Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of the regimes of hydrodynamic escape from low-mass exoplanets

Abstract

Atmospheric hydrodynamic escape sculpts the population of low-mass close-in planets. However, distinguishing between the driving mechanisms responsible for the hydrodynamic escape of hydrogen-rich atmospheres is a complex task due to the involvement of many physical factors. Using simulations, I show that hydrodynamic escape can be driven solely by thermal energy deposited in the lower layers of the atmosphere, but only if the planet’s Jeans parameter is below 3. Otherwise, additional exogenous drivers are necessary. To characterize these drivers, an upgraded Jeans parameter that takes into account tidal forces is introduced. When the upgraded Jeans parameter falls below 3 or exceeds 6, atmospheric escape is primarily driven by tidal forces or extreme ultraviolet radiation from the host star, respectively. In the range 3 to 6, both factors can trigger the escape of the atmosphere. The upgraded Jeans parameter, which is closely related to the underlying physics, provides a concise method for categorizing the driving mechanisms of hydrodynamic escape. The results can also be applied to planetary evolution calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ratios of mass-loss rates without and with tidal forces.
Fig. 2: Mass-loss rates of planets with different FXUV/ρ.
Fig. 3: Neutral and ionized atmospheres.
Fig. 4: Product of the heating efficiency (η) and \((R_\mathrm{XUV}/R_\mathrm{p})^{2}\).

Similar content being viewed by others

Data availability

The data that support the results and plots within this paper are available from the corresponding author upon reasonable request.

Code availability

The codes used in this study are based on previously published works, and references are provided in the manuscript. Those references include most details. The results of this paper can be reproduced by incorporating the details supplied within the paper.

References

  1. Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).

    ADS  Google Scholar 

  2. Lammer, H. et al. Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophys. J. 598, L121–L124 (2003).

    ADS  Google Scholar 

  3. Yelle, A. N. Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170, 167–179 (2004).

    ADS  Google Scholar 

  4. Koskinen, T. T., Aylward, A. D. & Miller, S. A stability limit for the atmospheres of giant extrasolar planets. Nature 450, 845–848 (2007).

    ADS  Google Scholar 

  5. Murray-Clay, R. A., Chiang, E. I. & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).

    ADS  Google Scholar 

  6. Guo, J. H. Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. Astrophys. J. 733, 98 (2011).

    ADS  Google Scholar 

  7. Erkaev, N. V. et al. Roche lobe effects on the atmospheric loss from ‘hot Jupiters’. Astron. Astrophys. 472, 329–334 (2007).

    ADS  Google Scholar 

  8. Lammer, H. et al. Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? Astron. Astrophys. 638, A52 (2009).

    Google Scholar 

  9. Petigura, E. A., Marcy, G. W. & Howard, A. W. A plateau in the planet population below twice the size of Earth. Astrophys. J. 770, 69 (2013).

    ADS  Google Scholar 

  10. Fulton, B. J. et al. The California-Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    ADS  Google Scholar 

  11. Lopez, E. D. & Fortney, J. J. Understanding the mass–radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014).

    ADS  Google Scholar 

  12. Owen, J. E. & Jackson, A. P. Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931–2947 (2012).

    ADS  Google Scholar 

  13. Jin, S. et al. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation. Astrophys. J. 795, 65 (2014).

    ADS  Google Scholar 

  14. Howe, A. R. & Burrows, A. Evolutionary models of super-Earths and mini-Neptunes incorporating cooling and mass loss. Astrophys. J. 808, 150 (2015).

    ADS  Google Scholar 

  15. Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).

    ADS  Google Scholar 

  16. Mordasini, C. Planetary evolution with atmospheric photoevaporation. I. Analytical derivation and numerical study of the evaporation valley and transition from super-Earths to sub-Neptunes. Astron. Astrophys. 638, A52 (2020).

    ADS  Google Scholar 

  17. Ginzburg, S., Schlichting, S. E. & Sari, R. Super-Earth atmospheres: self-consistent gas accretion and retention. Astrophys. J. 825, 29 (2016).

    ADS  Google Scholar 

  18. Ginzburg, S., Schlichting, S. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).

    ADS  Google Scholar 

  19. Lee, E. J., Karalis, A. & Thorngren, D. P. Creating the radius gap without mass loss. Astrophys. J. 941, 186 (2022).

    ADS  Google Scholar 

  20. Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).

    ADS  Google Scholar 

  21. Izidoro, A. et al. The exoplanet radius valley from gas-driven planet migration and breaking of resonant chains. Astrophys. J. Lett. 939, L19 (2022).

    ADS  Google Scholar 

  22. Owen, J. E. & Wu, Y. Q. Atmospheres of low-mass planets: the ‘boil-off’. Astrophys. J. 817, 107 (2016).

    ADS  Google Scholar 

  23. Koskinen, T. T. et al. Mass loss by atmospheric escape from extremely close-in planets. Astrophys. J. 929, 52 (2022).

    ADS  Google Scholar 

  24. Salz, M., Czesla, M., Schneider, P. C. & Schmitt, J. H. M. M. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. Astron. Astrophys. 586, 75 (2016).

    ADS  Google Scholar 

  25. Jeans, J. H. The Dynamical Theory of Gases (Cambridge Univ. Press, 1925).

  26. Hunten, D. M. Thermal and nonthermal escape mechanisms for terrestrial bodies. Planet. Space Sci. 30, 773–783 (1982).

    ADS  Google Scholar 

  27. Johnson, R. E. et al. Exospheres and atmospheric escape. Space Sci. Rev. 139, 355–397 (2008).

    ADS  Google Scholar 

  28. Volkov, A. N., Johnson, R. E., Tucker, O. J. & Erwin, J. T. Thermally driven atmospheric escape: transition from hydrodynamic to Jeans escape. Astrophys. J. 729, L24 (2011).

    ADS  Google Scholar 

  29. Guo, J. H. Escaping particle fluxes in the atmospheres of close-in exoplanets. II. Reduced mass-loss rates and anisotropic winds. Astrophys. J. 766, 102 (2013).

    ADS  Google Scholar 

  30. Kubyshkina, D. et al. Grid of upper atmosphere models for 1–40 M planets: application to CoRoT-7 b and HD219134 b,c. Astron. Astrophys. 619, A151 (2018).

    Google Scholar 

  31. Yan, D. D. & Guo, J. H. The escape of hydrogen-rich atmosphere of exoplanets: mass-loss rates and the absorption of stellar Lyα. Astrophys. J. 880, 107 (2019).

    Google Scholar 

  32. Allart, R. et al. Spectrally resolved helium absorption from the extended atmosphere of a warm Neptune-mass exoplanet. Science 362, 1384–1387 (2018).

    ADS  Google Scholar 

  33. Spake, J. J. et al. Helium in the eroding atmosphere of an exoplanet. Nature 557, 68–70 (2018).

    ADS  Google Scholar 

  34. Borsa, F. et al. Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO. Astron. Astrophys. 645, A24 (2021).

    Google Scholar 

  35. Shaikhislamov, I. F. et al. Global 3D hydrodynamic modelling of absorption in Lyα and He 10830 Å lines at transits of GJ3470b. Mon. Not. R. Astron. Soc. 500, 1404–1413 (2021).

    ADS  Google Scholar 

  36. Khodachenko, M. L. et al. Simulation of 10830 Å absorption with a 3D hydrodynamic model reveals the solar He abundance in upper atmosphere of WASP-107b. Mon. Not. R. Astron. Soc. Lett. 503, L23–L27 (2021).

    ADS  Google Scholar 

  37. Yan, D. D., Guo, J. H., Huang, C. L. & Xing, L. Atmosphere escape inferred from modeling the Hα transmission spectrum of WASP-121b. Astrophys. J. Lett. 907, L47 (2021).

    ADS  Google Scholar 

  38. Yan, D. D., Seon, Kwang-il, Guo, J. H., Chen, G. & Li, L. F. Modeling the Hα and He 10830 transmission spectrum of WASP-52b. Astrophys. J. 907, L47 (2022).

    ADS  Google Scholar 

  39. Rogers, J. G., Gupta, A., Owen, J. E. & Schlichting, H. E. Photoevaporation versus core-powered mass-loss: model comparison with the 3D radius gap. Mon. Not. R. Astron. Soc. 508, 5886–5902 (2021).

    ADS  Google Scholar 

  40. Watson, A. J., Donahue, T. M. & Walker, J. C. The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48, 150 (1981).

    ADS  Google Scholar 

  41. Guo, J. H. & Ben-Jaffel, L. The influence of the extreme ultraviolet spectral energy distribution on the structure and composition of the upper atmosphere of exoplanets. Astrophys. J. 818, 90 (2016).

    Google Scholar 

  42. Owen, J. E. & Alvarez, M., A. UV driven evaporation of close-in planets: energy-limited, recombination-limited, and photo-limited flows. Astrophys. J. 816, 34 (2016).

    ADS  Google Scholar 

  43. Tian, F., Kasting, J. F., Liu, H. L. & Roble, R. G. Hydrodynamic planetary thermosphere model. 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113, E05008 (2008).

    ADS  Google Scholar 

  44. Krasnopolsky, V. A. Hydrodynamic flow of N2 from Pluto. J. Geophys. Res. 104, 5955 (1999).

    ADS  Google Scholar 

  45. Strobel, D. F. N2 escape rates from Pluto’s atmosphere. Icarus 193, 612 (2008).

    ADS  Google Scholar 

  46. Johnson, R. E., Volkov, A. N. & Erwin, J. Molecular-kinetic simulations of escape from the ex-planet and exoplanets: criterion for transonic flow. Astrophys. J. Lett. 768, L4 (2013).

    ADS  Google Scholar 

  47. Erkaev, N. V. et al. Escape and evolution of Titan’s N2 atmosphere constrained by 14N/15N isotope ratios. Mon. Not. R. Astron. Soc. 500, 2020–2035 (2021).

    ADS  Google Scholar 

  48. Erkaev, N. V., Lammer, H., Odert, P., Kulikov, Yu. N. & Kislyakova, K. G. Extreme hydrodynamic atmospheric loss near the critical thermal escape regime. Mon. Not. R. Astron. Soc. 448, 1916–1921 (2015).

    ADS  Google Scholar 

  49. Salz, M., Schneider, P. C., Czesla, S. & Schmitt, J. H. M. M. Energy-limited escape revised. Astron. Astrophys. 585, L2 (2016).

    ADS  Google Scholar 

  50. Batalha, N. M. et al. Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. Astrophys. J. Suppl. Ser. 204, 24 (2013).

    ADS  Google Scholar 

  51. Masuda, K. Very low-density planets around Kepler-51 revealed with transit timing variations and an anomaly similar to a planet–planet eclipse event. Astrophys. J. 783, 53 (2014).

    ADS  Google Scholar 

  52. Jontof-Hutter, D., Dalba, P. A. & Livingston, J. H. TESS observations of Kepler systems with transit timing variations. Astron. J. 164, 42 (2022).

    ADS  Google Scholar 

  53. Lammer, H. et al. Identifying the ‘true’ radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Mon. Not. R. Astron. Soc. Lett. 461, L62–L66 (2016).

    ADS  Google Scholar 

  54. Sanz-Forcada, J. et al. Estimation of the XUV radiation onto close planets and their evaporation. Astron. Astrophys. 532, A6 (2011).

    Google Scholar 

  55. Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a Solar-like star. Astron. Astrophys. 577, L3 (2015).

    ADS  Google Scholar 

  56. Huang, C., Arras, P. & Christie, D. A model of the Hα and Na transmission spectrum of HD 189733b. Astrophys. J. 815, 150 (2017).

    ADS  Google Scholar 

  57. Fossati, L. et al. Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, A90 (2017).

    Google Scholar 

  58. Gao, P. & Zhang, X. Deflating super-puffs: impact of photochemical hazes on the observed mass–radius relationship of low-mass planets. Astrophys. J. 890, 93 (2020).

    ADS  Google Scholar 

  59. Ricotti, M., Gnedin, N. Y. & Shull, J. M. The fate of the first galaxies. I. Self-consistent cosmological simulations with radiative transfer. Astrophys. J. 575, 33–48 (2002).

    ADS  Google Scholar 

  60. Dalgarno, A., Yan, Min & Liu, Weihong Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium. Astrophys. J. Suppl. Ser. 125, 237–256 (1999).

    ADS  Google Scholar 

  61. Cecchi-Pestellini, C., Ciaravella, A., Micela, G. & Penz, T. The relative role of EUV radiation and X-rays in the heating of hydrogen-rich exoplanet atmospheres. Astron. Astrophys. 496, 863–868 (2009).

    ADS  Google Scholar 

  62. Garcia Munoz, A. Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55, 1426 (2007).

    ADS  Google Scholar 

  63. Lamers, H. J. G. L. M. & Cassinelli, J. P. Introduction to Stellar Winds (Cambridge Univ. Press, 1999).

  64. Ekenbäck, A. et al. Energetic neutral atoms around HD 209458b: estimations of magnetospheric properties. Astrophys. J. 709, 670–679 (2010).

    ADS  Google Scholar 

  65. Lammer, H. et al. Probing the blow-off criteria of hydrogen-rich ‘super-Earths’. Mon. Not. R. Astron. Soc. Lett. 430, 1247–1256 (2013).

    Google Scholar 

  66. Strobel, D. F. Titan’s hydrodynamically escaping atmosphere. Icarus 193, 588 (2008).

    ADS  Google Scholar 

  67. Yelle, R. V., Borggren, N. & de la Haye, V. The vertical structure of Titan’s upper atmosphere from Cassini ion neutral mass spectrometer measurements. Icarus 182, 567 (2004).

    ADS  Google Scholar 

  68. Gladstone, G. R. & Young, L. A. New Horizons observations of the atmosphere of Pluto. Annu. Rev. Earth Planet. Sci. 47, 119 (2019).

    ADS  Google Scholar 

  69. Strobel, D. F., Summers, M. E., Herbert, F. & Sandel, B. R. The photochemistry of methane in the atmosphere of Triton. Geophys. Res. Lett. 17, 1729–1732 (1990).

    ADS  Google Scholar 

  70. Krasnopolsky, V. A. & Cruikshank, D. P. Photochemistry of Triton’s atmosphere and ionosphere. J. Geophys. Res. 100, 21271 (1995).

    ADS  Google Scholar 

  71. Lammer, H. et al. Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006).

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 12288102) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB 41000000). I also acknowledge support from the National Natural Science Foundation of China (Grant No. 11973082) and the National Key R&D Program of China (Grant No. 2021YFA1600400/2021YFA1600402). I gratefully acknowledge the PHOENIX Supercomputing Platform jointly operated by the Binary Population Synthesis Group and the Stellar Astrophysics Group at Yunnan Observatories, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

J.G. completed all the contents of this work.

Corresponding author

Correspondence to J. H. Guo.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Chenliang Huang, Carolina Villarreal D’Angelo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The distributions of density, separation and Jean parameter λ for planets with different driving mechanisms.

The symbols are the same as those in Fig. 2. (a) the distributions of λ and XUV flux; (b) the distributions of separation and mean density. In generally, the planets have smaller density if their hydrodynamic escapes are TE- and tidally-driven. In contrast, the trend is contrary to the planets with XUV-driven. For TE-driven escape, their λ values are smaller than 3. For tidally-driven escape, the values of λ* is smaller than 3. In the regime of tidally-XUV-driven transition regime, the values of λ* are in the range of 3-6. The values of λ* are greater than 6 in XUV-driven regime (see Fig. 1).

Extended Data Fig. 2 The TE-driven escape of the atmosphere.

“Black square”: the atmosphere is composed of hydrogen atoms and Helium; “Red circle”: the atmosphere of Hydrogen molecular; “Green triangle”: the atmosphere is composed of hydrogen molecules and Helium. The two solid lines are λ=2.8 and 3.5, and the region between two solid lines represents the regime of transonic escape for the atmospheres of H2 and H2+He. The dashed line is λ=3.3 that denote the limit of supersonic escape for mon-atomic gases. All filled symbols are supersonic outflow while the triangles and circles denote the case of transonic escape. I also marked the Mach numbers of the lower boundary for the three examples with the lowest mass loss rates. Note that the velocities at the lower boundary are not imposed to equal with the sound speed such that my model predicts very high the mass loss rates. Also note that the tidal forces, XUV irradiation and all chemical reactions are ignored for all planets in the figure.

Extended Data Fig. 3 The atmospheric structures of the TE-driven escape in diatomic atmospheres.

I show two samples with different values of λ. The escapes of both the two planets are driven by their thermal energy, but one is supersonic and the other is transonic.

Extended Data Fig. 4 The distribution of RRoche/Rs-Rxuv/Rs and the relationship between the location of sonic point and optical depths of XUV spectrum.

The dependence of the altitude distribution of the Roche radius, average absorption radius of XUV radiation and position of the sound point on the upgraded Jeans parameter. All planets orbiting G- and M-type are included. “red circle”: λ* < 3; “green triangle”: 3 < λ* < 6; “blue star”: λ* > 6.

Extended Data Fig. 5 The structure of the atmosphere for two planets around the turning point of neutral and ionized wind.

The XUV flux received by them is 5.4 × 104erg/s/cm2. The black lines denote the case of neutral atmosphere (Mp = 12M, Rp = 1R, and gravitational potential ϕ = 7.50 × 1012 erg/g) while the red lines are the ionized atmosphere (Mp = 20M, Rp = 1R, gravitational potential ϕ = 1.25 × 1013 erg/g). ‘Solid line”: the number density of hydrogen atoms; ‘Dashed line”: the number density of hydrogen ions; ‘Dotted line”: the temperature profiles.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J.H. Characterization of the regimes of hydrodynamic escape from low-mass exoplanets. Nat Astron 8, 920–928 (2024). https://doi.org/10.1038/s41550-024-02269-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02269-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing