Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions

A Publisher Correction to this article was published on 22 January 2024

This article has been updated

Abstract

The pressure and temperature conditions at which precipitation of diamond occurs from hydrocarbon mixtures is important for modelling the interior dynamics of icy planets. However, there is substantial disagreement from laboratory experiments, with those using dynamic compression techniques finding much more extreme conditions are required than in static compression. Here we report the time-resolved observation of diamond formation from statically compressed polystyrene, (C8H8)n, heated using the 4.5 MHz X-ray pulse trains at the European X-ray Free Electron Laser facility. Diamond formation is observed above 2,500 K from 19 GPa to 27 GPa, conditions representative of Uranus’s and Neptune’s shallow interiors, on 30 μs to 40 μs timescales. This is much slower than may be observed during the 10 ns duration of typical dynamic compression experiments, revealing reaction kinetics to be the reason for the discrepancy. Reduced pressure and temperature conditions for diamond formation has implications for icy planetary interiors, where diamond subduction leads to heating and could drive convection in the conductive ice layer that has a role in their magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State diagram of hydrocarbons at high pressure and temperature.
Fig. 2: Experimental set-up.
Fig. 3: Time-resolved data from a run starting at 20 GPa with average pulse energy of 71 μJ.
Fig. 4: Integrated X-ray diffraction patterns in the region of interest from a run starting at 19 GPa.
Fig. 5: Raman spectra of the sample after removal from the DAC.

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Bethkenhagen, M. et al. Planetary ices and the linear mixing approximation. Astrophys. J. 848, 67 (2017).

    Article  ADS  Google Scholar 

  2. Scheibe, L., Nettelmann, N. & Redmer, R. Thermal evolution of Uranus and Neptune—I. Adiabatic models. Astron. Astrophys. 632, A70 (2019).

    Article  ADS  CAS  Google Scholar 

  3. Qasim, D. et al. An experimental study of the surface formation of methane in interstellar molecular clouds. Nat. Astron. 4, 781–785 (2020).

    Article  ADS  Google Scholar 

  4. Benedetti, L. R. et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hirai, H., Konagai, K., Kawamura, T., Yamamoto, Y. & Yagi, T. Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys. Earth Planet. Inter. 174, 242–246 (2009).

    Article  ADS  CAS  Google Scholar 

  6. Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017).

    Article  ADS  Google Scholar 

  7. Cheng, B., Hamel, S. & Bethkenhagen, M. Thermodynamics of diamond formation from hydrocarbon mixtures in planets. Nat. Commun. 14, 1104 (2023).

  8. Lobanov, S. S. et al. Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat. Commun. 4, 2446 (2013).

  9. Kolesnikov, A., Kutcherov, V. G. & Goncharov, A. F. Methane-derived hydrocarbons produced under upper-mantle conditions. Nat. Geosci. 2, 566–570 (2009).

    Article  ADS  CAS  Google Scholar 

  10. Spanu, L., Donadio, D., Hohl, D., Schwegler, E. & Galli, G. Stability of hydrocarbons at deep Earth pressures and temperatures. Proc. Natl Acad. Sci. USA 108, 6843–6846 (2011).

    Article  ADS  CAS  PubMed Central  Google Scholar 

  11. Naumova, A. S., Lepeshkin, S. V. & Oganov, A. R. Hydrocarbons under pressure: phase diagrams and surprising new compounds in the C–H system. J. Phys. Chem. C 123, 20497–20501 (2019).

    Article  CAS  Google Scholar 

  12. Ross, M. The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292, 435–436 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Podolak, M. & Helled, R. What do we really know about Uranus and Neptune? Astrophys. J. Lett. 759, L32 (2012).

    Article  ADS  Google Scholar 

  14. Piette, A. A. & Madhusudhan, N. On the temperature profiles and emission spectra of mini-Neptune atmospheres. Astrophys. J. 904, 154 (2020).

    Article  ADS  Google Scholar 

  15. Scheler, T. et al. Synthesis and properties of platinum hydride. Phys. Rev. B 83, 214106 (2011).

    Article  ADS  Google Scholar 

  16. Frost, M., McBride, E. E., Smith, D., Smith, J. S. & Glenzer, S. H. Pressure driven alkane dehydrogenation by palladium metal. Adv. Mater. Interfaces 10, 2202081 (2023).

    Article  CAS  Google Scholar 

  17. Zerr, A., Serghiou, G., Boehler, R. & Ross, M. Decomposition of alkanes at high pressures and temperatures. High Press. Res. 26, 23–32 (2006).

    Article  ADS  CAS  Google Scholar 

  18. Watkins, E. et al. Diamond and methane formation from the chemical decomposition of polyethylene at high pressures and temperatures. Sci. Rep. 12, 631 (2022).

  19. Hartley, N. et al. Evidence for crystalline structure in dynamically-compressed polyethylene up to 200 GPa. Sci. Rep. 9, 4196 (2019).

  20. Seiboth, F. et al. Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl. Phys. Lett. 112, 221907 (2018).

    Article  ADS  Google Scholar 

  21. Zylstra, A. et al. Burning plasma achieved in inertial fusion. Nature 601, 542–548 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kraus, D. et al. High-pressure chemistry of hydrocarbons relevant to planetary interiors and inertial confinement fusion. Phys. Plasmas 25, 056313 (2018).

    Article  ADS  Google Scholar 

  23. Nestola, F. et al. Impact shock origin of diamonds in ureilite meteorites. Proc. Natl Acad. Sci. USA 117, 25310–25318 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zastrau, U. et al. The high energy density scientific instrument at the European XFEL. J. Synchrotron Radiat. 28, 1393–1416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liermann, H.-P. et al. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL). J. Synchrotron Radiat. 28, 688–706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meza-Galvez, J. et al. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard X-ray irradiation. J. Appl. Phys. 127, 195902 (2020).

    Article  ADS  CAS  Google Scholar 

  27. Ball, O. B. et al. Dynamic optical spectroscopy and pyrometry of static targets under optical and X-ray laser heating at the European XFEL. J. Appl. Phys. 134, 055901 (2023).

    Article  ADS  CAS  Google Scholar 

  28. McWilliams, R. S., Dalton, D. A., Konôpková, Z., Mahmood, M. F. & Goncharov, A. F. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors. Proc. Natl Acad. Sci. USA 112, 7925–7930 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. McWilliams, R. S., Dalton, D. A., Mahmood, M. F. & Goncharov, A. F. Optical properties of fluid hydrogen at the transition to a conducting state. Phys. Rev. Lett. 116, 255501 (2016).

    Article  ADS  PubMed  Google Scholar 

  30. Anderson, O. L., Isaak, D. G. & Yamamoto, S. Anharmonicity and the equation of state for gold. J. Appl. Phys. 65, 1534–1543 (1989).

    Article  ADS  CAS  Google Scholar 

  31. Zha, C.-S. & Bassett, W. A. Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and raman scattering. Rev. Sci. Instrum. 74, 1255–1262 (2003).

    Article  ADS  CAS  Google Scholar 

  32. Weck, G. et al. Determination of the melting curve of gold up to 110 GPa. Phys. Rev. B 101, 014106 (2020).

    Article  ADS  CAS  Google Scholar 

  33. Hubbard, W. Neptune’s deep chemistry. Science 275, 1279–1280 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Knudson, M. D. et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455–1460 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Zaghoo, M. & Silvera, I. F. Conductivity and dissociation in liquid metallic hydrogen and implications for planetary interiors. Proc. Natl Acad. Sci. USA 114, 11873–11877 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Celliers, P. M. et al. Insulator-metal transition in dense fluid deuterium. Science 361, 677–682 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Jiang, S. et al. A spectroscopic study of the insulator–metal transition in liquid hydrogen and deuterium. Adv. Sci. 7, 1901668 (2020).

    Article  CAS  Google Scholar 

  38. Kraus, D. et al. Indirect evidence for elemental hydrogen in laser-compressed hydrocarbons. Phys. Rev. Res. 5, L022023 (2023).

    Article  CAS  Google Scholar 

  39. Correa, A. A., Bonev, S. A. & Galli, G. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory. Proc. Natl Acad. Sci. USA 103, 1204–1208 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Weck, G. et al. Evidence and stability field of fcc superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Prakapenka, V. B., Holtgrewe, N., Lobanov, S. S. & Goncharov, A. F. Structure and properties of two superionic ice phases. Nat. Phys. 17, 1233–1238 (2021).

    Article  CAS  Google Scholar 

  43. Stanley, S. & Bloxham, J. Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Redmer, R., Mattsson, T. R., Nettelmann, N. & French, M. The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211, 798–803 (2011).

    Article  ADS  CAS  Google Scholar 

  46. Soderlund, K. & Stanley, S. The underexplored frontier of ice giant dynamos. Phil. Trans. R. Soc. A 378, 20190479 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nat. Astron. 2, 303–306 (2018).

    Article  ADS  Google Scholar 

  48. Dewaele, A., Torrent, M., Loubeyre, P. & Mezouar, M. Compression curves of transition metals in the mbar range: experiments and projector augmented-wave calculations. Phys. Rev. B 78, 104102 (2008).

    Article  ADS  Google Scholar 

  49. Frost, M., Curry, C. & Glenzer, S. Laser cutting apparatus for high energy density and diamond anvil cell science. J. Instrum. 15, P05004 (2020).

    Article  CAS  Google Scholar 

  50. Liermann, H.-P. et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA II. J. Synchrotron Radiat. 22, 908–924 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Allahgholi, A. et al. AGIPD, a high dynamic range fast detector for the European XFEL. J. Instrum. 10, C01023 (2015).

    Article  Google Scholar 

  52. Allahgholi, A. et al. The adaptive gain integrating pixel detector at the European XFEL. J. Synchrotron Radiat. 26, 74–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scheler, T., Degtyareva, O. & Gregoryanz, E. On the effects of high temperature and high pressure on the hydrogen solubility in rhenium. J. Chem. Phys. 135, 214501 (2011).

    Article  ADS  PubMed  Google Scholar 

  54. Maltezopoulos, T. et al. Operation of X-ray gas monitors at the European XFEL. J. Synchrotron Radiat. 26, 1045–1051 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Dewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond-anvil cell. Rev. Sci. Instrum. 69, 2421–2426 (1998).

    Article  ADS  CAS  Google Scholar 

  56. Husband, R. J. et al. X-ray free electron laser heating of water and gold at high static pressure. Commun. Mater. 2, 61 (2021).

  57. He, Z. et al. Diamond formation kinetics in shock-compressed C–H–O samples recorded by small-angle X-ray scattering and X-ray diffraction. Sci. Adv. 8, eabo0617 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, X., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005).

    Article  ADS  PubMed  Google Scholar 

  59. Nettelmann, N. et al. Theory of figures to the seventh order and the interiors of Jupiter and Saturn. Planet. Sci. J. 2, 241 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Hartley for fruitful discussions. This work was supported by US Department of Energy (DOE) Office of Fusion Energy Sciences funding no. FWP100182. A.F.G. and E.E. are grateful for the support of Carnegie Science and NSF EAR-2049127. We acknowledge European XFEL in Schenefeld, Germany, for provision of X-ray free-electron laser beamtime at Scientific Instrument HED and thank the staff for their assistance. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III beamline P02.2. Beamtime was allocated from in-house beamtime from the beamline. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US DOE, National Nuclear Security Administration under Contract DE-AC52-07NA27344. S.N. and L.M.A. acknowledge financial support from Sorbonne University under grant Emergence HP-XFEL. Y.L. is grateful for support from the Leader Researcher programme (NRF-2018R1A3B1052042) of the Korean Ministry of Science and ICT (MSIT). We are indebted to the HIBEF user consortium for the provision of instrumentation and staff that enabled this experiment. G.M. has been supported by a grant from Labex OSUG@2020 (Investissements d’avenir - ANR10 LABX56) and PNP-INSU programme. M.B. acknowledges the support of Deutsche Forschungsgemeinschaft (DFG Emmy-Noether project BY112/2-1).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in experimental planning. M.F., E.B., M.B., R.J.H., C.S., H.-P.L., Z.K. and A.F.G. coordinated the experiment. M.F. prepared the samples. H.-P.L., J.D.M., L.M.A., S.K. and B.M. performed the prescreening at P02.2 at PETRA III. M.F., C.S., C.B., H.-P.L., Z.K., S.N., J.D.H., C.P., E.E., R.S.M., S.C., O.B.B., M.J.D. and A.F.G. conducted the experiment. T.L., S.S., C.S. and J.S.-D. operated the AGIPD detector. R.R., S.H.G. and A.F.G. advised. M.F., R.S.M., O.B.B., R.J.H., Z.K., C.P., E.E. and A.F.G. analysed the data. M.F. and R.S.M. wrote the paper.

Corresponding author

Correspondence to Mungo Frost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 FEA Model of Sample Temperature.

FEA model (cylindrical section) of sample temperature at the time of XFEL probing at 30 μs in Fig. 3d. Bold white lines indicate boundaries between DAC components; light white lines indicate additional boundaries required by the analysis; XFEL radiation is from below26. Black lines indicate solid-liquid boundaries, with the melting point of Au taken to be 2350 K31,32 and the melting point of polystyrene taken to be 1000 K (representing a likely minimum bound, considering an ambient melting point of 510 K and steep rise with pressure). The model shows high temperatures are localized near the coupler hole, with cold material surrounding the hotspot, including several microns of cold and solid polystyrene separating the sample from the diamond anvils and significantly more separating the hot sample from the gasket.

Extended Data Fig. 2 Time resolved data from a run with 1% beam power.

No thermal emission or diamond is observed. a: XRD in region of interest, vertical stripes are artifacts from diode normalization. b: SOP spectrogram showing no emission. c: Time evolution of intensity at q where diamond is expected shows no diamond formation, the line is smoothed with 15 pulse wide Hamming window. Time 0 is estimated first arrival of X-rays based on other runs.

Extended Data Fig. 3 Time resolved data from a run with 5% beam power.

Thermal emission and diamond formation are observed. a: XRD in region of interest normalized to beam intensity monitoring diode. The diamond 111 reflection is visible after 40 μs. b: SOP spectrogram. c: Temperature from SOP fitting and equation of state of gold30. d: Time evolution of diamond peak intensity, line is smoothed with 15 pulse wide Hamming window. Time 0 corresponds to first X-ray pulse based on rising edge of thermal emission. Temporal error bars represent the time bin of the SOP, temperature error bars represent one-half standard deviation confidence and are derived from the fitting uncertainty of a Planck function to the spectrographic data and statistical analysis of these data27.

Extended Data Fig. 4 Time resolved data from a run with 25% beam power.

This is a different run than is presented in Fig. 3, but shows similar temperatures and diamond formation. a: XRD in region of interest normalized to beam intensity monitoring diode. The diamond {111} reflection is visible after 35 μs. b: Emissivity as a function of time. c: SOP spectrogram. d: Temperature from SOP fitting and equation of state of gold30. e: Time evolution of diamond peak intensity, line is smoothed with 15 pulse wide Hamming window. Time 0 corresponds to first X-ray pulse based on rising edge of thermal emission. Temporal error bars represent the time bin of the SOP, temperature error bars represent one-half standard deviation confidence and are derived from the fitting uncertainty of a Planck function to the spectrographic data and statistical analysis of these data27.

Extended Data Fig. 5 Unintegrated Diffraction Image.

Raw diffraction pattern from a single XFEL pulse taken 40.2 μs into a run starting at 19 GPa. The SOP temperature is 2540(30) K. The integrated pattern is shown in Fig. 4b. λ = 0.6965 Å. Lighter shades correspond to higher signal, brightness and contrast are optimized for visibility. The pattern is azimuthally unwrapped such that vertical lines are at constant q (also known as ‘caked’). The shadow at low q is from the mirror used to observe the sample, the dark panel (top right) was faulty and masked when integrating the diffraction patterns.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1 and 2, and minimal supporting text to contextualize these.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frost, M., McWilliams, R.S., Bykova, E. et al. Diamond precipitation dynamics from hydrocarbons at icy planet interior conditions. Nat Astron 8, 174–181 (2024). https://doi.org/10.1038/s41550-023-02147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02147-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing