, V. et al. Thermal imaging of dust hiding the black hole in NGC 1068. Nature 602, 403–407 (2022).

    Article  ADS  Google Scholar 

  100. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. Ser. 166, 470–497 (2006).

    Article  ADS  Google Scholar 

  101. Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey Data Release 7. Astrophys. J. Suppl. Ser. 194, 45 (2011).

    Article  ADS  Google Scholar 

  102. Venemans, B. P. et al. The compact, ~1 kpc host galaxy of a quasar at a redshift of 7.1. Astrophys. J. 837, 146 (2017).

    Article  ADS  Google Scholar 

  103. Yue, M. et al. EIGER V. Characterizing the host galaxies of luminous quasars at z 6. Astrophys. J. https://doi.org/10.3847/1538-4357/ad3914 (2024).

  104. Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005).

    Article  ADS  Google Scholar 

  105. Ferland, G. J. et al. The 2017 release Cloudy. Rev. Mex. Astron. Astrofis. 53, 385–438 (2017).

    ADS  Google Scholar 

  106. Tsuzuki, Y. et al. Fe ii emission in 14 low-redshift quasars. I. Observations. Astrophys. J. 650, 57–79 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.E.I.B. is supported by the German Research Foundation (Emmy Noether Grant No. BO 5771/1-1). S.E.I.B., F.W. and L.B. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 740246 ‘Cosmic Gas’). L. Colina acknowledges financial support from the Community of Madrid (Talent Attraction Grant No. 2018-T2/TIC-11612). The Cosmic Dawn Center (DAWN) is funded by the Danish National Research Foundation (Grant No. 140). J.A.-M., L. Colina and A.L. acknowledge support from the Spanish Ministry of Science and Innovation (Project MCIN/AEI/10.13039/501100011033, Grant No. PIB2021-127718NB-100). A.A.-H. is supported by the Spanish Ministry of Science and Innovation/State Agency of Research (Project MCIN/AEI/10.13039/501100011033, Grant No. PID2021-124665NB-I00) and by ‘ERDF A way of making Europe’. A.B. and G.Ö. acknowledge support from the Swedish National Space Administration. O.I. acknowledges funding from the French National Agency for Research (Project iMAGE, Grant No. ANR-22-CE31-0007). J.H. and D.L. were supported by the Villum Foundation (Investigator Grant for Project No. 16599). K.I.C. acknowledges funding from the Netherlands Research School for Astronomy and the Dutch Research Council (Vici Grant No. VI.C.212.036). T.P.R. would like to acknowledge support from the European Research Council (Advanced Grant No. 743029 (EASY)). A.E. and F.P. acknowledge support through the German Space Agency (Grant Nos. DLR 50OS1501 and DLR 50OS2001 from 2015 to 2023). J.H. was supported by the Villum Foundation (Research Grant No. VIL54489). The work presented is the effort of the entire MIRI team and the enthusiasm within the MIRI partnership is a crucial factor in its success. MIRI draws on the scientific and technical expertise of the following organizations: Ames Research Center, USA; Airbus Defence and Space, UK; CEA-Irfu, Saclay, France; Liège Space Center, Belgium; National Research Council, Spain; Carl Zeiss Optronics, Germany; Chalmers University of Technology, Sweden; Danish Space Research Institute, Denmark; Dublin Institute for Advanced Studies, Ireland; European Space Agency, Netherlands; ETCA, Belgium; ETH Zurich, Switzerland; the Goddard Space Flight Center, USA; Institute d’Astrophysique Spatiale, France; National Institute of Aerospace Technology, Spain; the Institute for Astronomy, Edinburgh, UK; Jet Propulsion Laboratory, USA; Laboratoire d’Astrophysique de Marseille, France; Leiden University, Netherlands; Lockheed Advanced Technology Center, USA; the Optical and Infrared Group of the Netherlands Research School for Astronomy at Dwingeloo, Netherlands; Northrop Grumman, USA; the Max Planck Institute for Astronomy, Heidelberg, Germany; Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), France; Paul Scherrer Institut, Switzerland; Raytheon Vision Systems, USA; RUAG Aerospace, Switzerland; Rutherford Appleton Laboratory (RAL Space), UK; the Space Telescope Science Institute, USA; Netherlands Organisation for Applied Scientific Research, Netherlands; UK Astronomy Technology Centre, UK; University College London, UK; University of Amsterdam, Netherlands; University of Arizona, USA; University of Cardiff, UK; University of Cologne, Germany; University of Ghent, Belgium; University of Groningen, Netherlands; University of Leicester, UK; University of Leuven, Belgium; University of Stockholm, Sweden; Utah State University, USA. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. We would like to thank the following national and international funding agencies for their support of the MIRI development: NASA, European Space Agency, the Belgian Science Policy Office, the French National Centre for Space Studies, the Danish National Space Centre, the German Aerospace Centre, Enterprise Ireland, Ministerio De Economía y Competitividad, the Netherlands Research School for Astronomy, the Netherlands Organisation for Scientific Research, the Science and Technology Facilities Council, the Swiss Space Office, the Swedish National Space Board and the UK Space Agency. This work is based on observations made with the NASA/ESA/CSA JWST. Some data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST; and from the European JWST archive operated by the Science Data Centre of the European Space Astronomy Centre.

Author information

Authors and Affiliations

Authors

Contributions

S.E.I.B. performed the data analysis, model fitting, comparison with the literature and authored most of the manuscript. J.A.-M. performed the data reduction and authored the corresponding part of the manuscript. L. Colina designed the experiment, chose the target and led the observational campaign. F.W., A.A.-H., M.W., G.O., T.R.G. and G.W. provided detailed feedback, edited the manuscript, helped design the means of comparison of the data with past literature and contributed relevant references. A.B., L.B., K.C., L. Costantin, A.E., M.G.-M., S.G., J.H., E.I., O.I., I.J., A.L., D.L., F.P., P.R., M.T. and P.v.d.W. provided comments on the analysis, helped with the interpretation of the results and contributed their expertise with the MIRI instrument as members of the MIRI team. M.G., T.H., P.-O.L., T.R., E.F.v.D., B.V., L.C. and G.W. are the leaders of the MIRI European Consortium, on behalf of which this work was conducted.

Corresponding author

Correspondence to Sarah E. I. Bosman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Yuichi Harikane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosman, S.E.I., Álvarez-Márquez, J., Colina, L. et al. A mature quasar at cosmic dawn revealed by JWST rest-frame infrared spectroscopy. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02273-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing