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Large exomoons unlikely around Kepler-1625 
b and Kepler-1708 b

René Heller    1  & Michael Hippke2,3 

There are more than 200 moons in our Solar System, but their relatively 
small radii make similarly sized extrasolar moons very hard to detect with 
current instruments. The best exomoon candidates so far are two nearly 
Neptune-sized bodies orbiting the Jupiter-sized transiting exoplanets 
Kepler-1625 b and Kepler-1708 b, but their existence has been contested. 
Here we reanalyse the Hubble and Kepler data used to identify the two 
exomoon candidates employing nested sampling and Bayesian inference 
techniques coupled with a fully automated photodynamical transit model. 
We find that the evidence for the Kepler-1625 b exomoon candidate comes 
almost entirely from the shallowness of one transit observed with Hubble. 
We interpret this as a fitting artefact in which a moon transit is used to 
compensate for the unconstrained stellar limb darkening. We also find much 
lower statistical evidence for the exomoon candidate around Kepler-1708 
b than previously reported. We suggest that visual evidence of the claimed 
exomoon transits is corrupted by stellar activity in the Kepler light curve. 
Our injection-retrieval experiments of simulated transits in the original 
Kepler data reveal false positive rates of 10.9% and 1.6% for Kepler-1625 b 
and Kepler-1708 b, respectively. Moreover, genuine transit signals of large 
exomoons would tend to exhibit much higher Bayesian evidence than these 
two claims. We conclude that neither Kepler-1625 b nor Kepler-1708 b are 
likely to be orbited by a large exomoon.

From the discovery of Jupiter’s four principal moons in 1610 by Galileo 
Galilei1, which triggered the Copernican revolution, to the discovery of 
cryovolcanism on Saturn’s moon Enceladus2 as evidence of continuing 
liquid water-based chemistry in the outer Solar System, moons con-
tinue to deliver fundamental and fascinating insights into planetary 
science. The detection of moons around some of the thousands of 
extrasolar planets known today has, thus, been eagerly anticipated 
for over a decade now3–5.

Although more than a dozen methods have been proposed to 
search for exomoons6, the search for moons in stellar photometry of 
transiting planets is the only method that has been applied by several 
research teams7–11. The most promising search technique seems to be 
photodynamical modelling12,13, which maximizes the signal-to-noise 

ratio (S/N) of any exomoon transit that might be present14. No exo-
moon has been securely detected so far, and the main reason for this 
is probably that moons larger than Earth are rare10,15. For comparison, 
the largest moons in the Solar System, Ganymede (around Jupiter) 
and Titan (around Saturn), have radii of about 40% of the radius of 
the Earth. Exomoons of this size are below the detection limits even in 
the high-accuracy space-based photometry from the Kepler mission.

So far, two possible exomoon detections have been put forward, 
both of which had originally been claimed in stellar photometry 
from the Kepler space mission16. The first candidate corresponds to 
a Neptune-sized moon in a wide orbit around the Jupiter-sized planet 
Kepler-1625 b (ref. 15), which is in a 287 d orbit around the evolved 
solar-type star Kepler-1625. The second exomoon claim has recently 
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curves in Fig. 1a–d that put the statistically favoured planet–moon 
interpretation into question.

 (1) About half of the posterior models do not exhibit a single moon 
transit in any of the four transit epochs. This is particularly rel-
evant since our posterior sampling with UltraNest is very con-
servative in its representation of the final posteriors to ensure 
that these posteriors are fair representations of the estimated 
likelihoods. The non-detection of any moon transits is not an 
exclusion criterion for the moon hypothesis, but it violates an 
important detection criterion for an exomoon interpretation24.

 (2) In the other half of our posterior models that do contain moon 
transits, these transits occur almost exclusively in the Kepler 
data. This tendency for missed putative moon transits in the 
Hubble data has not been explicitly addressed in the literature 
and gives us pause to reflect on the fact that of a total of four 
available transits, this missed exomoon transit occurs in the one 
dataset that was obtained with a telescope (Hubble), unlike the 
remaining three transits (from Kepler).

 (3) From these posterior cases with a moon transit, we find only a 
handful of light curves with a notable out-of-planetary-transit 
signal from the moon (Fig. 1a–c). Instead, preferred solutions 
feature a moon with a small apparent deflection from the planet. 
This lack of solutions with moon transits at wide orbital deflec-
tions is contrary to geometrical arguments for a real exomoon. 
Any exomoon would spend most of its orbit in an apparently 
wide separation from its host planet as a result of the projection 
of the moon orbit onto the celestial plane25,26. From our best fits 
of the orbital elements for the planet–moon models and us-
ing previously published equations for the contamination of 
planet–moon transits14, we calculate a probability of <10% that 
such a hypothetical exomoon around Kepler-1625 b would tran-
sit nearly synchronously with its planet during all three transits 
observed with Kepler. We interpret this as an artificial correction 
for the unconstrained stellar limb darkening, in which the ingress 
and egress of the moon transits are used in the fitting process to 
minimize the discrepancy between the data and the models.

 (4) The exomoon signal is almost entirely caused by the data from 
the Hubble observations although our model sampling of the 
posteriors prefers solutions in which the moon does not actually 
transit the star in the Hubble data. We did not find any evidence of 
a putative exomoon signal at 3,223.3 d (BKJD) in the Hubble data 
(Fig. 1d) as originally claimed27. Our finding is, thus, in agreement 
with another study28, though these authors analysed solely the 
Hubble data and not the Kepler data in a common framework.

 (5) The transit observed with Hubble is much shallower than the 
three transits observed with Kepler (Fig. 1a–d). Our bootstrap-
ping experiment (Methods) yields a probability of 2 × 10−5 that 
the fourth transit from Hubble would have the observed transit 
depth, assuming the same astrophysical conditions and similar 
noise properties. The discrepancy can be explained as either an 
extrasolar moon that transits in all three transits observed with 
Kepler but misses the star in the single transit observed with 
Hubble or a wavelength dependency of the stellar limb darken-
ing due to the different wavelength bands covered by the Kepler 
and Hubble instruments. Assuming only a planet and no moon 
as well as our best-fitting estimates for the planet-to-star radii 
ratio, transit impact parameter and limb-darkening coefficients 
(LDCs) for Kepler and Hubble, then we predict a transit depth of 
0.99573 for the Kepler data and of 0.99634 for the Hubble data 
(Methods). These values are in good agreement with the ob-
served transit depth discrepancy and offer a natural explanation 
that does not require a moon.

 (6) We confirm the previously reported transit timing variation 
(TTV) of the planet. Our best planet-only fit for the transit mid-
point of Kepler-1625 b at 3,222.55568 (±0.0038) d is consistent  

been announced by the same team. It is around the Jupiter-sized planet 
Kepler-1708 b (ref. 17), which is in a 737 d orbit around the solar-type 
main-sequence star Kepler-1708.

Given the importance of possible extrasolar moon discoveries 
for the field of extrasolar planets and planetary science in general, 
those proposed candidates call for an independent analysis. Photo-
dynamical modelling of planet–moon transits is computationally very 
demanding due to the three-body nature of the star–planet–moon 
system and due to the complicated calculations involved in the over-
lapping areas of three circles18. Although some open-source computer 
code packages cover some combination of Keplerian orbital motion 
solvers and multi-body occultations19,20, they have not been adapted 
for studying exomoons. Another recently published algorithm21 
has been used to study a peculiar planet–planet mutual transit of 
Kepler-51 b and d.

Here we apply our new photodynamical model Pandora13, a pub-
licly available open-source code written in the Python programming 
language, to investigate the exomoon claims around Kepler-1625 b 
and Kepler-1708 b. The main differences between Pandora and LUNA, 
photodynamical software that has previously been used for exomoon 
searches, are (1) Pandora’s assumption of the small-body approxima-
tion of the planet whenever the resulting flux error is <1 ppm, (2) the 
different treatment of the three circle intersections of the star, planet 
and moon, (3) a different sampling of the posterior space (MultiNest 
for LUNA15,22; UltraNest for Pandora), (4) a different conversion scheme 
between time stamps in the light curve and the true anomalies of the 
circumstellar and local planet–moon orbits and (5) an accelerated 
model throughput of Pandora of about 4 to 5 orders of magnitude13, 
while still keeping the overall flux errors <1 ppm.

Results
Kepler-1625 b
Using the data from the three transits observed with Kepler, we first 
masked one transit duration’s worth of data to either side of the actual 
transit before detrending. We found this amount of data to correspond 
roughly to the planetary Hill sphere, which we omit from the detrending 
to avoid the removal of any potential exomoon transit signature. We 
then explored three different approaches for detrending and fitting 
the Kepler data from stellar and systematic activity and combining it 
with Hubble data (Methods). The posterior sampling was achieved 
using the UltraNest software23.

Approach 1 resulted in 2 loge(Bmp) = 15.9, where Bmp is the Bayes 
factor for the planet–moon hypothesis over the planet-only hypothesis 
(Methods), signifying ‘decisive evidence’ for an exomoon according 
to the Jeffreys scale (Supplementary Table 1). In approach 2, the statisti-
cal evidence turned out to be about an order of magnitude lower in 
terms of Bmp, with 2 loge(Bmp) = 11.2. In approach 3, the Bayesian evi-
dence for an exomoon was almost yet another order of magnitude 
lower with 2 loge(Bmp) = 7.3 , which signifies ‘very strong evidence’. 
These results confirm the strong dependence of the statistical evidence 
of the exomoon-like signal on the detrending.

Figure 1a–d shows 100 light curves for the combined fit of the 
Kepler and Hubble data based on approach 2 (orange lines) that were 
randomly chosen from the posterior distribution. We do not show 
any planet-only models from the corresponding posteriors since the 
weighting of the number of planet–moon models and the number of 
planet-only models is based on the likelihood of the models (Methods) 
and the planet-only interpretation is 265 times less probable than the 
planet–moon interpretation. We do, nevertheless, show the best fit of 
the planet-only model in Fig. 1a–d for comparison (black solid line), 
which is important to our interpretation of the transit depth.

Plausibility of transit solutions. Although the statistical evidence 
is overwhelming, we noticed several things about the astrophysical 
plausibility of the solutions and the morphology of the transit light 
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with the published value of 3,222.5547 (±0.0014) d (ref. 29) 
with a deviation of much less than the standard deviation (σ). 
The TTV has a discrepancy of about 3σ of the predicted tran-
sit mid-time at 3,222.6059 (±0.0182) d using the three transits 
from Kepler alone. It is unclear if this timing offset was caused 
by a moon, by an additional, yet otherwise undetected planet 
around Kepler-1625 (refs. 27,29,30) or by an unknown system-
atic effect. Curiously, even if we artificially correct for this TTV, 
the exomoon solution is still preferred over the planet-only solu-
tion with similar evidence and similar posteriors. This suggests 
that not the TTV but the transit depth discrepancy between the 
Kepler and the Hubble data is the key driver of the statistical 
evidence for an exomoon around Kepler-1625 b. In other words, 
although the TTV between the Kepler and the Hubble data is sta-
tistically at the 3σ level and even though the exomoon interpre-
tation around Kepler-1625 b hinges fundamentally on the Hub-
ble data, the TTV effect is not as important. It is the transit depth 
discrepancy that causes the spurious moon signal.

 (7) The residual sum of squares in the combined Kepler and Hub-
ble datasets, on a timescale of a few days, is 301.5 ppm2 for the 
planet-only best fit (Fig. 1e–h) and 295.2 ppm2 for the best-fitting 
planet–moon model (Fig. 1i–l). The root mean square (r.m.s.) is 
625.7 ppm for the planet-only model and 619.1 ppm for the plan-
et–moon model, respectively. The difference in r.m.s. between 
the models is very slim, only 6.6 ppm. Possibly more important, 
this metric for the noise amplitude is larger than the depth of the 
claimed moon signal of about 500 ppm (ref. 22).

 (8) Our properly phase-folded exomoon transit light curve has a 
marginal S/N of only 3.4 or 3.0, depending on the detrending. 
There is also no visual evidence for an exomoon transit in this 
phase-folded light curve of Kepler-1625 b (Methods).

Transit injection-retrieval experiment. In addition to our exomoon 
search around Kepler-1625 b, we performed an injection-retrieval 
experiment using the original out-of-transit Kepler data of the star 
(Methods).
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Fig. 1 | Transit light curves of Kepler-1625 b. Each column shows data for one of 
the four transits (transits 1 to 3 from Kepler and transit 4 from Hubble), 
respectively. The out-of-Hill-sphere parts of the Kepler-1625 b transit light curves 
were detrended using a sum of cosines, and the LDCs were used as free fitting 
parameters. Time is in units of BKJD, which is equal to BJD − 2,454,833.0 d.  
a–d Orange lines visualize 100 planet–moon models that were randomly drawn 
from the respective posterior distributions for transit 1 (a), transit 2 (b), transit 3 
(c) and transit 4 (d). Planet-only models are omitted as the corresponding Bayes 
factor of 2 loge(Bmp) = 11.2 suggests that the planet–moon interpretation is 265 

times more probable than the planet-only interpretation. The best-fitting models 
of a planet only and of a planet with a moon are shown with solid and dashed 
black lines, respectively. Grey horizontal lines labelled as ‘Kepler mean’ illustrate 
the mean transit depth resulting from the three transits observed with Kepler. 
e–h Residuals of the observed data and the best fit of the planet-only model for 
transit 1 (e), transit 2 (f), transit 3 (g) and transit 4 (h). Red lines denote the 
five-bin walking mean. i–l Residuals of the observed data and the best fit of the 
planet–moon model for transit 1 (i), transit 2 (j), transit 3 (k) and transit 4 (l).
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We tested 128 planet-only systems with planetary properties akin 
to those of Kepler-1625 b, and we tested two families of planet–moon 
models, each comprising 64 simulated systems. For both simulated 
exomoon families, we used physical planet–moon properties corre-
sponding to our best fit from approach 2. For one exomoon family, we 
tested orbital alignments like those from our best fits, whereas for the 
other family we tested only coplanar orbits. Moons from the coplanar 
family would always show transits and possibly even planet–moon 
eclipses, thereby increasing the statistical significance. Orbital periods 
for all planet–moon systems ranged between 1 and 20 d.

The resulting distribution of the 2 loge(Bmp) values as a function 
of the moon’s orbital period is shown in Fig. 2a. As a general observa-
tion, the Bayesian evidence increases substantially for moons in wider 
orbits, partly because more of the moon’s in-transit data are separated 
from the planetary in-transit data14. As an interesting side result, this 
is direct evidence from photodynamical modelling that a selection 
effect due to exomoon transit contamination by the planet will prefer 
exomoon discoveries in wide orbits. The Bayes factors for our own 
exomoon search around Kepler-1625 b (black filled circles) and those 
from previous works27 (empty square) are several orders of magnitude 
lower than those from our injection-retrieval experiments with  
injected moons.

Our retrievals demonstrate that our detrending does not, in the 
most cases, erase an exomoon signal that would be present in the Kepler 
data. Our true positive rate, defined as decisive evidence on the Jeffreys 
scale (2 loge(Bmp) > 9.21), is between 76.6% and 96.9%, depending on 
the orbital geometry of the injected planet–moon system. Details are 
given in Supplementary Table 4. For injected moons with periods near 
20 d, we find 2 loge(Bmp)  ranging between 100 and 1,800. The real 
Kepler plus Hubble data suggests 2 loge(Bmp) between 7.3 (this work, 
detrending approach 3) and 25.9 (ref. 27). At the corresponding moon 
orbital periods of 17 to 24.5 d, these 2 loge(Bmp) values are more com-
patible with our injection-retrievals of a planet-only model (black open 
circles). Figure 2b illustrates the same data as a 2 loge(Bmp) histogram, 
highlighting that by far most of our injected exomoons have 2 loge(Bmp) 
values larger than those found for the real transit data of Kepler-1625 
b. Importantly, in 14 out of 128 simulated planet-only transits, we find 
2 loge(Bmp) > 9.21, corresponding to a false positive rate of 10.9%.

Kepler-1708 b
For the two transits of Kepler-1708 b, we tested the same three detrend-
ing and fitting approaches as for Kepler-1625 b. Each of these approaches 
resulted in distinct Bayes factors when comparing the planet-only and 

the planet–moon models (Supplementary Table 3). None of the result-
ing Bayes factors suggests strong evidence in favour of an exomoon 
interpretation. With approach 1, we obtain 2 loge(Bmp) = −4.0, that is 
to say, a 1/0.14 = 7.1-fold statistical preference for the planet-only 
hypothesis. Approach 2 yields 2 loge(Bmp) = 1.0, which is a statistical 
hint of an exomoon and ‘not worth more than a bare mention’ on the 
Jeffreys scale31. And with approach 3, we obtain 2 loge(Bmp) = 2.8, which 
is substantial evidence of an exomoon around Kepler-1708 b. Details 
of the posterior sampling and best-fitting model solutions are given 
in the Methods.

Figure 3a,b shows a random selection of planet-only (blue) and 
planet–moon (orange) transit light curves from our posterior sam-
pling with UltraNest. This particular set of solutions was obtained with 
detrending approach 2. In our graphical representations, we chose 
to show both planet–moon solutions and planet-only solutions by 
weighting the number of light curves per model with the corresponding 
Bayes factor. In this particular case, we plot np = 1/(1 + Bmp) = 67% of the 
light curves based on planet-only models and nmp = 1 − 0.5 = 33% with 
planet–moon models (Methods).

Plausibility of transit solutions. We identify several aspects that are 
critical to the assessment of the plausibility of the exomoon hypothesis.

 (1) It has been argued that the pre-ingress dip of transit 1 between 
about 771.6 and 771.8 d (BKJD) cannot be caused by a star 
spot crossing of the planet since the planet is not in front of 
the star at this point17. We second that, but we also point out 
that at 1,508 d (BKJD), just about 1 d before transit 2, there 
was a substantial decrease in the apparent stellar brightness 
of ~800 ppm (see residuals in Fig. 3d,f) that is as deep as the 
suspected moon signal. This second dip near 1,508 d (BKJD) 
also cannot possibly be related to a star spot crossing, which 
demonstrates that astrophysical or systematic variability may 
also explain the pre-ingress dip of transit 1 of Kepler-1708 b. An 
exomoon is not necessary for explaining the pre-ingress varia-
tion of transit 1.

 (2) The residual sum of squares for the entire data in Fig. 3 is 
108.4 ppm2 for the planet-only best fit and 107.7 ppm2 for the 
best-fitting planet–moon model. The r.m.s. is 529.9 ppm for 
the best-fitting planet-only model and 528.2 ppm for the best 
planet–moon model. For comparison, the depth of the pro-
posed moon transit is ~1,000 ppm and several features in the 
light curve have amplitudes of ~800 ppm on a timescale of 0.5 d. 
The proposed exomoon transit signal is not distinct from other 
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Fig. 2 | Injection-retrieval tests of a planet-only model and two types of large 
moons into the out-of-transit data of the original light curve of Kepler-1625 
b. a, Bayes factor distribution for orbital periods of the injected moons between 1 
and 20 d. Black open circles refer to injections of planet-only models with a 
random spread over the planet–moon period axis. Orange points refer to 
injections of a Kepler-1625 b-like planet and a moon that we parameterized 
according to the best-fitting posteriors of our own search. Blue dots with crosses 

show the outcome of simulations with a hypothetical coplanar system of a 
Kepler-1625-like planet with a large moon. The black solid circles and the black 
open square are the Bayes factors in this work and from ref. 27 (see the legend). 
The dashed lines in the lower right corner outside the plotting area denote the 
boundaries of the Jeffreys grades for 2 loge(Bmp) of 0, 2.30, 4.61, 6.91 and 9.21, 
respectively. b, Bayes factor histograms for the two types of injections with 
moons. Colours correspond to the same moon types as in a.
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sources of variations in the light curve, which are probably of 
stellar or systematic origin.

 (3) Although we identify visually apparent dips that could be at-
tributed to a transiting exomoon, other variations in the 
phase-folded light curve that cannot possibly be related to a 
moon cast doubt on the exomoon hypothesis (Methods).

 (4) Most of the claimed photometric moon signal occurs during 
the two transits of the planetary body, which makes it extreme-
ly challenging to discern the exomoon interpretation from 

limb-darkening effects related to the planetary transit. This find-
ing is reminiscent of our analysis of the transits of Kepler-1625 b. 
Due to geometrical considerations it is, in fact, unlikely a priori 
that a moon performs its own transit in a close apparent deflec-
tion to its planet.

 (5) Our orbital solutions for the proposed exomoon vary substan-
tially depending on the detrending method. As an example, the 
orbital period of the moon obtained from our best fits is 12.0 
(±19.0), 1.6 (±5.6) or 7.2 (±6.2) d for detrending approaches 1, 2 
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only and of a planet with a moon are shown with dashed and solid black lines, 
respectively. c,d, Residuals of the observed data and the best fit of the planet-
only model for transit 1 (c) and transit 2 (d). Red lines denote the five-bin walking 
mean. e,f, Residuals of the observed data and the best fit of the planet–moon 
model for transit 1 (e) and transit 2 (f). ppt, parts per thousand.
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and 3, respectively. We verified that these are not aliases on the 
same orbital mean motion frequency comb but rather com-
pletely independent solutions. For a real and solid exomoon 
detection, we would expect that the solution is stable against 
various reasonable detrending methods.

Transit injection-retrieval experiment. In the same manner as for 
Kepler-1625 b, we performed 128 planet-only injection-retrievals 
and two sorts of 64 planet–moon injection-retrievals, all with orbital 
periods between 1 and 20 d. For each injection, we used out-of-transit 
data from the original Kepler-1708 b light curve from the Kepler 
mission.

Figure 4a shows the 2 loge(Bmp) distribution resulting from our 
injection-retrieval tests as a function of the injected orbital period of 
the moon. Injected moons and real measurements for Kepler-1708 b 
are colour-coded as in Fig. 2. The Bayes factors that we find for the 
injected moons indicate decisive Bayesian evidence (2 loge(Bmp) > 9.21) 
in over half of the cases and values up to ~100 when the orbital period 
of the planet–moon system Ppm > 10 d. We retrieved a true positive in 
34 out of 64 cases (53.1%) with an injected moon like the best fit and in 
38 of 64 cases (59.4%) with a coplanar injected moon (Methods).  
Figure 4b demonstrates that both our statistical evidence and the 
previously found evidence17 are clearly separated from about 2/3 of 
the population of retrieved exomoons with injected parameters drawn 
from the 2σ intervals of our best-fitting moon model of Kepler-1708 b. 
The Bayes factors of the best-fitting planet–moon and planet-only 
models for the real transits of Kepler-1708 b are close to the distribution 
of the Bayes factors of our injected planet-only models. Our false posi-
tive rate among the planet-only injections with decisive evidence is 
2/128 = 1.6% (Methods and Supplementary Table 5).

Discussion
Our unified approach for detecting exomoon transits in stellar photom-
etry includes statistical measures, plausibility checks of the obtained 
solutions, visual inspection of stellar light curves and careful interpre-
tation of the posterior samplings. This results in the following inter-
pretation of the two exomoon candidates around Kepler-1625 b and 
Kepler-1708 b.

Exomoon candidate around Kepler-1625 b
The Bayesian evidence in favour of a large exomoon around Kepler-1625 
b depends strongly on the choice of the detrending method. Although 

we find ‘very strong’ to ‘decisive’ evidence (7.3 ≲ 2 loge(Bmp) ≲ 15.9), 
some new arguments lead us to conclude that Kepler-1625 b is not 
orbited by a large exomoon (Results).

Another aspect that has not been addressed explicitly before is 
the truncated out-of-transit baseline of the Hubble data. This has a 
crucial effect on the shape and the depth of the transit. The incomplete 
detrending necessarily leads to a mis-normalization and possibly even 
to the injection of false positive exomoon signals32. In combination with 
the perils induced by the wavelength dependence of the stellar limb 
darkening, we think that the Hubble data of the Kepler-1625 b transit 
are, therefore, not useful for an exomoon search.

In addition to the excessive statistical analysis of the light curve 
of Kepler-1625 b and our inspection of the noise properties of the 
Kepler and Hubble light curves, there is no visual evidence of any moon 
transit in the data. Although this is not a decisive argument against 
an exomoon, since visual inspection is not an ideal tool for identify-
ing transits nor for rejecting transits, a clear transit signal would be 
something that everybody would like to see for a first detection of an 
exomoon. In this case, the extraordinary claim of an exomoon around 
the giant planet Kepler-1625 b is not supported by any visual evidence 
in the data of an exomoon transit.

Exomoon candidate around Kepler-1708 b
The Bayesian evidence for the proposed exomoon around Kepler-1708 
b is weaker than that for Kepler-1625 b, ranging between a support of 
the planet-only hypothesis and substantial evidence for an exomoon 
(−4 ≲ 2 loge(Bmp) ≲ 2.8 ), depending on the light curve detrending. 
Whichever detrending we use, we obtain consistently lower evidence 
for the exomoon hypothesis than the 11.9-fold preference over the 
planet-only hypothesis (2 loge(Bmp) = 4.95) as previously claimed17. 
We attribute part of this disagreement to our use of the UltraNest soft-
ware when sampling the posterior space. Previous studies used Multi-
Nest, which may produce biased results33 and underestimated 
uncertainties34, both of which are avoided with UltraNest23. Beyond 
our Bayesian analysis, our close inspection of the transit light curve 
reveals several arguments that can explain the data without the need 
for an exomoon (Results).

Our injection-retrieval experiments using real out-of-transit 
Kepler data of Kepler-1708 show that an exomoon with similar physical 
properties as the previously claimed exomoon would have a much 
higher Bayes factor (10 ≲ 2 loge(Bmp) ≲ 100) than suggested by the 
actual data. Although this finding in itself does not mean that there is 
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Fig. 4 | Injection-retrieval tests of a planet-only model and two types of large 
moons into the out-of-transit data of the original light curve of Kepler-1708. 
a, Bayes factor distribution for orbital periods of the injected moons between  
1 and 20 d. Black open circles refer to injections of planet-only models with a 
random spread over the planet–moon period axis. Orange points refer to 
simulations with a Kepler-1708 b-like planet and a moon that we parameterized 
according to the best-fitting posteriors of our own search. Blue dots with crosses 

show the outcome of injections of a hypothetical coplanar system with a 
Kepler-1708-like planet and a large moon. The black solid and black open circles 
with error bars refer to the Bayes factors of this work and of ref. 17 (see legend). 
The dashed lines in the lower right corner outside the plotting area denote the 
boundaries of the Jeffreys grades for 2 loge(Bmp) of 0, 2.30, 4.61, 6.91 and 9.21, 
respectively. b, Bayes factor histograms for the two types of injections with 
moons. Colours correspond to the same moon types as in a.
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not a real exomoon in the original Kepler-1708 b data, it makes us suspi-
cious that of all the possible transit realizations for a given exomoon 
around Kepler-1708 b, Kepler observed two transits in which the Bayes-
ian evidence of an exomoon is barely above the noise level.

Finally, the false positive rate of 1.6% of our injection-retrieval 
tests suggests that an exomoon survey in a sufficiently large sample 
of transiting exoplanets with similar S/N characteristics yields a large 
probability of at least one false positive detection, which we think is 
what happened with Kepler-1708 b (Methods).

Exomoon detection limits
We executed additional injection-retrieval experiments to get a more 
general idea of exomoon detectability with current technology. Pho-
todynamical analyses of our simulated light curves with idealized 
space-based exoplanet transit photometry suggests that exomoons 
smaller than about 0.7 R⊕ or closer than about 30% Hill radii to their 
gas giant host planets cannot possibly be detected with Kepler-like 
data. For comparison, the largest natural satellite of the Solar System, 
Ganymede, has a radius of about 0.41 R⊕, and all the principal moons of 
the Solar System gas giant planets are closer than about 3.5% of their 
planetary host’s Hill sphere.

Thus, any possible exomoon detection in the archival Kepler data 
or with upcoming PLATO observations will necessarily be odd when 
compared to the Solar System moons. In this sense, the now refuted 
claims of Neptune- or super-Earth-sized exomoons around Kepler-1625 
b and Kepler-1708 b could nevertheless foreshadow the first genuine 
exomoon discoveries that may lay ahead.

Methods
Model parameterization
Our planet-only model has seven fitting parameters for Kepler-1708 
b and nine fitting parameters for Kepler-1625 b. For both systems, we 
used the circumstellar orbital period of the planet (Pp), the orbital 
semimajor axis (ap), the planet-to-star radii ratio (rp), the planetary 
transit impact parameter (bp), the time of the first planetary mid-transit 
(t0,p) and two LDCs for the quadratic limb-darkening law to describe 
the limb darkening in the Kepler band (u1,K, u2,K). For Kepler-1625 b, we 
also require two additional LDCs to capture the limb darkening in the 
Hubble band (u1,HST, u2,HST).

It is important to note the methodological difference to the 
model used in the previous study that claimed a Neptune-sized exo-
moon around Kepler-1625 b (ref. 27). That model also included a 
parameter to fit for any possible radius discrepancy between the 
Kepler and the Hubble data. Taking one step back, there are two 
possible reasons for a transit depth discrepancy in two different 
instrumental filters, for example from Kepler and Hubble. First, the 
planet can actually have different apparent radii in different wave-
length bands, for example caused by a substantial atmosphere with 
wavelength-dependent opacity35. Second, the wavelength depend-
ence of stellar limb darkening can lead to different shapes and differ-
ent maximum flux losses during the transit, even for a planet without 
an atmosphere36. The first aspect of the wavelength dependence of 
the planetary radius was covered for Kepler-1625 b in the first study 
that analysed the combined Kepler plus Hubble data in the search for 
an exomoon27. These authors found that the radii ratio of the planet 
in the Hubble and the Kepler data was ~1, with a standard deviation 
of about 1%. This result can be retrieved from their Table 2 (second 
parameter Rp,HST/Rp,Kep) and from their Fig. S16 (parameter pH/pK). The 
largest discrepancy is found with their quadratic detrending method, 
which yields Rp,HST/Rp,Kep = 1.009 (+0.019, −0.017). The upper limit 
within 1σ is 1.009 + 0.019 = 1.028. Our best fit for the planet-to-star 
radii ratio is 0.0581 (±0.0004), depending on the detrending method. 
To achieve a radius discrepancy of 1.028, our planet-to-star radii ratio 
would need to be about 0.0597/0.0581 ≈ 1.028 between the Kepler 
and the Hubble data, which is 4σ away from our best fit. We are, thus, 

sufficiently confident that we can drop the wavelength dependence 
of the planetary radius in our fitting procedure. As for the second 
aspect of the wavelength dependence of stellar limb darkening, this 
astrophysical phenomenon naturally reproduces the observed transit 
depth discrepancy plus the difference in the transit profiles, all at one 
go. This can be seen by comparing Fig. 1a–c with Fig. 1d, in which the 
transit in the Hubble data is fitted well with two different pairs of LDCs 
and without the need for a wavelength dependence of the planetary 
radius. All things combined, a planetary radius dependence on wave-
length is not required. Instead, the wavelength dependence of stellar 
limb darkening can naturally explain the different transit shapes and 
transit depths between the Kepler and the Hubble data. This differ-
ence in our model parameterization leads to different solutions for 
the posteriors compared to the previous study27.

Our planet–moon model includes a total of 15 fitting param-
eters for Kepler-1708 b: the stellar radius (Rs), two stellar LDCs to 
parameterize the quadratic limb-darkening law (u1,K, u2,K), the circum-
stellar orbital period of the planet–moon barycentre (Pb), the time 
of inferior conjunction of the first mid-transit of the planet–moon 
barycentre (t0,b), the orbital semimajor axis of the planet–moon bar-
ycentre (ab), the transit impact parameter of the planet–moon bar-
ycentre (bb), the planet-to-star radii ratio (rp), the planetary mass (Mp),  
the moon-to-star radii ratio (rm), the orbital period of the planet–
moon system (Ppm), the inclination of the planet–moon orbit against 
the circumstellar orbital plane (ipm), the longitude of the ascending 
node of the planet–moon orbit (Ωpm), the orbital phase of the moon 
at the time of barycentric mid-transit (τpm) and the mass of the moon 
(Mm). For Kepler-1625 b, we required another two LDCs for the Hub-
ble data (u1,HST, u2,HST), making a total of 17 fitting parameters in this 
case. In principle, Pandora can also model eccentric orbits, which 
would add another four fitting parameters (for details see ref. 13), 
but we focused on circular orbits in this study. All times are given as 
barycentric Kepler Julian day (BKJD), which is equal to barycentric 
Julian day (BJD) − 2,454,833.0 d.

As our priors for the star Kepler-1625 (KIC 4760478), we used  
a stellar mass of Ms = 1.113+0.101−0.076 M⊙ (subscript ⊙ refers to solar values), 
a radius of Rs = 1.739+0.143−0.161 R⊙  and an effective temperature of 
Teff = 5, 542+155−132  K, as derived from isochrone fitting37. For the star 
Kepler-1708 (KIC 7906827), we used as our priors Ms = 1.061+0.073−0.079 M⊙, 
Rs = 1.141+0.073−0.066 R⊙ and Teff = 5,972+126−122 K (ref. 37).

In one of our approaches to fitting the data with Pandora, we fixed 
the stellar LDCs to study the effect of stellar limb darkening on the 
posterior distribution and the evidence of any exomoon signal. For 
Kepler-1625 b, we used two sets of LDCs. In the band of Hubble’s Wide 
Field Camera 3, we used the same LDCs as a previous study28 
(u1,HST = 0.216 and u2,HST = 0.183), the values of which were derived from 
PHOENIX stellar atmosphere models38 for a main-sequence star with 
an effective temperature of Teff = 5,700 K and with solar metallicity, 
[Fe/H] = 0. To ensure consistency between the fixed LDCs in the Kepler 
and Hubble passbands, we derived the LDCs in the Kepler band from 
pre-computed tables39, again based on PHOENIX stellar atmosphere 
models for a star with Teff = 5,700 K, [Fe/H] = 0 and a surface gravity of 
log(g/[cms−2]) = 4.5, for which (u1,K = 0.482 and u2,K = 0.184).

Although t0,p is the time of the first planetary mid-transit in our 
model parameterization, UltraNest requires a prior (T0), which we took 
from the literature. For Kepler-1625 b, we used T0 = 636.210 d (ref. 27), 
and for Kepler-1708 b, we used T0 = 772.193 d (ref. 17; all times in BKJD). 
We restricted the UltraNest search for t0 to within ±0.1 d around the 
prior. This yielded t0 = T0 + 0.01+0.01−0.01  for the planet-only model of 
Kepler-1625 b and t0 = T0 + 0.01+0.02−0.02 for the barycentre of the planet–
moon model of Kepler-1625 b. For Kepler-1708 b, we obtained 
t0 = T0 − 0.01+0.00−0.00  for the planet-only model and t0 = T0 − 0.01+0.01−0.01   
for the barycentre of the planet–moon model.

The remaining planetary and orbital priors were drawn from uni-
form distributions.
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Light curve detrending
Detrending has been shown to have a major effect on the statistical 
evidence for exomoon-like signals in transit light curves27. Detrend-
ing can even inject artificial exomoon-like false positive signals in 
real data32. Moreover, a solid case for an exomoon claim should be 
robust against different detrending methods. Hence, we consider the 
detrending part of our data analysis as a crucial step and test three 
different approaches.

In all three detrending approaches, our Pandora model included 
two stellar LDCs for the Kepler data and an independent set of two LDCs 
for the Hubble data, both sets of which were used to parameterize the 
quadratic stellar limb-darkening law.

In detrending approach 1, we fixed the four LDCs based on stel-
lar atmosphere model calculations39. The detrending of the Kepler 
data was done using a sum of cosines as implemented in the Wōtan 
software40, which is a re-implementation of the CoFiAM algorithm24 
that has previously been used to detect exomoon-like transit signals 
around Kepler-1625 b and Kepler-1708 b.

In approach 2, we explored the effect of treating the LDCs as either 
fixed or as free fitting parameters. We also used a sum of cosines for 
detrending as in approach 1, but the two sets of two LDCs were treated 
as free parameters during the fitting process.

In approach 3, we also used the four LDCs as free parameters but 
used the biweight filter implemented in Wōtan. The biweight filter has 
become quite a popular algorithm for detrending stellar light curves 
in search of exoplanet transits since it has the highest recovery rates 
for transits injected into simulated noisy data40. Hence, we consider 
Tukey’s biweight algorithm also a natural choice for detrending when 
searching for exomoon transits.

Of course, more detrending methods could be explored, for exam-
ple polynomial fitting32 and linear, quadratic or exponential fitting27. 
As demonstrated for detrending light curves when searching for exo-
planet transits40, an optimal detrending function that works best in 
every particular case may not exist for exomoons either. Hence, we 
restrict our study to three detrending approaches that we found to 
perform exquisitely in our injection-retrieval experiments, as they have 
low false positive and false negative rates as well as high true positive 
and true negative rates.

Supplementary Fig. 1 (for Kepler-1625 b) shows the resulting poste-
rior sampling from UltraNest for detrending approach 2, as it produces 
the highest Bayes factor in favour of an exomoon signature. Moreover, 
in Supplementary Fig. 2 (for Kepler-1708 b), we illustrate the UltraNest 
posteriors after detrending with approach 3 for the same reason. The 
posterior samplings for the other two approaches appear qualitatively 
similar, although the exact values differ. We decided to present the 
maximum likelihood values and their respective standard deviations 
for each parameter in the column titles of these corner plots. These 
maximum likelihood values are different from the values that we list in 
Supplementary Table 2 (for Kepler-1625 b) and Supplementary Table 3  
(for Kepler-1708 b), which present the mean values and standard devia-
tions of the posterior samplings. We opted for these two different 
representations of the results between the corner plots and tables to 
give different perspectives of the non-Gaussian and often multimodal 
posterior samplings.

Bayesian evidence from nested sampling
We use the Bayes factor as our principal statistical measure to compare 
the planet-only and planet–moon models. The Bayes factor is defined 
as the ratio of the marginalized likelihoods of two different models. 
The marginal likelihood can be viewed as the integral over the posterior 
density ∫dθL(D∣θ)π(θ), where L(D∣θ) is the likelihood function and π(θ) 
is the prior probability density. We define the marginal likelihood of 
the transit model including a moon as Zm and the marginal likelihood 
of the planet-only transit model as Zp. In our work, the natural logarithm 
of the Bayesian evidence loge(Z)  is computed numerically for both 

models (and given the respective data) using UltraNest23. Then the 
corresponding Bayes factor is

Bmp =
Zm
Zp

=
exp{loge(Zm)}
exp{loge(Zp)}

= exp{loge(Zm) − loge(Zp)}, (1)

where the loge function refers to the natural logarithm, that is, the 
logarithm to base e (Euler’s number). In the context of previous exo-
moon searches, the Bayes factor (B) has often been quoted on a loga-
rithmic scale as loge(B)  (ref. 15) or 2 loge(B)  (ref. 27). On this scale, a 
preference for the planet-only (planet–moon) model is indicated by 
negative (positive) values.

The Jeffreys scale31 has become widely used as a tool in astrophys-
ics to translate numerical Bayes factors into spoken language. It has 
also been used in a modified form41 for previous estimates of the evi-
dence for exomoons around Kepler-1625 b (ref. 27) and Kepler-1708 b 
(ref. 17). Although the Jeffreys scale originally referred to the evidence 
against the null hypothesis (Z0), we adopt the equivalent perspective 
of the evidence in favour of the alternative hypothesis (Z1), in our case 
the evidence for an exomoon. Hence, we use the inverse numerical 
values for the Bayesian factor as discussed in the appendix of Jeffreys’ 
work31. In our terminology, B10 = Z1/Z0 is the Bayes factor designating 
the evidence in favour of Z1 over Z0. Our adaption of the Jeffreys scale 
is shown in Supplementary Table 1, which also presents the correspond-
ing values of 2 loge(B10) as well as the odds ratio in favour of the alterna-
tive hypothesis (Z1).

In representing the light curves that are randomly drawn from 
the posterior samples of UltraNest, we plot both planet–moon and 
planet-only solutions by taking into account the corresponding Bayes 
factor. We require that the ratio between the number of light curves 
with a moon (nmp) and the number of light curves based on a planet-only 
model (np) is equal to the ratio of the corresponding marginalized likeli-
hoods, nmp/np = Bmp. Moreover, the sum of the ratios must be nmp + np = 1. 
Substitution of nmp yields npBmp + np = 1, which is equivalent to np = 1/
(1 + Bmp).

We utilize this conversion between the Bayes factor and the odds 
ratio of the evidences under investigation in equation (1) and contex-
tualize it as a means to assess the deviation of a particular B measure-
ment from the normal distribution of B measurements, assuming that 
the noise is normally distributed. This evaluation is done using the 
error function erf(x) = 2/√π∫x

0 dt e−t2, which we compute numerically 
using erf(), which is a built-in Python function in the scipy library. Given 
a deviation of n times the standard deviation (σ) from the mean value 
of a normal distribution, the value of erf(n/√2) gives the fraction of the 
area under the normalized Gaussian curve that is within the error bars. 
In particular, for n = 1, one obtains the well-known erf(1/√2) = 66.8%.

The odds can then be calculated as O = 1/(1 − erf(n/√2)), and with 
equation (1), we have loge(B) = loge(O). Then a 3σ detection is signified 
by loge(B) ≥ 5.91, a 4σ detection by loge(B) ≥ 9.67 and a 5σ detection by 
loge(B) ≥ 14.37 (Supplementary Fig. 3). These numbers are in agreement 
with the results from previous 200 injection-and-retrieval tests17. From 
their sample of planet-only injections into the out-of-transit Kepler 
light curve of Kepler-1708 b, these authors found one false positive 
exomoon detection with loge(B) > 5.91. For comparison, we found that 
the odds for such a 3σ detection are 1/370, and so for 200 retrievals 
with an injected planet-only model, we would expect 200/370 = 0.54 
false positives, which is 1 when rounded to the next full integer.

Convergence of nested sampling
For nested sampling, we used UltraNest with a multimodal ellipsoidal 
region and region slice sampling. The Mahalanobis measure is used to 
define the distance between the start and end points of our walkers. The 
strategy terminates as soon as the measure exceeds the mean distance 
between pairs of live points. Specifically, UltraNest integrates until the 
live point weights are insignificant (<0.01). In different experiments, 
we used static and dynamic sampling strategies with 800 to 4,000 
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active walkers and always required 4,000 points in each island of the 
posterior distribution before a sample was considered independent. 
All experiments yielded virtually identical results, showing excellent 
robustness. In addition, we performed 1,000 injection-retrieval experi-
ments to ensure that the recovery pipeline was robust.

Likelihood surface exploration is sufficiently complete after about 
108 model evaluations for our data (Supplementary Fig. 4), whereas 
approximately 109 model evaluations yielded only marginal gains. 
Many other sampling strategies, such as reactive nested sampling or 
the use of correlated model parameters, led to slower convergence by 
up to three orders of magnitude. Moreover, the MultiNest software 
previously used for planet-only and planet–moon model evaluations 
of the transit light curves of Kepler-1625 b and Kepler-1708 b has been 
shown to yield biased results33 and to systematically underestimate 
uncertainties in the best fit parameters34. These two key problems of 
MultiNest are avoided in UltraNest23. Our corresponding UltraNest 
sampling of the models generated with Pandora took 14 hr on a single 
core of an AMD Ryzen 5950X processor.

With regards to our UltraNest fits of Kepler-1625 b, detrending 
approach 1 resulted in more than 2.5 × 108 planet–moon model evalu-
ations, approach 2 in over 1.3 × 109 planet–moon model evaluations 
and approach 3 in almost 2.3 × 108 planet–moon model evaluations. 
For the UltraNest sampling of the Kepler-1708 b data after detrending 
with approaches 1, 2 and 3, we generated 1.6 × 108, 2.3 × 108 and 1.7 × 108 
planet–moon model evaluations, respectively.

For comparison, a typical nested sampling of 5 × 108 model evalu-
ations (Supplementary Fig. 4) takes 9 h on a single 4.8 GHz core of an 
Intel Core i7-1185G7 at a typical speed of 15,000 model evaluations 
per second.

Exomoon detectability
In view of the now several exomoon candidate claims near the detection 
limit, the general question about exomoon detectability in space-based 
stellar photometry arises. Due to the high computational demands of 
exoplanet–exomoon fitting12,13, this question cannot be addressed in 
an all-embracing manner for all possible transit surveys, cadences, 
system parameters, etc. Nevertheless, we executed a limited and ideal-
ized injection-retrieval experiment to determine the smallest possible 
moons that are detectable in Kepler-like data of (hypothetical) photo-
metrically quiescent stars.

All stars exhibit intrinsic photometric variability, which is caused 
by magnetically induced star spots, p-mode oscillations, granulation 
and other astrophysical processes. Moreover, any observation—even 
high-accuracy space-based photometry—comes with instrumental 
noise components from the readout of the charged coupled devices 
(CCDs), long-term telescope drift, short-term jitter, intra-pixel 
non-uniformity, charge diffusion, loss of the CCD quantum efficiency 
etc. After modelling and removing the instrumental effects, the pho-
tometrically most quiet stars with a Kepler magnitude Kp < 12.5 from 
the Kepler mission have been shown to exhibit a combined differential 
photometric precision over 6.5 h of about 20 ppm (ref. 42). Given that 
the nominal long cadence of the Kepler mission is 29.4 min and that 
the S/N scales with the square root of the number of data points, this 
corresponds to an amplitude of 72 ppm per data point, although great 
care should be taken when interpreting the combined differential 
photometric precision as a measure of stellar activity42.

In our pursuit to identify the idealized scenarios in which exo-
moons can be found, that is to say, to identify the smallest exomoons 
possible, we consider a nominal Neptune-sized planet in a 60 d orbit 
around a Sun-like star, corresponding to a semimajor axis of 0.3 AU. To 
some extent, we have in mind the most abundant population of warm 
mini-Neptune exoplanets that this hypothetical planet could represent. 
Over 2, 3 and 4 yr, such a planet would make 12, 18 and 24 transits, 
respectively. We also envision an exomoon around this planet, for 
which we test different physical radii and orbital periods around the 

planet. In the following, we find it helpful to refer to the extent of the 
moon orbit in units of the Hill radius (RHill = ab(Mp/[3Ms])

1/3), which can 
be considered as a sphere of the gravitational dominance of the planet. 
Moons in a prograde orbital motion, which orbit the planet in the same 
sense of rotation as the direction of the planetary spin, become gravi-
tationally unbound beyond ~0.4895 RHill (ref. 43). Retrograde moons, 
for comparison, can be gravitationally bound even with semimajor 
axes up to ~0.9309 RHill (ref. 43), depending on the orbital eccentricity. 
For comparison, the Galilean moons reside within 0.8% and 3.5% of 
Jupiter’s Hill radius, Titan sits at 1.8% of Saturn’s Hill radius and Triton 
orbits at 0.3% of Neptune’s Hill radius. The Earth’s Moon has an orbital 
semimajor axis of about 0.26 RHill.

In our experiment, we test exomoon injections throughout the 
entire Hill radius, which corresponds to an orbital period of about 33 d. 
For all our simulations, we used the Pandora software13 to generate 
planet–moon transit models at 30 min cadence to which we added 
normally distributed white noise as described. For each test case, we 
simulated a total of 18 transits over a nominal mission duration of 3 yr, 
representative of a Kepler-like space mission. The upcoming PLATO 
mission, for example, will observe two long-observation phase fields 
for either 2 + 2 yr or for 3 + 1 yr, respectively, in the hunt for Earth-like 
planets around Sun-like stars44,45. We then used the UltraNest software 
to populate the posteriors in the parameter space of both the 
planet-only and the planet–moon models and computed the Bayes 
factors, as in the main part of this study for Kepler-1625 b and 
Kepler-1708 b. The whole exercise was then repeated for moon orbital 
periods between 1 and 33 d and moon radii between 0.5 R⊕ and 1.0 R⊕. 
We define an exomoon recovery as an UltraNest detection of the 
injected signal with 2 loge(Bmp) > 9.21, corresponding to decisive evi-
dence on the Jeffreys scale.

Supplementary Fig. 5a shows one simulated transit of our hypo-
thetical warm Neptune-sized exoplanet and its Earth-sized moon 
around a Sun-like star in the white noise limit as described. The moon 
transit is barely visible by the human eye and is statistically insignifi-
cant. After 18 transits, however, the transit becomes statistically sig-
nificant and is even detectable in the phase-folded light curve of the 
planet–moon barycentre as the orbital sampling effect25,26 (Supple-
mentary Fig. 5b). Supplementary Fig. 6 shows the distribution of our 
recoveries in the parameter plane spanned by the moon radius and the 
moon’s orbital semimajor axis in units of RHill. As a main result, we find 
that moons smaller than about 0.7 R⊕ are barely detectable even for 
these idealized cases with completely inactive stars and a total of 18 
transits for a given planet–moon system. Moreover, the recovery rate 
drops to zero for orbits closer than about 0.3 RHill, which corresponds 
to orbital periods <5.5 d. This latter finding is in line with recent findings 
for the preservation of the exomoon in-transit signal being favoured 
in wide exomoon orbits14.

Injection-retrieval tests
The purpose of our injection-retrieval experiments for the observa-
tional data of Kepler-1625 b and Kepler-1708 b is twofold. First, we 
wanted to control the ability of our detrending approach to preserve 
any exomoon transit signal in those cases in which an exomoon is, 
indeed, present in the data. Second, we wanted to quantify the prob-
ability that our detrending approach induces a false exomoon signal 
in those cases in which no injected exomoon transit is actually present.

Our experiment began with the preparation of light curve seg-
ments that contain only stellar plus instrumental and systematic effects 
but no known planetary transits or possible moon transits. We removed 
the known planetary transits as well as 2 d segments before and after 
each planetary mid-transit time. For each injection of a planet–moon 
transit with Pandora, a random time in the remaining Kepler light curve 
was chosen. We then extracted a segment of 5 d around each injected 
mid-transit time for further use and validated that no more than five 
data points were missing to avoid using gaps in our experiment.
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In the next step, we created synthetic models with Pandora. These 
were either planet-only models or models with planet–moon systems. 
As for the planet-only injections, for both Kepler-1625 b and 
Kepler-1708, we performed a total of 128 exomoon searches in the light 
curve segments that contained only a planetary transit injection, with 
planetary properties drawn from our planet-only solutions for 
Kepler-1625 b or Kepler-1708 b, respectively. We chose negligible moon 
masses and radii, and the planet–moon orbital periods were chosen 
successively between 1 and 20 d with a constant step size of 
(20 − 1) d/128 = 0.148375 d. Strictly speaking, the choice of these peri-
ods is irrelevant since no moons were effectively injected in the 
planet-only data, but this arrangement of the data simplified the use 
with Pandora and it aided the representation of the 2 loge(Bmp) distribu-
tion from the planet-only injections in Figs. 2 and 4.

As for the exomoon injections, we distinguished two sorts 
of exomoons. For each type, there were 64 simulations on a grid 
of orbital periods between 1 and 20 d and a constant step size of 
(20 − 1) d/64 = 0.0297 d. For both Kepler-1625 b and Kepler-1708 b, 
we assumed one scenario of a moon in a coplanar orbit, that is to say, 
with ipm = 0° and Ωpm = 0°, but with randomized orbital phase offsets 
(τm). This set-up ensured that there were moon transits during every 
planetary transit and that planet–moon eclipses occurred occasion-
ally, a scenario that should increase the statistical signal of the moon. 
In a second scenario, we injected a planet and moon with the same 
radii and orbital distance but now ipm and Ωpm were drawn randomly 
from within the 2σ confidence interval of our posterior distributions 
obtained using detrending approach 2. This scenario is representative 
of the best-fitting exomoon solutions for Kepler-1625 b and Kepler-1708 
b and helped us to assess the true positive and false negative rates of 
our real exomoon search in the actually observed transits.

We injected these synthetic models in independent runs. In each 
run, a randomly chosen Kepler data segment was multiplied by the 
synthetic signal. Then the stellar and instrumental noise was detrended 
using Wōtan’s implementation of Tukey’s biweight filter40 with a win-
dow size of three times the planetary transit duration while masking 
the actual planetary transit before calculating the trend.

Finally, we ran UltraNest twice for each injected transit sequence, 
once with a planet–moon model and once with a planet-only model. 
The Bayes factor was then calculated in the form 2 loge(Bmp).

Injection-retrieval for Kepler-1625 b. The statistics of the original 
exomoon claim around Kepler-1625 b (ref. 15) was determined using 
the LUNA photodynamical model code12 together with MultiNest sam-
pling46 in a Bayesian framework. This resulted in 2 loge(Bpm) = 20.4 and 
an interpretation of ‘strong evidence’ of an exomoon according to the 
Kass and Raftery scale41. During their investigations of the Hubble 
follow-up observations, the authors re-examined the Kepler data and 
noticed a substantial decrease of the Bayes factor to 2 loge(Bpm) = 1 , 
which means that the evidence for an exomoon was essentially gone 
in the Kepler data.

The reason was found in an update of the Kepler Science Process-
ing Pipeline of the Kepler Science Operations Center (SOC) from v.9.0 
to v.9.3. Although the initial exomoon claim study15 used data from SOC 
pipeline v.9.0, the subsequent study27 used Kepler data from SOC 
pipeline v.9.3. The previous exomoon claim has now been explained as 
being a mere systematic effect in the Kepler data. Ironically, when add-
ing the new transit data from Hubble observations, a new exomoon-like 
signal was found with 2 loge(Bpm) = 11.2 or 2 loge(Bpm) = 25.9, depending 
on the method used for detrending the out-of-transit light curve. The 
claimed moon was now in a very wide orbit at ~40 planetary radii from 
the planet and with an orbital period of Ppm = 22+17−9  d, although the 
posterior distribution of Ppm was highly multimodal27.

Previous studies22 also describe a transit depth of 500 ppm for an 
exomoon candidate around Kepler-1625 b in the Hubble data. Their 
authors argued that if this feature were due to star spots rather than 

due to an exomoon, the depth of the signal should be about 650 ppm 
in the Kepler data, given the different bandpass response functions 
of Kepler and Hubble. They fitted box-like transit models to 100,000 
out-of-transit regions of the Kepler data of Kepler-1625 b and found 
that 3.8% of the experiments resulted in box-like transits deeper 
than 650 ppm (depth >650 ppm) and that 3.5% of the tests produced 
negative (inverted) transits with amplitudes below 650 ppm (depth 
<650 ppm).

Their injection-recovery tests of simulated data with only white 
noise resulted in similar though slightly smaller rates of such false 
positives with a similar symmetrical behaviour of positive and nega-
tive transits. The authors of these previous studies concluded that the 
spurious detections in the real and simulated Kepler data are, thus, due 
to Gaussian (white) noise rather than to time-correlated noise from star 
spots or other periodic stellar activity.

Our own injection-retrieval experiments for Kepler-1625 b were 
not restricted to the assumption of white noise. Instead, we used 
transit-free light curve segments from the original Kepler data of 
Kepler-1625 as described above. We used the fourth transit from Hub-
ble as is, as there was not enough out-of-transit Hubble data to inject 
and retrieve artificial transits and to do proper detrending for recovery.

Figure 2 shows the results of our injection-retrieval tests for 
Kepler-1625 b. Of the 128 injections of planet-only models (black cir-
cles), 96 are scattered between 2 loge(Bmp) = −0.13 and −7.49. With 114 
systems showing a Bayes factor lower than our decisive detection limit 
of 2 loge(Bmp) = 9.21, we determine a true negative rate of 89.1% and a 
false positive rate of 10.9%.

Of our 64 simulated planet–moon systems that were param-
eterized according to our UltraNest posteriors (orange dots), 61  
(95.3%) showed 2 loge(Bmp) > 15.9 . More generally, we retrieved 
62/64 = 96.9% of all moons with 2 loge(Bmp) > 9.21, 59 of which even had 
2 loge(Bmp) > 100.

From the injected transit models that included a moon on a copla-
nar orbit (pale blue dots with crosses), 45 (70.3%) had 2 loge(Bmp) > 15.9, 
as obtained with our detrending approach 1 of the original Kepler data. 
We also measured a true positive rate (2 loge(Bmp) > 9.21 ) of 
49/64 = 76.6%, of which 29 successful retrievals signified 
2 loge(Bmp) > 100.

Injection-retrieval for Kepler-1708 b. The exomoon claim paper for 
Kepler-1708 b proposes a super-Earth-sized moon with a radius of 
Rm = 2.61+0.42−0.43 R⊕ at a distance of 11.7+3.9−2.2 Rp and with an orbital period of 
Ppm = 4.6+3.1−1.8 d. The authors of that paper calculated a Bayes factor of 
Bmp = 11.9, which means 2 loge(Bmp) = 4.95 (ref. 17) and ‘strong evidence’. 
The authors performed 200 injections of a planet-only signal, in which 
they found 40 systems with 2 loge(Bmp) > 0  and two systems with 
2 loge(Bmp) > 4.61 (their Fig. 3, but note the abscissa scaling and the limit 
at loge(Bmp) > 2.3).

Figure 4 presents the outcome of all these simulations. Black open 
circles represent the 128 planetary transit injections without a moon, 
the 2 loge(Bmp) values of which are scattered between about −1.5 and 
−7.4. Orange points represent the exomoon–exoplanet injections that 
we sampled from the 2σ confidence interval of our best fit using 
detrending approach 2. Blue points with crosses refer to the coplanar 
exomoon–exoplanet injections. For comparison, we plotted the meas-
urements for the proposed exomoon signal around Kepler-1708 b from 
previous work17 and from this work (Supplementary Table 3). In 22 of 
the 64 tests (34.4%) with an injected moon that was parameterized from 
the 2σ posteriors, we found 2 loge(Bmp) < 0, that is, the moon signal was 
completely lost. In 39 out of 64 cases (60.9%), we found a 2 log(Bmp) 
value that is higher than the value of 2.8 that we derived by fitting the 
LDCs using a biweight filter. In 17 out of 64 cases (26.6%) with coplanar 
planet–moon orbits, we found 2 loge(Bmp) < 0 and the moon signal was 
completely lost. In 44 out of 64 cases (68.8%), we recovered the injected 
moon that was parameterized akin to the candidate around Kepler-1708 
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b with a 2 loge(Bmp) value larger than the value of 2.8 that we obtained 
by fitting LDCs and using a biweight filter for detrending.

In summary, the actual value of 2 loge(Bmp) = 2.8 for the proposed 
exomoon candidate is rather small compared to the values that we 
typically obtain from our injection-retrieval tests. Whenever there is 
really a moon in the data, it can be found with higher confidence than 
the proposed candidate in most cases. The Bayes factor of the candidate 
in the real Kepler data is also suspiciously close to the distribution of 
systems for which there was actually no moon present (Fig. 4).

In two of our 128 cases that included only planetary transits, we 
obtained 2 loge(Bmp) > 9.21. That is, our false negative rate was 1.6%. This 
value is compatible with the false positive rate of 1.0+0.7

−1.0 % reported by 
ref. 17. This finding highlights an interesting aspect that goes beyond 
the detection of an exomoon claim around Kepler-1708 b. Our false 
positive rate is equivalent to a probability of (1 − 2/128)1 = 98.4% that 
we do not detect a false positive exomoon in a Kepler-1708 b-like transit 
light curve. In two exomoon searches, the probability that we would 
not produce a single false positive would be (1 − 2/128)2 = 96.9%. After 
n searches, the probability of not detecting a false positive would be 
(1 − 2/128)n, and after 70 attempts the probability of having no false 
positive is 33.2%. In turn, the probability of having at least one false 
positive after 70 exomoon searches is 1 − (1 − 2/128)70 = 66.8%. Of 
course, this estimate is applicable only to stellar light curves with 
comparable stellar activity and noise characteristics. However, we find 
this an interesting side note given that the exomoon claim paper of 
Kepler-1708 b included a sample of 70 transiting planets17. From this 
perspective, the detection of a false positive giant exomoon around 
Kepler-1708 b is, maybe, not as surprising.

Phase-folded transit light curves
We artificially re-added the planetary contribution to the com-
bined planet–moon transit, which is not just a simple addition of 
a single planetary transit model, due to the possible planet–moon 
eclipses, but requires careful modelling with our photodynamical 
exoplanet-exomoon transit simulator Pandora13. Supplementary Fig. 7  
illustrates that there is no appealing visual evidence of an exomoon 
transit in the observations of Kepler-1625. The depth of the putative 
exomoon transit varies substantially between 500 ppm for approach 
2 and 100 ppm for approach 3, but the S/N was also marginal at <3.4 
or <3.0 for all four transits, depending on the detrending approach.

In both Supplementary Figs. 8a (detrending approach 2) and 8b 
(detrending approach 3), we see the folding of the two proposed exo-
moon transits around zero mid-transit time. However, we also see 
another dip of almost similar depth at about −1.5 d before the planetary 
mid-transit of transit 2 (orange dots), which corresponds to the dip at 
1,508 d (BKJD) mentioned above in our discussion of Supplementary 
Fig. 3. So, for Kepler-1708 b there actually is a visual hint of a stellar flux 
decrease in addition to the transit of the planet. However, its proximity 
in the light curve to another substantial variation in the light curve casts 
a serious doubt on the exomoon nature of the stellar flux decrease.

Hence, neither in the phase-folded light curve of the barycentre of 
Kepler-1625 b and its proposed moon nor for that of Kepler-1708 b did 
we identify any visually apparent variation that could be exclusively 
explained by an exomoon transit.

Transit depth discrepancy of Kepler-1625 b
To assess the probability that the observed discrepancy for the tran-
sit depths of Kepler-1625 b in the Kepler and Hubble data could be 
due to a statistical variation, we executed a bootstrapping experi-
ment. We simulated the three transits observed with Kepler based 
on our measurements of the mid-transit flux of 0.99571, 0.99566 and 
0.99567, respectively, and with formal uncertainties of 0.0001. These 
mid-transit fluxes and the uncertainties were chosen as mean values 
and standard deviations from which we drew 10 million randomized 
samples for each of the three transits.

The resulting histogram is shown in Supplementary Fig. 9. The 
transit depth of transit 4 from Hubble is indicated with an arrow at 
0.99610 with a formal uncertainty of roughly 30 ppm. From the total of 
30 million realizations, we measured a fraction of 2 × 10−5 with a transit 
depth greater than or equal to the observed transit depth from Hubble. 
It is, thus, highly unlikely that the observed transit depth discrepancy 
in the Kepler versus the Hubble data is a statistical variation, assuming 
normally distributed errors. Instead, an astrophysical origin, red noise 
or an unknown cause are required as an explanation.

We advocate for an astrophysical explanation that is well known 
in stellar physics and that does not require an exomoon. The radial 
profile of the apparent stellar brightness (or stellar intensity), known 
as the stellar limb-darkening profile, depends on the wavelength 
band that a star is observed in. This effect was originally observed for 
the Sun47. Limb-darkening profiles can be described well by ad hoc 
limb-darkening laws, for which we use a quadratic limb-darkening 
law that is parameterized by two LDCs. When the stellar transit of an 
extrasolar planet is observed in two different filters, then the resulting 
LDCs and transit depth can vary substantially36, whereas the transit 
impact parameter and the planet-to-star radii ratio must, of course, 
be the same.

Assuming circular orbits, the mid-transit depth (δ) can be 
expressed in terms of the minimum in-transit flux ( fmin) as δ = 1 − fmin, 
so that we can predict the minimum in-transit flux with fmin = 1 − δ  if 
we can predict δ. Using the expression of the transit depth as a function 
of the transit overshoot factor from the light curve (oLC)36 (equation (1) 
in this reference), we have

δ = (1 + oLC)(
Rp

Rs
)
2

. (2)

Using equation (3) in ref. 36 and our best-fitting estimates from the 
planet-only model with (Rp/Rs) = 0.05818, an impact parameter bp = 0.11, 
and LDCs for Kepler (u1,K = 0.42, u2,K = 0.41) and Hubble (u1,H = 0.12, 
u2,H = 0.21), we predict a transit depth of 0.99573 for the Kepler data 
and of 0.99634 for the Hubble data. These values are in good agree-
ment with the transit depth discrepancy that we actually observe  
(Fig. 1). The transit depth discrepancy between the Kepler and the Hub-
ble data can, thus, be readily explained by the wavelength dependence 
of stellar limb darkening, and it does not require an exomoon.

Methodological comparison to previous studies of 
Kepler-1625 b
Although there has not been any follow-up study to test the exomoon 
claim around Kepler-1708 b, various papers have analysed the Kepler 
and Hubble transit data for Kepler-1625 b. Here we provide a brief his-
torical summary of the debate around Kepler-1625 b and its proposed 
exomoon candidate and give an overview of the methodological dif-
ferences between our study and previous studies.

The initial statistical decisive evidence of an exomoon with 
2 loge(Bpm) = 20.4 (Bpm) was based on three transits available in archival 
Kepler data from 2010 to 201315. In a subsequent study27, the authors 
noticed that the evidence of an exomoon in the Kepler data was gone 
(2 loge(Bpm) = 1), which they attributed to an update of the Kepler Sci-
ence Processing Pipeline of the SOC from v.9.0 to v.9.3. The original 
exomoon claim around Kepler-1625 b has, thus, been explained as a 
systematic effect. A new exomoon claim was made by the same authors 
based on new observations of a fourth transit observed with the Hubble 
Space Telescope from 201727, with 2 loge(Bpm) ranging between 11.2 and 
25.9 for various detrending methods used for the light curve segments. 
Curiously, the Hubble observations showed a TTV compared to the 
strictly periodic transits from Kepler, which could in principle be 
caused by the gravitational pull of a giant moon on the planet. Reported 
TTVs range between 77.8 min (ref. 27) and 73.728 (±2.016) min (ref. 29). 
The strong dependence of the statistical evidence on the details of the 
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data preparation has, however, questioned the exomoon interpretation 
around Kepler-1625 b (refs. 28,29,32).

 (1) Our study applies the same software and the same kind of 
injection-retrieval test to the transits of both Kepler-1625 b and 
Kepler-1708 b in a unified framework.

 (2) refs. 32,29 used a numerical scheme that was hardcoded specifi-
cally to the case of exoplanet–exomoon transit simulations for 
Kepler-1625 b. Their code is not public, and thus, it has been 
challenging for the community to reproduce their results.

 (3) refs. 15,32 studied only the three transits from the Kepler mission 
because the follow-up transit observations with Hubble were 
not available at the time. In our study, we combine data from 
four transits from the Kepler and Hubble missions.

 (4) ref. 28 studied only the single transit observed with Hubble but 
none of the three transits from the Kepler mission.

 (5) refs. 15,32 used Kepler data from the Kepler SOC pipeline v.9.0. 
As first noted by ref. 27, the previously claimed exomoon signal 
around Kepler-1625 b that was present in the Simple Aperture 
Photometry measurements in the discovery paper15 vanished 
after the upgrade of Kepler’s SOC pipeline to v.9.3. We use data 
from Kepler’s SOC pipeline v.9.3 in our new study. These new 
data have also been used by refs. 27,29,22.

 (6) refs. 29,32,28 used the differential Bayesian information criterion 
for the planet-only and the planet–moon models, whereas  
refs. 15,27,22 used the Bayes factor. We also use the Bayes factor 
in our study.

 (7) refs. 32,29 used Markov chain Monte Carlo sampling of the poste-
rior distribution, which is prone to becoming trapped in local 
regions of the parameter space. refs. 27,22 used the MultiNest 
software for the posterior sampling, which can introduce biases 
in the fitting process33 and which underestimates the resulting 
best fit uncertainties34. In contrast to all those previous studies, 
we used the UltraNest software for posterior sampling, which 
avoids these problems23.

 (8) Only one previous study of the transit light curve of Kepler-1625 
b featured injection-retrieval experiments22. The methods 
for the injection-retrieval experiment used in this previous 
study assumed box-like transits and were, thus, less realis-
tic than those we applied. Moreover, we disagree with the 
conclusions of these authors about the occurrence rate of 
false positive exomoon-like transit signals in the Kepler data 
(Injection-retrieval for Kepler-1625 b).

Transit animations
For both Kepler-1625 b and Kepler-1708 b, we generated video anima-
tions of the best-fitting planet–moon solutions in the posterior distri-
butions. These animations were generated with the Pandora software 
using the model parameterization for the maximum likelihood pro-
vided by our UltraNest sampling. At the times of the transit midpoints 
of the respective planet–moon barycentre, we exported a screenshot, 
the results of which are shown in Supplementary Fig. 10. The colours 
of the stars Kepler-1625 and Kepler-1708 were chosen automatically 
in Pandora to reflect the stellar colours as they would be perceived by 
the human eye, according to previously published digital colour codes 
of main-sequence stars48. We increased the frame rate to five times its 
default value, which is one frame every 30 min or 48 frames per day. 
Our animations, thus, have 240 frames of simulated data per day and 
they are played at a rate of 60 frames per second.

As shown by the corresponding corner plots in Supplementary 
Figs. 1 and 2, the posterior distributions are very scattered and any 
moon solutions are ambiguous at best. As we have discussed in the 
main text, it is much more probable that there is no large exomoon 
around either planet. So the purpose of these animations is mostly a 
general illustration of planet–moon orbital dynamics during transits 

as well as an interpretation of the transit light curves (and potentially 
debugging) rather than to represent the actual transit events. If Pan-
dora’s animation functionality were to be used to visualize actual transit 
events, then the posterior distributions would need to be much more 
well confined and the Bayes factors of the solutions would need to 
be much higher (and, thus, the solution more convincing) than for 
Kepler-1625 b or Kepler-1708 b.

Data availability
The Kepler light curves are available for download from the Mikul-
ski Archive for Space Telescopes at https://archive.stsci.edu/kepler/
publiclightcurves.html. The raw data of the Hubble observations of 
the October 2017 transit of Kepler-1625 b are available at https://www.
stsci.edu/hst/observing/program-information under programme ID 
GO 15149 (PI A. Teachey).

Code availability
Pandora is open-source and available at https://github.com/hippke/
Pandora. Wōtan is open-source and available at https://github.com/hip-
pke/wotan. UltraNest (copyright 2014-2020, J. Buchner) is open-source 
and available at https://johannesbuchner.github.io/UltraNest.
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