Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical properties of organic haze analogues in water-rich exoplanet atmospheres observable with JWST

Abstract

The James Webb Space Telescope (JWST) has begun its scientific mission, which includes the atmospheric characterization of transiting exoplanets. Some of the first exoplanets to be observed by JWST have equilibrium temperatures below 1,000 K, which is a regime where photochemical hazes are expected to form. The optical properties of these hazes, which control how they interact with light, are critical for interpreting exoplanet observations, but relevant experimental data are not available. Here we measure the density and optical properties of organic haze analogues generated in water-rich exoplanet atmosphere experiments. We report optical constants (0.4 to 28.6 μm) of organic haze analogues for current and future observational and modelling efforts covering the entire wavelength range of JWST instrumentation and a large part of Hubble. We use these optical constants to generate hazy model atmospheric spectra. The synthetic spectra show that differences in haze optical constants have a detectable effect on the spectra, impacting our interpretation of exoplanet observations. This study emphasizes the need to investigate the optical properties of hazes formed in different exoplanet atmospheres and establishes a practical procedure for determining such properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified schematic of the experimental set-up, the simulated atmospheric compositions and conditions, the measurements and the analytical method for the current study.
Fig. 2: Transmittance spectra of two exoplanet haze analogues formed in water-rich gas mixtures at 300 or 400 K.
Fig. 3: Optical constants of two exoplanet haze analogues along with those of the Titan haze analogue from Khare et al.
Fig. 4: Model spectra of a water-rich atmosphere around a GJ 1214 b-like planet, showing the effect of our newly measured haze analogue optical properties.

Similar content being viewed by others

Data availability

The data resulting from this study are provided in the article and supplementary information. Data associated with Figs. 3 and 4 are available in the Johns Hopkins University Data Archive from https://doi.org/10.7281/T1/NEACHP. Source data are provided with this paper. Other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).

    Article  ADS  PubMed  Google Scholar 

  2. Knutson, H. A., Benneke, B., Deming, D. & Homeier, D. A featureless transmission spectrum for the Neptune-mass exoplanet GJ436b. Nature 505, 66–68 (2014).

    Article  ADS  PubMed  Google Scholar 

  3. Knutson, H. A. et al. Hubble space telescope near-IR transmission spectroscopy of the super-Earth HD 97658b. Astrophys. J. 794, 155 (2014).

    Article  ADS  Google Scholar 

  4. May, E. M., Gardner, T., Rauscher, E. & Monnier, J. D. MOPSS. II. Extreme optical scattering slope for the inflated super-Neptune HATS-8b. Astron. J. 159, 7 (2019).

    Article  ADS  Google Scholar 

  5. Dragomir, D. et al. Rayleigh scattering in the atmosphere of the warm exo-Neptune GJ 3470b. Astrophys. J. 814, 102 (2015).

    Article  ADS  Google Scholar 

  6. JWST Transiting Exoplanet Community Early Release Science Team Identification of carbon dioxide in an exoplanet atmosphere. Nature 614, 649–652 (2023).

    Article  ADS  CAS  Google Scholar 

  7. Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nat. Astron. 4, 951–956 (2020).

    Article  ADS  Google Scholar 

  8. Morley, C. V. et al. Quantitatively assessing the role of clouds in the transmission spectrum of GJ 1214b. Astrophys. J. 775, 33 (2013).

    Article  ADS  Google Scholar 

  9. He, C. et al. Photochemical haze formation in the atmospheres of super-Earths and mini-Neptunes. Astron. J. 156, 38 (2018).

    Article  ADS  Google Scholar 

  10. Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nat. Astron. 2, 303–306 (2018).

    Article  ADS  Google Scholar 

  11. He, C. et al. Sulfur-driven haze formation in warm CO2-rich exoplanet atmospheres. Nat. Astron. 4, 986–993 (2020).

    Article  ADS  Google Scholar 

  12. He, C. et al. Haze formation in warm H2-rich exoplanet atmospheres. Planet. Sci. J. 1, 51 (2020).

    Article  Google Scholar 

  13. Gao, P., Wakeford, H. R., Moran, S. E. & Parmentier, V. Aerosols in exoplanet atmospheres. J. Geophys. Res. Planets 126, e06655 (2021).

    Article  Google Scholar 

  14. Khare, B. N. et al. Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft X-ray to microwave frequencies. Icarus 60, 127–137 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Chang, H. & Charalampopoulos, T. T. Determination of the wavelength dependence of refractive indices of flame soot. Proc. R. Soc. Lond. A 430, 577–591 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Lavvas, P. & Koskinen, T. Aerosol properties of the atmospheres of extrasolar giant planets. Astrophys. J. 847, 32 (2017).

    Article  ADS  Google Scholar 

  17. Morley, C. V. et al. Thermal emission and reflected light spectra of super Earths with flat transmission spectra. Astrophys. J. 815, 110 (2015).

    Article  ADS  Google Scholar 

  18. Moran, S. E. et al. Chemistry of temperate super-Earth and mini-Neptune atmospheric hazes from laboratory experiments. Planet. Sci. J. 1, 17 (2020).

    Article  Google Scholar 

  19. Tsiaras, A., Waldmann, I. P., Tinetti, G., Tennyson, J. & Yurchenko, S. N. Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18b. Nat. Astron. 3, 1086–1091 (2019).

    Article  ADS  Google Scholar 

  20. Benneke, B. et al. Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. Lett. 887, L14 (2019).

    Article  ADS  CAS  Google Scholar 

  21. Mulders, G., Ciesla, F., Min, M. & Pascucci, I. The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. Astrophys. J. 807, 9–15 (2015).

    Article  ADS  Google Scholar 

  22. Kite, E. S. & Ford, E. B. Habitability of exoplanet waterworlds. Astrophys. J. 864, 75–102 (2018).

    Article  ADS  Google Scholar 

  23. Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kite, E. S. & Schaefer, L. Water on hot rocky exoplanets. Astrophys. J. Lett. 909, L22 (2021).

    Article  ADS  CAS  Google Scholar 

  25. Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Chachan, Y. et al. A featureless infrared transmission spectrum for the super-puff planet Kepler-79d. Astrophys. J. 160, 201 (2020).

    CAS  Google Scholar 

  27. Libby-Roberts, J. E. et al. The featureless transmission spectra of two super-puff planets. Astron. J. 159, 57 (2020).

    Article  ADS  CAS  Google Scholar 

  28. Adams, D., Gao, P., de Pater, I. & Morley, C. V. Aggregate hazes in exoplanet atmospheres. Astrophys. J. 874, 61 (2019).

    Article  ADS  CAS  Google Scholar 

  29. Gao, P. & Zhang, X. Deflating super-puffs: impact of photochemical hazes on the observed mass–radius relationship of low-mass planets. Astrophys. J. 890, 93 (2020).

    Article  ADS  CAS  Google Scholar 

  30. Ohno, K. & Tanaka, Y. A. Grain growth in escaping atmospheres: implications for the radius inflation of super-puffs. Astrophys. J. 920, 124 (2021).

    Article  ADS  CAS  Google Scholar 

  31. He, C. et al. Carbon monoxide affecting planetary atmospheric chemistry. Astrophys. J. Lett. 841, L31 (2017).

    Article  ADS  Google Scholar 

  32. Moran, S. E. et al. Triton haze analogs: the role of carbon monoxide in haze formation. J. Geophys. Res. Planets 127, e2021JE006984 (2022).

    Article  ADS  CAS  Google Scholar 

  33. Rao, C. N. R. (ed.) Ultra-violet and Visible Spectroscopy; Chemical Applications (Butterworth, 1975).

  34. van Krevelen D. W. & te Nijenhuis K. in Properties of Polymers 4th edn, Ch. 10 (Elsevier, 2009).

  35. Lin-Vien, D., Colthup, N. B., Fateley, W. G. & Grasselli, J. G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, 503 (Academic Press, 1991).

  36. Socrates, G. Infrared and Raman Characteristic Group Frequencies, 347 (Wiley, 2001).

  37. Duvernay, F. et al. Carbodiimide production from cyanamide by UV irradiation and thermal reaction on amorphous water ice. J. Phys. Chem. A 109, 603–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Khare, B. N. et al. Analysis of the time-dependent chemical evolution of Titan haze tholin. Icarus 160, 172–182 (2002).

    Article  ADS  CAS  Google Scholar 

  39. Imanaka, H. et al. Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus 168, 344–366 (2004).

    Article  ADS  CAS  Google Scholar 

  40. Vinatier, S. et al. Optical constants of Titan’s stratospheric aerosols in the 70–1500 cm−1 spectral range constrained by Cassini/CIRS observations. Icarus 219, 5–12 (2012).

    Article  ADS  CAS  Google Scholar 

  41. Ohno, K., Zhang, X., Tazaki, R. & Okuzumi, S. Haze formation on Triton. Astrophys. J. 912, 37 (2021).

    Article  ADS  CAS  Google Scholar 

  42. Zhang, X., Strobel, D. F. & Imanaka, H. Haze heats Pluto’s atmosphere yet explains its cold temperature. Nature 551, 352–355 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Arney, G. N. et al. Pale orange dots: the impact of organic haze on the habitability and detectability of Earthlike exoplanets. Astrophys. J. 836, 49 (2017).

    Article  ADS  Google Scholar 

  44. Cloutier, R. et al. A more precise mass for GJ 1214 b and the frequency of multiplanet systems around mid-M dwarfs. Astron. J. 162, 174 (2021).

    Article  ADS  CAS  Google Scholar 

  45. Lora, J. M. et al. Atmospheric circulation, chemistry, and infrared spectra of Titan-like exoplanets around different stellar types. Astrophys. J. 853, 58 (2018).

    Article  ADS  Google Scholar 

  46. Teal, D. J. et al. Effects of UV stellar spectral uncertainty on the chemistry of terrestrial atmospheres. Astrophys. J. 927, 90 (2022).

    Article  ADS  Google Scholar 

  47. Ackerman, A. S. & Marley, M. S. Precipitating condensation clouds in substellar atmospheres. Astrophys. J. 556, 872–884 (2001).

    Article  ADS  CAS  Google Scholar 

  48. Rooney, C. M. et al. A new sedimentation model for greater cloud diversity in giant exoplanets and brown dwarfs. Astrophys. J. 925, 33 (2022).

    Article  ADS  CAS  Google Scholar 

  49. Batalha, N. E. et al. Exoplanet reflected-light spectroscopy with PICASO. Astrophys. J. 878, 70 (2019).

    Article  ADS  CAS  Google Scholar 

  50. Ohno, K. & Kawashima, Y. Super-Rayleigh slopes in transmission spectra of exoplanets generated by photochemical haze. Astrophys. J. Lett. 895, L47 (2020).

    Article  ADS  CAS  Google Scholar 

  51. Rustamkulov, Z. et al. A panchromatic spectrum of the exoplanet WASP-39b with JWST NIRSpec PRISM. Nature 614, 659–663 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sing, D. K. et al. A continuum from clear to cloud hot-Jupiter exoplanets without primordial water depletion. Nature 529, 7584 (2016).

    Article  Google Scholar 

  53. Corrales, L. et al. Photochemical hazes can trace the C/O ratio in exoplanet atmospheres. Astrophys. J. Lett. 943, L26 (2023).

    Article  ADS  Google Scholar 

  54. Lupu, R. E. et al. Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. I. Methane abundances and basic cloud properties. Astron. J. 152, 217 (2016).

    Article  ADS  Google Scholar 

  55. Steinrueck, M. E. et al. 3D simulations of photochemical hazes in the atmosphere of hot Jupiter HD 189733b. Mon. Not. R. Astron. Soc. 504, 2783–2799 (2021).

    Article  ADS  CAS  Google Scholar 

  56. Moses, J. I. et al. Compositional diversity in the atmospheres of hot Neptunes, with application to GJ 436b. Astrophys. J. 777, 34 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Ramirez, S. I. et al. Complex refractive index of Titan’s aerosol analogues in the 200–900 nm domain. Icarus 156, 515–529 (2002).

    Article  ADS  CAS  Google Scholar 

  58. Tran, B. N. et al. Simulation of Titan haze formation using a photochemical flow reactor: the optical constants of the polymer. Icarus 165, 379–390 (2003).

    Article  ADS  CAS  Google Scholar 

  59. Vuitton, V., Tran, B. N., Persans, P. D. & Ferris, J. P. Determination of the complex refractive indices of Titan haze analogs using photothermal deflection spectroscopy. Icarus 203, 663–671 (2009).

    Article  ADS  CAS  Google Scholar 

  60. Imanaka, H., Cruikshank, D. P., Khare, B. N. & McKay, C. P. Optical constants of Titan tholins at mid-infrared wavelengths (2.5–25 μm) and the possible chemical nature of Titan’s haze particles. Icarus 218, 247–261 (2012).

    Article  ADS  CAS  Google Scholar 

  61. Sciamma-O’Brien, E. et al. Optical constants from 370 nm to 900 nm of Titan tholins produced in a low pressure RF plasma discharge. Icarus 218, 356–363 (2012).

    Article  ADS  Google Scholar 

  62. Mahjoub, A. et al. Influence of methane concentration on the optical indices of Titan’s aerosols analogues. Icarus 221, 670–677 (2012).

    Article  ADS  CAS  Google Scholar 

  63. Gavilan, L., Carrasco, N., Hoffmann, S. V., Jones, N. C. & Mason, N. J. Organic aerosols in anoxic and oxic atmospheres of Earth-like exoplanets: VUV-MIR spectroscopy of CHON tholins. Astrophys. J. 861, 110 (2018).

    Article  ADS  Google Scholar 

  64. Jovanović, L. et al. Optical constants of Pluto aerosol analogues from UV to near-IR. Icarus 362, 114398 (2021).

    Article  Google Scholar 

  65. He, C., Hörst, S. M., Radke, M. & Yant, M. Optical constants of a Titan haze analog from 0.4 to 3.5 μm determined using vacuum spectroscopy. Planet. Sci. J. 3, 25 (2022).

    Article  Google Scholar 

  66. Brassé, C., Muñoz, O., Coll, P. & Raulin, F. Optical constants of Titan aerosols and their tholins analogs: experimental results and modeling/observational data. Planet. Space Sci. 109, 159–174 (2015).

    Article  ADS  Google Scholar 

  67. Myers, T. L., et al. Obtaining the complex optical constants n and k via quantitative absorption measurements in KBr pellets. In Proc. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, Vol. 11010 (eds. Guicheteau, J. A. & Howle, C. R.) (SPIE, Bellingham, 2019).

  68. Wood, B. E. & Roux, J. A. Infrared optical properties of thin H2O, NH3, and CO2 cryofilms. J. Opt. Soc. Am. 72, 720–728 (1982).

    Article  ADS  CAS  Google Scholar 

  69. Toon, O. B. et al. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates. J. Geophys. Res. Atmos. 99, 25631–25654 (1994).

    Article  ADS  Google Scholar 

  70. Padera, F. Measuring Absorptance (k) and Refractive Index (n) of Thin Films with the PerkinElmer Lambda 1050+ High Performance UV/Vis/NIR Spectrometers Application Note (PerkinElmer, 2019).

  71. Sumlin, B. J., Heinson, W. R. & Chakrabarty, R. K. Retrieving the aerosol complex refractive index using PyMieScatt: a Mie computational package with visualization capabilities. J. Quant. Spectrosc. Radiat. Transf. 205, 127–134 (2018).

    Article  ADS  CAS  Google Scholar 

  72. He, C. et al. Laboratory simulations of haze formation in the atmospheres of super-Earths and mini-Neptunes: particle color and size distribution. Astrophys. J. Lett. 856, 1 (2018).

    Article  ADS  Google Scholar 

  73. Lavvas, P., Yelle, R. V. & Vuitton, V. The detached haze layer in Titan’s mesosphere. Icarus 201, 626–633 (2009).

    Article  ADS  CAS  Google Scholar 

  74. Kawashima, Y. & Ikoma, M. Theoretical transmission spectra of exoplanet atmospheres with hydrocarbon haze: effect of creation, growth, and settling of haze particles. I. Model description and first results. Astrophys. J. 853, 7 (2018).

    Article  ADS  Google Scholar 

  75. Trainer, M. G. et al. The influence of benzene as a trace reactant in Titan aerosol analogs. Astrophys. J. Lett. 766, L4 (2013).

    Article  ADS  Google Scholar 

  76. Lavvas, P. et al. Aerosol growth in Titan’s Ionosphere. Proc. Natl Acad. Sci. USA 110, 8 (2013).

    Article  Google Scholar 

  77. Yoon, Y. H. et al. The role of benzene photolysis in Titan haze formation. Icarus 233, 233–241 (2014).

    Article  ADS  CAS  Google Scholar 

  78. Gao, P. & Benneke, B. Microphysics of KCl and ZnS clouds on GJ 1214 b. Astrophys. J. 863, 165 (2018).

  79. Ohno, K. & Okuzumi, S. A condensation–coalescence cloud model for exoplanetary atmospheres: formulation and test applications to terrestrial and Jovian clouds. Astrophys. J. 835, 261 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NASA Exoplanets Research Program 80NSSC20K0271 (C. He) and the NASA Astrophysics Research and Analysis Program NNX17AI87G (S. M. Hörst).

Author information

Authors and Affiliations

Authors

Contributions

C.H., M.R., S.E.M., S.M.H., N.K.L., M.S.M. and J.I.M. conceived the study. J.I.M. calculated the starting gas mixtures. C.H. carried out the experiments. C.H. and M.R. performed the optical measurements. S.E.M. and C.H. simulated the synthetic transmission spectra. C.H. conducted the data analysis and prepared the manuscript. All authors participated in discussions regarding the interpretation of the results and in editing the manuscript.

Corresponding author

Correspondence to Chao He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Alexandria Johnson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Model spectra of a water-rich atmosphere around a GJ 1214 b -like planet with 10 nm haze particles.

We show the effect of our newly measured haze optical properties using small radii (10 nm) haze particles, focusing on the wavelength range accessible to Hubble. The method and settings for generating the spectra here are the same as described in 4.5, except the haze particle radii (10 nm) and haze mass loading (4 particles/cm3). With sufficiently small particles, the large scattering slopes between different haze compositions are differentiable with Hubble’s ultraviolet/visible capabilities even if such hazes less strongly impact the NIR.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–6.

Source data

Source Data for Fig. 2

The transmittance measured for two samples.

Source Data for Fig. 3

Derived n and k values with uncertainties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Radke, M., Moran, S.E. et al. Optical properties of organic haze analogues in water-rich exoplanet atmospheres observable with JWST. Nat Astron 8, 182–192 (2024). https://doi.org/10.1038/s41550-023-02140-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02140-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing