Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar

Abstract

Observations of quasars reveal that many supermassive black holes (BHs) were in place less than 700 Myr after the Big Bang. However, the origin of the first BHs remains a mystery. Seeds of the first BHs are postulated to be either light (that is, 10−100 M), remnants of the first stars, or heavy (that is, 10−105M), originating from the direct collapse of gas clouds. Here, harnessing recent data from the Chandra X-ray Observatory, we report the detection of an X-ray-luminous massive BH in a gravitationally lensed galaxy identified by the James Webb Space Telescope at redshift z ≈ 10.3 behind the cluster lens Abell 2744. This heavily obscured quasar with a bolometric luminosity of ~5 × 1045 erg s−1 harbours an ~107−108M BH assuming accretion at the Eddington limit. This mass is comparable to the inferred stellar mass of its host galaxy, in contrast to what is found in the local Universe wherein the BH mass is ~0.1% of the host galaxy’s stellar mass. The combination of such a high BH mass and large BH-to-galaxy stellar mass ratio just ~500 Myr after the Big Bang was theoretically predicted and is consistent with a picture wherein BHs originated from heavy seeds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A 4.2σ Chandra X-ray detection of a source co-spatial with UHZ1.
Fig. 2: JWST and Chandra images of UHZ1.
Fig. 3: Chandra X-ray SED and model fits.
Fig. 4: Sketch of the growth of BHs with different initial seed masses and accretion rates.

Similar content being viewed by others

Data availability

The JWST data of Abell 2744 are publicly available at MAST (http://archive.stsci.edu). The Chandra data are available upon request from the corresponding author.

References

  1. Castellano, M. et al. Early results from GLASS-JWST. III. Galaxy candidates at z~9–15. Astrophys. J. Lett. 938, L15 (2022).

    Article  ADS  Google Scholar 

  2. Castellano, M. et al. Early results from GLASS-JWST. XIX. A high density of bright galaxies at z ≈ 10 in the A2744 region. Astrophys. J. Lett. 948, L14 (2023).

    Article  ADS  Google Scholar 

  3. Harikane, Y. et al. A comprehensive study of galaxies at z ~ 9–16 found in the early JWST data: ultraviolet luminosity functions and cosmic star formation history at the pre-reionization epoch. Astrophys. J. Suppl. Ser. 265, 5 (2023).

    Article  ADS  Google Scholar 

  4. Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10–12 revealed by JWST. Astrophys. J. Lett. 940, L14 (2022).

    Article  ADS  Google Scholar 

  5. Atek, H. et al. Revealing galaxy candidates out to z ~ 16 with JWST observations of the lensing cluster SMACS0723. Mon. Not. R. Astron. Soc. 519, 1201–1220 (2023).

    Article  ADS  Google Scholar 

  6. Adams, N. J. et al. Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 field. Mon. Not. R. Astron. Soc. 518, 4755–4766 (2023).

    Article  ADS  Google Scholar 

  7. Treu, T. et al. The GLASS-JWST Early Release Science Program. I. Survey design and release plans. Astrophys. J. 935, 110 (2022).

    Article  ADS  Google Scholar 

  8. Bezanson, R. et al. The JWST UNCOVER Treasury survey: Ultradeep NIRSpec and NIRCam Observations before the Epoch of Reionization. Preprint at https://arxiv.org/abs/2212.04026 (2022).

  9. Fruscione, A. et al. CIAO: Chandra’s data analysis system. In Proc. Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 6270 (eds. Silva, D. R. & Doxsey, R. E.) 62701V (SPIE, Bellingham, 2006).

  10. HI4PI Collaboration et al. HI4PI: a full-sky H I survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

    Article  Google Scholar 

  11. Yaqoob, T. The nature of the Compton-thick X-ray reprocessor in NGC 4945. Mon. Not. R. Astron. Soc. 423, 3360–3396 (2012).

    Article  ADS  Google Scholar 

  12. Goulding, A. D. et al. High-redshift extremely red quasars in X-rays. Astrophys. J. 856, 4 (2018).

    Article  ADS  Google Scholar 

  13. Duras, F. et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astron. Astrophys. 636, A73 (2020).

    Article  Google Scholar 

  14. Madau, P. & Rees, M. J. Massive black holes as Population III remnants. Astrophys. J. Lett. 551, L27–L30 (2001).

    Article  ADS  Google Scholar 

  15. Hirano, S. & Bromm, V. Formation and survival of Population III stellar systems. Mon. Not. R. Astron. Soc. 470, 898–914 (2017).

    Article  ADS  Google Scholar 

  16. Chon, S., Ono, H., Omukai, K. & Schneider, R. Impact of the cosmic background radiation on the initial mass function of metal-poor stars. Mon. Not. R. Astron. Soc. 514, 4639–4654 (2022).

    Article  ADS  Google Scholar 

  17. Smith, B. D. et al. The growth of black holes from Population III remnants in the Renaissance simulations. Mon. Not. R. Astron. Soc. 480, 3762–3773 (2018).

    Article  ADS  Google Scholar 

  18. Pacucci, F., Natarajan, P., Volonteri, M., Cappelluti, N. & Urry, C. M. Conditions for optimal growth of black hole seeds. Astrophys. J. Lett. 850, L42 (2017).

    Article  ADS  Google Scholar 

  19. Loeb, A. & Rasio, F. A. Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52 (1994).

    Article  ADS  Google Scholar 

  20. Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. R. Astron. Soc. 371, 1813–1823 (2006).

    Article  ADS  Google Scholar 

  21. Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).

    Article  ADS  Google Scholar 

  22. Lodato, G. & Natarajan, P. The mass function of high-redshift seed black holes. Mon. Not. R. Astron. Soc. 377, L64–L68 (2007).

    Article  ADS  Google Scholar 

  23. Agarwal, B., Davis, A. J., Khochfar, S., Natarajan, P. & Dunlop, J. S. Unravelling obese black holes in the first galaxies. Mon. Not. R. Astron. Soc. 432, 3438–3444 (2013).

    Article  ADS  Google Scholar 

  24. Wise, J. H. et al. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature 566, 85–88 (2019).

    Article  ADS  Google Scholar 

  25. Lupi, A., Haiman, Z. & Volonteri, M. Forming massive seed black holes in high-redshift quasar host progenitors. Mon. Not. R. Astron. Soc. 503, 5046–5060 (2021).

    Article  ADS  Google Scholar 

  26. Devecchi, B. & Volonteri, M. Formation of the first nuclear clusters and massive black holes at high redshift. Astrophys. J. 694, 302–313 (2009).

    Article  ADS  Google Scholar 

  27. Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science 345, 1330–1333 (2014).

    Article  ADS  Google Scholar 

  28. Natarajan, P. A new channel to form IMBHs throughout cosmic time. Mon. Not. R. Astron. Soc. 501, 1413–1425 (2021).

    Article  ADS  Google Scholar 

  29. Volonteri, M., Lodato, G. & Natarajan, P. The evolution of massive black hole seeds. Mon. Not. R. Astron. Soc. 383, 1079–1088 (2007).

    Article  ADS  Google Scholar 

  30. Ricarte, A. & Natarajan, P. The observational signatures of supermassive black hole seeds. Mon. Not. R. Astron. Soc. 481, 3278–3292 (2018).

    Article  ADS  Google Scholar 

  31. Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Astrophys. J. 838, 117 (2017).

    Article  ADS  Google Scholar 

  32. Larson, R. L. et al. A CEERS Discovery of an accreting supermassive black hole 570 Myr after the Big Bang: identifying a progenitor of massive z > 6 quasars. Astrophys. J. Lett. 953, L29 (2023).

  33. Maiolino, R. et al. A small and vigorous black hole in the early Universe. Preprint at https://arxiv.org/abs/2305.12492 (2023).

  34. Di Matteo, T., Angles-Alcazar, D. & Shankar, F. Massive black holes in galactic nuclei: theory and simulations. Preprint at https://arxiv.org/abs/2304.11541 (2023).

  35. Di Matteo, T., Croft, R. A. C., Feng, Y., Waters, D. & Wilkins, S. The origin of the most massive black holes at high-z: BlueTides and the next quasar frontier. Mon. Not. R. Astron. Soc. 467, 4243–4251 (2017).

    Article  ADS  Google Scholar 

  36. Alvarez, M. A., Wise, J. H. & Abel, T. Accretion onto the first stellar-mass black holes. Astrophys. J. Lett. 701, L133–L137 (2009).

    Article  ADS  Google Scholar 

  37. Kim, J.-H., Wise, J., Alvarez, M. & Abel, T. Galaxy formation with self-consistently modeled stars and massive black holes. I. Feedback-regulated star formation and black hole growth. Astrophys. J. 738, 54 (2011).

  38. Jiang, Y.-F., Stone, J. M. & Davis, S. W. Super-Eddington accretion disks around supermassive black holes. Astrophys. J. 880, 67 (2019).

    Article  ADS  Google Scholar 

  39. Regan, J. A. et al. Super-Eddington accretion and feedback from the first massive seed black holes. Mon. Not. R. Astron. Soc. 486, 3892–3906 (2019).

    Article  ADS  Google Scholar 

  40. Sassano, F., Capelo, P. R., Mayer, L., Schneider, R. & Valiante, R. Super-critical accretion of medium-weight seed black holes in gaseous proto-galactic nuclei. Mon. Not. R. Astron. Soc. 519, 1837–1855 (2023).

    Article  ADS  Google Scholar 

  41. Massonneau, W., Dubois, Y., Volonteri, M. & Beckmann, R. S. How the super-Eddington regime affects black hole spin evolution in high-redshift galaxies. Astron. Astrophys. 669, A143 (2023).

    Article  ADS  Google Scholar 

  42. Eilers, A.-C. et al. Implications of z ~ 6 quasar proximity zones for the epoch of reionization and quasar lifetimes. Astrophys. J. 840, 24 (2017).

    Article  ADS  Google Scholar 

  43. Chen, H. & Gnedin, N. Y. The distribution and evolution of quasar proximity zone sizes. Astrophys. J. 911, 60 (2021).

    Article  ADS  Google Scholar 

  44. Cash, W. Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979).

    Article  ADS  Google Scholar 

  45. Leccardi, A. & Molendi, S. Radial temperature profiles for a large sample of galaxy clusters observed with XMM-Newton. Astron. Astrophys. 486, 359–373 (2008).

    Article  ADS  Google Scholar 

  46. Owers, M. S. et al. The dissection of Abell 2744: a rich cluster growing through major and minor mergers. Astrophys. J. 728, 27 (2011).

    Article  ADS  Google Scholar 

  47. Larson, R. L. et al. Spectral templates optimal for selecting galaxies at z > 8 with JWST. Preprint at https://arxiv.org/abs/2211.10035 (2022).

  48. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).

    Article  ADS  Google Scholar 

  49. Willott, C. J. et al. Eddington-limited accretion and the black hole mass function at redshift 6. Astron. J. 140, 546–560 (2010).

    Article  ADS  Google Scholar 

  50. Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

    Article  ADS  Google Scholar 

  51. Bañados, E. et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 553, 473–476 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has made use of data obtained from the Chandra Data Archive and software provided by the Chandra X-ray Center (CXC) in the application packages CIAO and Sherpa. We thank helpful discussions with F. Pacucci, A. Ricarte and P. Edmonds. Á.B., G.R.T., R.P.K., C.J. and W.R.F. acknowledge support from the Smithsonian Institution and the CXC through NASA contract NAS8-03060. A.D.G. acknowledges support from NSF/AAG grant no. 1007094. P.N. acknowledges support from the Black Hole Initiative at Harvard University, which is funded by grants from the John Templeton Foundation and the Gordon and Betty Moore Foundation. O.E.K. is supported by the GAČR EXPRO grant no. 21-13491X.

Author information

Authors and Affiliations

Authors

Contributions

Á.B. is the principal investigator of the Chandra proposal, analysed the Chandra observations, led the analysis and drafted the paper. A.D.G. and P.N. contributed equally. A.D.G. carried out the spectral fitting of the X-ray source, played a major role in writing the paper and provided a figure. P.N. led the theoretical interpretation and played a major role in writing the paper. O.E.K. contributed to the analysis of the Chandra data and its interpretation and provided a figure. G.R.T. contributed figures and text to the paper. U.C. contributed to the sample selection and data analysis. M.V. contributed to the interpretation and text of the paper. R.P.K. contributed to the interpretation of the paper. W.R.F., C.J., E.C. and I.Z. reviewed the paper and contributed to the text.

Corresponding author

Correspondence to Ákos Bogdán.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Table 1, text and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdán, Á., Goulding, A.D., Natarajan, P. et al. Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar. Nat Astron 8, 126–133 (2024). https://doi.org/10.1038/s41550-023-02111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02111-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing