Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of lunar surface water associated with high-energy electrons in Earth’s magnetotail

Abstract

Solar wind implantation is thought to be one of the primary mechanisms in the formation of water (OH/H2O) on the surface of the Moon and possibly on the surface of other airless bodies. The lunar nearside spends ~27% of its daytime in Earth’s magnetotail where the solar wind flux is reduced by as much as ~99%. However, no correlated decrease in surficial water content has yet been seen on the lunar nearside. Here we report abundance observations of lunar surficial water on the nearside at different stages during the Moon’s passage through Earth’s magnetotail. We find that the water abundance at lunar mid-latitudes substantially increases in the dusk and dawn magnetosheath when the solar wind flux increases, yet remains nearly constant across the central magnetotail. We suggest that although we have confirmed the importance of the solar wind as a major source of fast water production on the Moon, hitherto unobserved properties of the plasma sheet properties may also play an important role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Configurations of Earth’s magnetotail and a profile of the solar wind ion flux measured by the ARTEMIS mission.
Fig. 2: The diurnal trend for water contents in regions in the magnetosheath strongly deviates from that in regions in the undisturbed solar wind before the local-time correction in the mid-latitude zone.
Fig. 3: Repeat observations of water contents in the same regions for different lunar phases.
Fig. 4: Typical ion and electron differential number fluxes for the solar wind, magnetosheath, plasma sheet and magnetotail lobes as observed by the ARTEMIS mission.

Similar content being viewed by others

Data availability

The Moon Mineralogy Mapper L1B data are available at https://pds-imaging.jpl.nasa.gov/volumes/m3.html. The derived water maps and their associated local time and lunar phases are archived to the NASA Planetary Data System Cartography and Imaging Sciences node at https://doi.org/10.17189/gmce-w279.

References

  1. Watson, K., Murray, B. C. & Brown, H. The behavior of volatiles on the lunar surface. J. Geophys. Res. 66, 3033–3045 (1961).

    Article  ADS  Google Scholar 

  2. Li, S. & Garrick-Bethell, I. Surface water at lunar magnetic anomalies. Geophys. Res. Lett. 46, 14318–14327 (2019).

    Article  ADS  Google Scholar 

  3. Sunshine, J. M. et al. Temporal and spatial variability of lunar hydration as observed by the Deep Impact spacecraft. Science 326, 565–568 (2009).

    Article  ADS  Google Scholar 

  4. Pieters, C. M. et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009).

    Article  ADS  Google Scholar 

  5. Clark, R. N. Detection of adsorbed water and hydroxyl on the Moon. Science 326, 562–564 (2009).

    Article  ADS  Google Scholar 

  6. Greer, J. et al. Atom probe tomography of space-weathered lunar ilmenite grain surfaces. Meteorit. Planet. Sci. 55, 426–440 (2020).

    Article  ADS  Google Scholar 

  7. Liu, Y. et al. Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat. Geosci. 5, 779–782 (2012).

    Article  ADS  Google Scholar 

  8. De Sanctis, M. C. et al. Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. Astrophys. J. Lett. 758, L36 (2012).

    Article  ADS  Google Scholar 

  9. Rivkin, A., McFadden, L., Binzel, R. & Sykes, M. Rotationally-resolved spectroscopy of Vesta I: 2–4 μm region. Icarus 180, 464–472 (2006).

    Article  ADS  Google Scholar 

  10. Hasegawa, S. et al. Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophys. Res. Lett. https://doi.org/10.1029/2003GL018627 (2003).

  11. Daly, L. et al. Solar wind contributions to Earth’s oceans. Nat. Astron. 5, 1275–1285 (2021).

    Article  ADS  Google Scholar 

  12. Jones, B., Sarantos, M. & Orlando, T. A new in situ quasi-continuous solar-wind source of molecular water on Mercury. Astrophys. J. Lett. 891, L43 (2020).

    Article  ADS  Google Scholar 

  13. Praet, A. et al. Hydrogen abundance estimation and distribution on (101955) Bennu. Icarus 363, 114427 (2021).

    Article  Google Scholar 

  14. Wöhler, C., Grumpe, A., Berezhnoy, A. A. & Shevchenko, V. V. Time-of-day-dependent global distribution of lunar surficial water/hydroxyl. Sci. Adv. 3, e1701286 (2017).

    Article  ADS  Google Scholar 

  15. Li, S. & Milliken, R. E. Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: distribution, abundance, and origins. Sci. Adv. 3, e1701471 (2017).

    Article  ADS  Google Scholar 

  16. Hendrix, A. R. et al. Diurnally migrating lunar water: evidence from ultraviolet data. Geophys. Res. Lett. 46, 2417–2424 (2019).

    Article  ADS  Google Scholar 

  17. Tucker, O., Farrell, W., Killen, R. & Hurley, D. Solar wind implantation into the lunar regolith: Monte Carlo simulations of H retention in a surface with defects and the H2 exosphere. J. Geophys. Res. 124, 278–293 (2019).

    Article  Google Scholar 

  18. Jones, B. M., Aleksandrov, A., Hibbitts, K., Dyar, M. & Orlando, T. M. Solar wind‐induced water cycle on the Moon. Geophys. Res. Lett. 45, 10,959–910,967 (2018).

    Article  Google Scholar 

  19. Laferriere, K., Sunshine, J. & Feaga, L. Variability of hydration across the Southern Hemisphere of the Moon as observed by Deep Impact. J. Geophys. Res. 127, e2022JE007361 (2022).

    Article  ADS  Google Scholar 

  20. Poppe, A. R., Farrell, W. M. & Halekas, J. S. Formation timescales of amorphous rims on lunar grains derived from ARTEMIS observations. J. Geophys. Res. Planets 123, 37–46 (2018).

    Article  ADS  Google Scholar 

  21. Wang, H. et al. Lunar water spatial distribution and its temporal variations. In Proc. 48th Annual Lunar and Planetary Science Conference, 1831 (2017).

  22. McCord, T. B. et al. Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. Planets https://doi.org/10.1029/2010JE003711 (2011).

  23. Lucey, P. et al. The global albedo of the Moon at 1064 nm from LOLA. J. Geophys. Res. 119, 1665–1679 (2014).

    Article  Google Scholar 

  24. Milliken, R. E. & Mustard, J. F. Estimating the water content of hydrated minerals using reflectance spectroscopy. I. Effects of darkening agents and low-albedo materials. Icarus 189, 550–573 (2007).

    Article  ADS  Google Scholar 

  25. Wöhler, C. et al. Temperature regime and water/hydroxyl behavior in the crater Boguslawsky on the Moon. Icarus 285, 118–136 (2017).

    Article  ADS  Google Scholar 

  26. Wang, H. et al. Earth wind as a possible exogenous source of lunar surface hydration. Astrophys. J. Lett. 907, L32 (2021).

    Article  ADS  Google Scholar 

  27. Milliken, R. & Li, S. Remote detection of widespread indigenous water in lunar pyroclastic deposits. Nat. Geosci. 10, 561–565 (2017).

    Article  ADS  Google Scholar 

  28. Terada, K. et al. Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions. Nat. Astron. 1, 0026 (2017).

    Article  Google Scholar 

  29. Halekas, J. S., Lin, R. P. & Mitchell, D. L. Large negative lunar surface potentials in sunlight and shadow. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022627 (2005).

    Article  Google Scholar 

  30. Ness, N. F. The geomagnetic tail. Rev. Geophys. 7, 97–127 (1969).

    Article  ADS  Google Scholar 

  31. Schaible, M. J. & Baragiola, R. A. Hydrogen implantation in silicates: the role of solar wind in SiOH bond formation on the surfaces of airless bodies in space. J. Geophys. Res. 119, 2017–2028 (2014).

    Article  Google Scholar 

  32. Farrell, W., Hurley, D. & Zimmerman, M. Solar wind implantation into lunar regolith: hydrogen retention in a surface with defects. Icarus 255, 116–126 (2015).

    Article  ADS  Google Scholar 

  33. Tucker, O. J., Farrell, W. M. & Poppe, A. R. On the effect of magnetospheric shielding on the lunar hydrogen cycle. J. Geophys. Res. 126, e2020JE006552 (2021).

    Article  ADS  Google Scholar 

  34. Williams, J.-P., Paige, D., Greenhagen, B. & Sefton-Nash, E. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. Icarus 283, 300–325 (2017).

    Article  ADS  Google Scholar 

  35. Griscom, D. L. Nature of defects and defect generation in optical glasses. In Proc. Radiation Effects on Optical Materials (ed. Levy, P.) 38–59 (SPIE, 1985).

  36. Wolf, A., Friebele, E., Griscom, D., Acocella, J. & Tomozawa, M. Radiation-induced defects in glasses with high water content. J. Non-Cryst. Solids 56, 349–354 (1983).

    Article  ADS  Google Scholar 

  37. Lemelle, L., Beaunier, L., Borensztajn, S., Fialin, M. & Guyot, F. Destabilization of olivine by 30-keV electron irradiation: a possible mechanism of space weathering affecting interplanetary dust particles and planetary surfaces. Geochim. Cosmochim. Acta 67, 1901–1910 (2003).

    Article  ADS  Google Scholar 

  38. Vance, E., Cann, C. & Richardson, P. Electron irradiation-induced amorphism of some silicates. Radiat. Eff. 98, 71–81 (1986).

    Article  ADS  Google Scholar 

  39. Jones, B. M. et al. Electron-stimulated formation and release of molecular hydrogen and oxygen from boehmite nanoplatelet films. J. Phys. Chem. C. 126, 2542–2547 (2022).

    Article  Google Scholar 

  40. Jones, B. M., Aleksandrov, A., Zhang, X., Rosso, K. M. & Orlando, T. M. Electron-and thermal-stimulated synthesis of water on boehmite (γ-AlOOH) nanoplates. J. Phys. Chem. C. 123, 18986–18992 (2019).

    Article  Google Scholar 

  41. Chen, Y., Gonzalez, R. & Tsang, K. Diffusion of deuterium and hydrogen in rutile TiO2 crystals at low temperatures. Phys. Rev. Lett. 53, 1077 (1984).

    Article  ADS  Google Scholar 

  42. Jordan, A. P. et al. Deep dielectric charging of regolith within the Moon’s permanently shadowed regions. J. Geophys. Res. 119, 1806–1821 (2014).

    Article  Google Scholar 

  43. Arnold, J. R. Ice in the lunar polar regions. J. Geophys. Res. Solid Earth 84, 5659–5668 (1979).

    Article  Google Scholar 

  44. Li, S. et al. Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl Acad. Sci. 115, 8907–8912 (2018).

    Article  ADS  Google Scholar 

  45. Ichimura, A., Zent, A., Quinn, R., Sanchez, M. & Taylor, L. Hydroxyl (OH) production on airless planetary bodies: evidence from H+/D+ ion-beam experiments. Earth Planet. Sci. Lett. 345, 90–94 (2012).

    Article  ADS  Google Scholar 

  46. Green, R. O. et al. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res. Planets https://doi.org/10.1029/2011JE003797 (2011).

  47. Bandfield, J. L., Poston, M. J., Klima, R. L. & Edwards, C. S. Widespread distribution of OH/H2O on the lunar surface inferred from spectral data. Nat. Geosci. 11, 173 (2018).

    Article  ADS  Google Scholar 

  48. Li, S. & Milliken, R. E. An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and Diviner temperatures. J. Geophys Res-Planet 121, 2081–2107 (2016).

    Article  ADS  Google Scholar 

  49. Clark, R. N., Pieters, C. M., Green, R. O., Boardman, J. W. & Petro, N. E. Thermal removal from near-infrared imaging spectroscopy data of the Moon. J. Geophys. Res. Planets https://doi.org/10.1029/2010JE003751 (2011).

  50. Paige, D. A. et al. Diviner lunar radiometer observations of cold traps in the Moon’s South Polar Region. Science 330, 479–482 (2010).

    Article  ADS  Google Scholar 

  51. Lin, H. et al. Thermal modeling of the lunar regolith at the Chang'E-4 landing site. Geophys. Res. Lett. 48, e2020GL091687 (2021).

    Article  ADS  Google Scholar 

  52. Lin, H. et al. In situ detection of water on the Moon by the Chang'E-5 lander. Sci. Adv. 8, eabl9174 (2022).

    Article  ADS  Google Scholar 

  53. Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. Solid Earth 86, 3039–3054 (1981).

    Article  Google Scholar 

  54. Lundeen, S., Stephanie, M. & Rafael, A. Moon Mineralogy Mapper: Data Product Software Interface Specification (2011).

  55. Li, S. Water on the Lunar Surface as Seen by the Moon Mineralogy Mapper: Distribution, Abundance, and Origins. PhD thesis, Brown Univ. (2016).

  56. Sibeck, D. & Lin, R. Q. Size and shape of the distant magnetotail. J. Geophys. Res. Space Phys. 119, 1028–1043 (2014).

    Article  ADS  Google Scholar 

  57. Tombrello, T. Ion-beam analysis of meteoritic and lunar samples. Nucl. Instrum. Methods 168, 459–467 (1980).

    Article  ADS  Google Scholar 

  58. Greer, J. et al. Investigating space-weathering on the moon using APT. Microsc. Microanal. 27, 2052–2054 (2021).

    Article  Google Scholar 

  59. Bradley, J. P. et al. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc. Natl Acad. Sci. 111, 1732–1735 (2014).

    Article  ADS  Google Scholar 

  60. Saal, A. E. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).

    Article  ADS  Google Scholar 

  61. Saal, A. E., Hauri, E. H., Van Orman, J. A. & Rutherford, M. J. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013).

    Article  ADS  Google Scholar 

  62. Hauri, E. H., Weinreich, T., Saal, A. E., Rutherford, M. C. & Van Orman, J. A. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.L. acknowledges the support of the Lunar Data Analysis programme (Grant No. 80NSSC19K0369). A.R.P. was supported by the NASA SSERVI LEADER team (Grant No. 80NSSC20M0060). We acknowledge NASA contract NAS5-02099 and V. Angelopoulos for use of data from the THEMIS-ARTEMIS Mission, specifically C.W. Carlson and J.P. McFadden for use of ESA data. B. Jones and T. Orlando were supported by the NASA Solar System Exploration Research Virtual Institute (SSERVI) under cooperative agreement number 80ARC017M0007 (REVEALS).

Author information

Authors and Affiliations

Authors

Contributions

S.L. conceived the project and performed the data analysis and interpretation. A.R.P. prepared the ARTEMIS data. A.R.P., T.M.O., B.M.J., O.J.T., W.M.F. and A.R.H. contributed to the data analysis. T.M.O. and B.M.J. contributed to the discussion of the role of electrons on the formation of water. O.J.T. and W.M.F. contributed to the discussion of the diffusion of the implanted solar wind hydrogen. S.L. wrote the paper. All coauthors read, commented and agreed on the submitted paper.

Corresponding author

Correspondence to S. Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Quanqi Shi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Poppe, A.R., Orlando, T.M. et al. Formation of lunar surface water associated with high-energy electrons in Earth’s magnetotail. Nat Astron 7, 1427–1435 (2023). https://doi.org/10.1038/s41550-023-02081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02081-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing