Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asteroid Kamo‘oalewa’s journey from the lunar Giordano Bruno crater to Earth 1:1 resonance

Abstract

Among the nearly 30,000 known near-Earth asteroids (NEAs), only tens possess Earth co-orbital characteristics with semi-major axes ~1 au. In particular, 469219 Kamo‘oalewa (2016 HO3), an upcoming target of China’s Tianwen-2 asteroid sampling mission, exhibits a meta-stable 1:1 mean-motion resonance with Earth. Intriguingly, recent ground-based observations show that Kamo‘oalewa has spectroscopic characteristics similar to space-weathered lunar silicates, hinting at a lunar origin instead of an asteroidal one like the vast majority of NEAs. Here we use numerical simulations to demonstrate that Kamo‘oalewa’s physical and orbital properties are compatible with a fragment from a crater larger than 10–20 km formed on the Moon in the last few million years. The impact could have ejected sufficiently large fragments into heliocentric orbits, some of which could be transferred to Earth 1:1 resonance and persist today. This leads us to suggest the young lunar crater Giordano Bruno (22 km diameter, 1–10 Myr age) as the most likely source, linking a specific asteroid in space to its source crater on the Moon. The hypothesis will be tested by the Tianwen-2 mission when it returns a sample of Kamo‘oalewa. And the upcoming NEO Surveyor mission may help us to identify such a lunar-derived NEA population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kamo‘oalewa’s observed reflectance spectrum3 compared with typical asteroid taxonomies10, lunar samples7 and the lunar meteorite Yamato-791197,727.
Fig. 2: Simulated fragment SVD and escaping fragment cumulative size–frequency distribution for a 2.44-km-diameter asteroid striking the lunar crust at 18 km s−1 and 45°, creating a Kepler-sized (31 km) crater.
Fig. 3: N-body simulation results of GB ejecta.
Fig. 4: Source crater criterion to obtain at least one Earth co-orbit at the present day.

Similar content being viewed by others

Data availability

The raw simulation data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The spectral classification code classy is available via GitHub at https://github.com/maxmahlke/classy (ref. 65). The N-body code REBOUND is an open-source package available via GitHub at https://github.com/hannorein/rebound (ref. 66). The impact code SPHSOL is available from the corresponding authors on reasonable request.

References

  1. De la Fuente Marcos, C. & De la Fuente Marcos, R. Asteroid (469219) 2016 HO3, the smallest and closest Earth quasi-satellite. Mon. Not. R. Astron. Soc. 462, 3441–3456 (2016).

    ADS  Google Scholar 

  2. Qi, Y. & Qiao, D. Co-orbital transition of 2016 HO3. Astrodynamics 7, 3–14 (2023).

    ADS  Google Scholar 

  3. Sharkey, B. N. et al. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamo‘oalewa. Commun. Earth Environ. 2, 231 (2021).

    ADS  Google Scholar 

  4. Gong, Y. et al. Cosmology from the Chinese space station optical survey (CSS-OS). Astrophys. J. 883, 203 (2019).

    ADS  Google Scholar 

  5. Zhang, T., Xu, K. & Ding, X. China’s ambitions and challenges for asteroid–comet exploration. Nat. Astron 5, 730–731 (2021).

    ADS  Google Scholar 

  6. Pieters, C. et al. Distinctive space weathering on Vesta from regolith mixing processes. Nature 491, 79–82 (2012).

    ADS  Google Scholar 

  7. Milliken, R. The RELAB Spectral Library Bundle. NASA Planetary Data System https://doi.org/10.17189/1519032 (2020).

  8. Nishiizumi, K. et al. Exposure histories of lunar meteorites: ALHA81005, MAC88104, MAC88105, and Y791197. Geochim. Cosmochim. Acta 55, 3149–3155 (1991).

    ADS  Google Scholar 

  9. Binzel, R. et al. Compositional distributions and evolutionary processes for the near-Earth object population: results from the MIT–Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41–76 (2019).

    ADS  Google Scholar 

  10. DeMeo, F. E., Binzel, R. P., Slivan, S. M. & Bus, S. J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009).

    ADS  Google Scholar 

  11. Migliorini, F. et al. Vesta fragments from v6 and 3:1 resonances: implications for V-type near-Earth asteroids and howardite, eucrite and diogenite meteorites. Meteorit. Planet. Sci. 32, 903–916 (1997).

    ADS  Google Scholar 

  12. DeMeo, F. E. et al. Olivine-dominated A-type asteroids in the main belt: distribution, abundance and relation to families. Icarus 322, 13–30 (2019).

    ADS  Google Scholar 

  13. Melosh, H. J. Impact Cratering: a Geologic Process (Oxford Univ. Press, 1989).

  14. Bart, G. D. & Melosh, H. Distributions of boulders ejected from lunar craters. Icarus 209, 337–357 (2010).

    ADS  Google Scholar 

  15. Horányi, M. et al. A permanent, asymmetric dust cloud around the Moon. Nature 522, 324–326 (2015).

    ADS  Google Scholar 

  16. Singer, K. N., Jolliff, B. L. & McKinnon, W. B. Lunar secondary craters and estimated ejecta block sizes reveal a scale-dependent fragmentation trend. J. Geophys. Res. Planets 125, e2019JE006313 (2020).

    ADS  Google Scholar 

  17. Hawke, B. R. et al. The origin of lunar crater rays. Icarus 170, 1–16 (2004).

    ADS  Google Scholar 

  18. Gladman, B. J., Burns, J. A., Duncan, M. J. & Levison, H. F. The dynamical evolution of lunar impact ejecta. Icarus 118, 302–321 (1995).

    ADS  Google Scholar 

  19. Castro-Cisneros, J. D., Malhotra, R. & Rosengren, A. J. Lunar ejecta origin of near-Earth asteroid Kamo‘oalewa is compatible with rare orbital pathways. Commun. Earth Environ. 4, 372 (2023).

    ADS  Google Scholar 

  20. Yeomans, D. K. & Chamberlin, A. B. Comparing the Earth impact flux from comets and near-Earth asteroids. Acta Astronaut. 90, 3–5 (2013).

    ADS  Google Scholar 

  21. Artemieva, N. & Shuvalov, V. Numerical simulation of high-velocity impact ejecta following falls of comets and asteroids onto the Moon. Sol. Syst. Res. 42, 329–334 (2008).

    ADS  Google Scholar 

  22. Benz, W. & Asphaug, E. Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995).

    ADS  Google Scholar 

  23. Grady, D. E. & Kipp, M. E. Continuum modelling of explosive fracture in oil shale. Int. J. Rock Mech. Min. Sci. 17, 147–157 (1980).

    Google Scholar 

  24. Melosh, H., Ryan, E. & Asphaug, E. Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J. Geophys. Res. Planets 97, 14735–14759 (1992).

    ADS  Google Scholar 

  25. Schmidt, R. M. & Housen, K. R. Some recent advances in the scaling of impact and explosion cratering. Int. J. Impact Eng. 5, 543–560 (1987).

    ADS  Google Scholar 

  26. Melosh, H. Impact ejection, spallation, and the origin of meteorites. Icarus 59, 234–260 (1984).

    ADS  Google Scholar 

  27. Vokrouhlicky`, D. & Čapek, D. YORP-induced long-term evolution of the spin state of small asteroids and meteoroids: Rubincam’s approximation. Icarus 159, 449–467 (2002).

    ADS  Google Scholar 

  28. Robbins, S. J. A new global database of lunar impact craters >1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis. J. Geophys. Res. Planets 124, 871–892 (2019).

    ADS  Google Scholar 

  29. Barlow, N. Status report on crater databases for Mercury, the Moon, Mars, and Ganymede. In Proc. Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting, Abstract 7027 (Lunar and Planetary Institute, 2017).

  30. Neukum, G., Ivanov, B. & Hartmann, W. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001).

    ADS  Google Scholar 

  31. Bottke, W., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. in Hazards Due to Comets and Asteroids (ed. Gehrels T.) 337–357 (Univ. of Arizona Press, 1994).

  32. Gladman, B., Michel, P. & Froeschlé, C. The near-Earth object population. Icarus 146, 176–189 (2000).

    ADS  Google Scholar 

  33. Huang, Y. & Gladman, B. Four-billion year stability of the Earth–Mars belt. Mon. Not. R. Astron. Soc. 500, 1151–1157 (2021).

    ADS  Google Scholar 

  34. Mazrouei, S., Ghent, R. R., Bottke, W. F., Parker, A. H. & Gernon, T. M. Earth and Moon impact flux increased at the end of the Paleozoic. Science 363, 253–257 (2019).

    ADS  Google Scholar 

  35. Morota, T. et al. Formation age of the lunar crater Giordano Bruno. Meteorit. Planet. Sci. 44, 1115–1120 (2009).

    ADS  Google Scholar 

  36. Drozd, R., Hohenberg, C., Morgan, C., Podosek, F. & Wroge, M. Cosmic-ray exposure history at Taurus–Littrow. In Proc. Lunar Science Conference, Abstract 1087 (Lunar and Planetary Institute, 1977).

  37. Bhattacharya, S. & Saran, S. Enhanced hydration at Giordano Bruno crater on the far side of the Moon and its implications. In Proc. 48th Annual Lunar and Planetary Science Conference, Abstract 1780 (Lunar and Planetary Institute, 2017).

  38. Basilevsky, A. & Head, J. Age of Giordano Bruno crater as deduced from the morphology of its secondaries at the Luna 24 landing site. Planet. Space Sci. 73, 302–309 (2012).

    ADS  Google Scholar 

  39. König, B., Neukum, G. & Fechtig, H. Recent lunar cratering: absolute ages of Kepler, Aristarchus, Tycho. In Proc. Lunar Science Conference, Abstract 1190 (Lunar and Planetary Institute, 1977).

  40. Harris, A. W., Boslough, M., Chapman, C. R., Drube, L. & Michel, P. in Asteroids IV (eds Bottke, W. F., DeMeo F. E. & Michel, P.) 835–854 (Univ. of Arizona Press, 2015).

  41. Mainzer, A. et al. Near-Earth object Surveyor mission: data products and survey plan. In AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 53 (American Astronomical Society, 2021).

  42. Fritz, J. Impact ejection of lunar meteorites and the age of Giordano Bruno. Icarus 221, 1183–1186 (2012).

    ADS  Google Scholar 

  43. Morais, M. & Morbidelli, A. The population of near-Earth asteroids in co-orbital motion with the Earth. Icarus 160, 1–9 (2002).

    ADS  Google Scholar 

  44. Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).

    ADS  Google Scholar 

  45. DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

    ADS  Google Scholar 

  46. Delbo, M. et al. Alignment of fractures on Bennu’s boulders indicative of rapid asteroid surface evolution. Nat. Geosci. 15, 453–457 (2022).

    ADS  Google Scholar 

  47. Zhang, Y. & Michel, P. Shapes, structures, and evolution of small bodies. Astrodynamics 5, 293–329 (2021).

    ADS  Google Scholar 

  48. Cambioni, S. et al. Fine-regolith production on asteroids controlled by rock porosity. Nature 598, 49–52 (2021).

    ADS  Google Scholar 

  49. Rozitis, B., MacLennan, E. & Emery, J. P. Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature 512, 174–176 (2014).

    ADS  Google Scholar 

  50. Lauretta, D. et al. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019).

    ADS  Google Scholar 

  51. Mahlke, M., Carry, B. & Mattei, P.-A. Asteroid taxonomy from cluster analysis of spectrometry and albedo. Astron. Astrophys. 665, A26 (2022).

    ADS  Google Scholar 

  52. Jiao, Y., Yan, X., Cheng, B. & Baoyin, H. SPH–DEM modelling of hypervelocity impacts on rubble-pile asteroids. Mon. Not. R. Astron. Soc. 527, 10348–10357 (2024).

    ADS  Google Scholar 

  53. Bui, H. H., Fukagawa, R., Sako, K. & Ohno, S. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32, 1537–1570 (2008).

    Google Scholar 

  54. Tillotson, J. H. Metallic Equations of State for Hypervelocity Impact, Technical Report (General Dynamics, 1962).

  55. Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).

    ADS  Google Scholar 

  56. Jutzi, M. SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015).

    ADS  Google Scholar 

  57. Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    ADS  Google Scholar 

  58. Rein, H. et al. Hybrid symplectic integrators for planetary dynamics. Mon. Not. R. Astron. Soc. 485, 5490–5497 (2019).

    ADS  Google Scholar 

  59. Rein, H. & Tamayo, D. WHFAST: a fast and unbiased implementation of a symplectic Wisdom–Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015).

    ADS  Google Scholar 

  60. Rein, H. & Spiegel, D. S. IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. Mon. Not. R. Astron. Soc. 446, 1424–1437 (2015).

    ADS  Google Scholar 

  61. Park, R. S., Folkner, W. M., Williams, J. G. & Boggs, D. H. The JPL planetary and lunar ephemerides DE440 and DE441. Astron. J. 161, 105 (2021).

    ADS  Google Scholar 

  62. Delbo, M., Mueller, M., Emery, J., Rozitis, B. & Capria, M. in Asteroids IV (eds Bottke, W. F., DeMeo F. E. & Michel, P.) 107–128 (Univ. of Arizona Press, 2015).

  63. Fenucci, M. & Novaković, B. The role of the Yarkovsky effect in the long-term dynamics of asteroid (469219) Kamo’oalewa. Astron. J. 162, 227 (2021).

    ADS  Google Scholar 

  64. Burns, J. A., Lamy, P. L. & Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).

    ADS  Google Scholar 

  65. The classy code. GitHub https://github.com/maxmahlke/classy (2022).

  66. The REBOUND code. GitHub https://github.com/hannorein/rebound (2024).

  67. Connors, M., Wiegert, P. & Veillet, C. Earth’s Trojan asteroid. Nature 475, 481–483 (2011).

    ADS  Google Scholar 

  68. Santana-Ros, T. et al. Orbital stability analysis and photometric characterization of the second Earth trojan asteroid 2020 XL5. Nat. Commun. 13, 447 (2022).

    ADS  Google Scholar 

  69. Robinson, M. S. et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev. 150, 81–124 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

B.C. is supported by the National Natural Science Foundation of China (no. 12202227) and the Postdoctoral Innovative Talent Support Program of China (no. BX20220164). This work is also supported by the National Natural Science Foundation of China under grant 62227901. We thank W. F. Bottke and others for valuable discussions on this work at the Asteroids, Comets, Meteors Conference 2023. We thank M. Connors, T. Santana-Ros and F. Ferrari for providing helpful comments to improve and clarify the manuscript. We acknowledge the use of imagery from Lunar QuickMap (https://quickmap.lroc.asu.edu), a collaboration between NASA, Arizona State University and Applied Coherent Technology Corp.

Author information

Authors and Affiliations

Authors

Contributions

Y.J. performed the SPH and N-body numerical simulations and analysed the numerical results. B.C. and H.B. initiated the project, designed the simulations and led the research. Y.H., B.G. and R.M. contributed to the discussion of the dynamical evolution of lunar ejecta and the spectral comparison. E.A., P.M. and Y.Y. contributed to the discussion of the lunar impact ejection process. All authors contributed to interpretation of the results and preparation of the paper.

Corresponding authors

Correspondence to Bin Cheng or Hexi Baoyin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Martin Connors, Fabio Ferrari and Toni Santana-Ros for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of Kamo‘oalewa’s spectral slope with Bus-DeMeo asteroid taxonomies and lunar materials.

Due to errors in the infrared reflectance, Kamo‘oalewa’s slope possibly ranges from 76 to 101%/μm3. Typical asteroid slopes are plotted with the mean values and the standard deviations, based on 371 asteroid samples10. The slopes of lunar meteorite and samples, whose spectra have been shown in Fig. 1, are measured using the online Bus-DeMeo taxonomy tool10.

Source data

Extended Data Fig. 2 Spectral Comparison using the Mixture of Common Factor Analysers (MCFA) model.

The latent scores are computed as a lower-dimensional representation of the reflectance spectrum, using the classy package51. The MCFA results suggest that Kamo‘oalewa is spectrally similar to lunar materials, but incompatible with any typical asteroid spectrum in public repositories.

Source data

Extended Data Fig. 3 Simulated rotation distribution of escaping SPH particles with L\({}_{\max }\) larger than 36 m, for a Kepler-sized crater forming event.

Here we use the SPH particle vorticity to approximate the rotation state of the sub-resolution fragments. The upper panel presents the cumulative fraction of these high-velocity and low-shocked particles versus the rotation period. Note that about 65% of these particles, when ejected, are spinning faster than Kamo‘oalewa which has a period of 28.3 min3. The lower panel is a boxplot of the period distribution, suggesting a median of about 6 minutes and an interquartile range (IQR, the box range from the first quartile Q1 to the third quartile Q3) from a few to several tens of minutes. The whiskers are bounded at Q1-1.5*IQR and Q3+1.5*IQR, with the flier points removed. There are 466 and 94 SPH particles used for k=1030 m−3 and k=1033 m−3, respectively.

Source data

Extended Data Fig. 4 The location and topography of lunar crater Giordano Bruno.

Left is a map of the lunar farside using the Lunar QuickMap (https://bit.ly/45Ftwjh). Right is the topographic map of GB crater from the Lunar Reconnaissance Orbiter Camera (LROC) data69.

Extended Data Fig. 5 Initial condition of N-body simulations.

We start each set of simulation at a random lunar phase ϕ, which indicates the relative position of the Sun-Earth-Moon system, and launched 300 particles along a θ = 45 cone at random azimuths ζ and with a given velocity magnitude distribution v0 (following a power law distribution ranging from 2.38 to 6.0 km/s, and with the power of -4.0 according to Supplementary Fig. 7).

Extended Data Fig. 6 GB ejecta delivered to Earth, normalized with the background lunar meteorite flux.

It has been estimated that the GB ejecta is comparable to the total lunar ejecta produced by other craters over 10 Myr42, thus the background lunar ejecta per Myr is about one-tenth of the GB total ejecta. Assuming the same delivery efficiency (Earth collision fraction over time) as the GB ejecta, we can integrate the product of the ejecta volume and the delivery efficiency of all previous craters, to estimate the background flux delivered to Earth per Myr. The result shows a ten-fold spike of GB meteorites than the background flux in the first Myr after GB formation (several million years ago). However, this spike is currently unobservable due to the short terrestrial preservation period of lunar meteorites, which only lasts a few hundred thousand years8. Presently, GB ejecta contributes to roughly 10% of the background flux of lunar meteorites, implying that our current collection of lunar meteorites likely contains only a handful of GB ejecta, for example, the possible GB meteorites Yamato-82192/82193/8603242.

Source data

Supplementary information

Supplementary Information

Supplementary Text, Figs. 1–8 and Tables 1–5.

Supplementary Data

Source Data for Supplementary Figs. 1–8.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Cheng, B., Huang, Y. et al. Asteroid Kamo‘oalewa’s journey from the lunar Giordano Bruno crater to Earth 1:1 resonance. Nat Astron 8, 819–826 (2024). https://doi.org/10.1038/s41550-024-02258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02258-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing