Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A tilted dark halo origin of the Galactic disk warp and flare

Abstract

The outer disk of the Milky Way Galaxy is warped and flared. Several mechanisms have been proposed to explain these phenomena, but none have quantitatively reproduced both features. Recent work has demonstrated that the Galactic stellar halo is tilted with respect to the disk plane, suggesting that at least some component of the dark matter halo may also be tilted. Here we show that a dark halo tilted in the same direction as the stellar halo can induce a warp and flare in the Galactic disk at the same amplitude and orientation as the data. In our model, the warp is visible in both the gas and stars of all ages, which is consistent with the breadth of observational tracers of the warp. These results, in combination with data in the stellar halo, provide compelling evidence that our Galaxy is embedded in a tilted dark matter halo. This misalignment of the dark halo and the disk holds clues to the formation history of the Galaxy and represents the next step in the dynamical modelling of the Galactic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Present-day distribution of simulated stars in Galactocentric cylindrical coordinates.
Fig. 2: Comparison of the simulation to the observed warp and flare.
Fig. 3: The amplitude and orientation of the disk warp at R = 16 kpc.

Similar content being viewed by others

Data availability

The present-day star and gas particle data are provided under stars.npy and gas.npy in https://github.com/jiwonjessehan/MilkyWayWarp.

Code availability

All of the code and data files used to produce the results are shared in https://github.com/jiwonjessehan/MilkyWayWarp.

References

  1. Chen, X. et al. An intuitive 3D map of the Galactic warp’s precession traced by classical Cepheids. Nat. Astron. 3, 320–325 (2019).

    Article  ADS  Google Scholar 

  2. Wang, H. F. et al. Mapping the Galactic disk with the LAMOST and Gaia red clump sample. VI. Evidence for the long-lived nonsteady warp of nongravitational scenarios. Astrophys. J. 897, 119 (2020).

    Article  ADS  Google Scholar 

  3. Levine, E. S., Blitz, L. & Heiles, C. The vertical structure of the outer Milky Way H I disk. Astrophys. J. 643, 881–896 (2006).

    Article  ADS  Google Scholar 

  4. Kalberla, P. M. W., Dedes, L., Kerp, J. & Haud, U. Dark matter in the Milky Way. II. The HI gas distribution as a tracer of the gravitational potential. Astron. Astrophys. 469, 511–527 (2007).

    Article  ADS  Google Scholar 

  5. Dame, T. M. & Thaddeus, P. A molecular spiral arm in the far outer galaxy. Astrophys. J. Lett. 734, L24 (2011).

    Article  ADS  Google Scholar 

  6. Wouterloot, J. G. A., Brand, J., Burton, W. B. & Kwee, K. K. IRAS sources beyond the solar circle. II. Distribution in the galactic warp. Astron. Astrophys. 230, 21–36 (1990).

    ADS  Google Scholar 

  7. Drimmel, R. & Spergel, D. N. Three-dimensional structure of the Milky Way disk: the distribution of stars and dust beyond 0.35 R. Astrophys. J. 556, 181–202 (2001).

    Article  ADS  Google Scholar 

  8. Djorgovski, S. & Sosin, C. The warp of the Galactic stellar disk detected in IRAS source counts. Astrophys. J. Lett. 341, L13 (1989).

    Article  ADS  Google Scholar 

  9. Yusifov, I. in The Magnetized Interstellar Medium (eds Uyaniker, B. et al.) 165–169 (Copernicus GmbH, 2004).

  10. Momany, Y. et al. Outer structure of the Galactic warp and flare: explaining the Canis Major over-density. Astron. Astrophys. 451, 515–538 (2006).

    Article  ADS  Google Scholar 

  11. Cantat-Gaudin, T. et al. Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 640, A1 (2020).

    Article  Google Scholar 

  12. Newberg, H. J. et al. The ghost of Sagittarius and lumps in the halo of the Milky Way. Astrophys. J. 569, 245–274 (2002).

    Article  ADS  Google Scholar 

  13. Martin, N. F. et al. A dwarf galaxy remnant in Canis Major: the fossil of an in-plane accretion on to the Milky Way. Mon. Not. R. Astron. Soc. 348, 12–23 (2004).

    Article  ADS  Google Scholar 

  14. Naidu, R. P. et al. Evidence from the H3 survey that the stellar halo is entirely comprised of substructure. Astrophys. J. 901, 48 (2020).

    Article  ADS  Google Scholar 

  15. Han, J. J. et al. The stellar halo of the Galaxy is tilted and doubly broken. Astron. J. 164, 249 (2022).

    Article  ADS  Google Scholar 

  16. Heyer, M. & Dame, T. M. Molecular clouds in the Milky Way. Annu. Rev. Astron. Astrophys. 53, 583–629 (2015).

    Article  ADS  Google Scholar 

  17. Burke, B. F. Systematic distortion of the outer regions of the galaxy. Astron. J. 62, 90 (1957).

    Article  ADS  Google Scholar 

  18. Kerr, F. J., Hindman, J. V. & Carpenter, M. S. The large-scale structure of the Galaxy. Nature 180, 677–679 (1957).

    Article  ADS  Google Scholar 

  19. Hunter, C. & Toomre, A. Dynamics of the bending of the Galaxy. Astrophys. J. 155, 747 (1969).

    Article  ADS  Google Scholar 

  20. Toomre, A. in Internal Kinematics and Dynamics of Galaxies. International Astronomical Union, Vol. 100 (ed. Athanassoula, E.) 177–185 (Springer, 1983).

  21. Olling, R. P. & Merrifield, M. R. The shape of the Milky Way’s dark halo. In Proc. Galactic Halos: A UC Santa Cruz Workshop. Astronomical Society of the Pacific Conference Series, Vol. 136 (ed. Zaritsky, D.) 219–226 (ASP, 1998).

  22. Olling, R. P. & Merrifield, M. R. Two measures of the shape of the dark halo of the Milky Way. Mon. Not. R. Astron. Soc. 311, 361–369 (2000).

    Article  ADS  Google Scholar 

  23. Sparke, L. S. & Casertano, S. A model for persistent galactic warps. Mon. Not. R. Astron. Soc. 234, 873–898 (1988).

    Article  ADS  Google Scholar 

  24. Debattista, V. P. & Sellwood, J. A. Warped galaxies from misaligned angular momenta. Astrophys. J. Lett. 513, L107–L110 (1999).

    Article  ADS  Google Scholar 

  25. Jiang, I.-G. & Binney, J. WARPS and cosmic infall. Mon. Not. R. Astron. Soc. 303, L7–L10 (1999).

    Article  ADS  Google Scholar 

  26. Poggio, E. et al. Measuring the vertical response of the Galactic disc to an infalling satellite. Mon. Not. R. Astron. Soc. 508, 541–559 (2021).

    Article  ADS  Google Scholar 

  27. Ostriker, E. C. & Binney, J. J. Warped and tilted galactic discs. Mon. Not. R. Astron. Soc. 237, 785–798 (1989).

    Article  ADS  Google Scholar 

  28. Dubinski, J. & Chakrabarty, D. Warps and bars from the external tidal torques of tumbling dark halos. Astrophys. J. 703, 2068–2081 (2009).

    Article  ADS  Google Scholar 

  29. Laporte, C. F. P., Gómez, F. A., Besla, G., Johnston, K. V. & Garavito-Camargo, N. Response of the Milky Way’s disc to the Large Magellanic Cloud in a first infall scenario. Mon. Not. R. Astron. Soc. 473, 1218–1230 (2018).

    Article  ADS  Google Scholar 

  30. Erkal, D. et al. The total mass of the Large Magellanic Cloud from its perturbation on the Orphan stream. Mon. Not. R. Astron. Soc. 487, 2685–2700 (2019).

    Article  ADS  Google Scholar 

  31. Prada, J., Forero-Romero, J. E., Grand, R. J. J., Pakmor, R. & Springel, V. Dark matter halo shapes in the Auriga simulations. Mon. Not. R. Astron. Soc. 490, 4877–4888 (2019).

    Article  ADS  Google Scholar 

  32. Emami, R. et al. Morphological types of DM halos in Milky Way-like galaxies in the TNG50 simulation: simple, twisted, or stretched. Astrophys. J. 913, 36 (2021).

    Article  ADS  Google Scholar 

  33. Debattista, V. P. et al. What’s up in the Milky Way? The orientation of the disc relative to the triaxial halo. Mon. Not. R. Astron. Soc. 434, 2971–2981 (2013).

    Article  ADS  Google Scholar 

  34. Shao, S., Cautun, M., Deason, A. & Frenk, C. S. The twisted dark matter halo of the Milky Way. Mon. Not. R. Astron. Soc. 504, 6033–6048 (2021).

    Article  ADS  Google Scholar 

  35. Han, J. J. et al. A tilt in the dark matter halo of the Galaxy. Astrophys. J. 934, 14 (2022).

    Article  ADS  Google Scholar 

  36. Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    Article  ADS  Google Scholar 

  37. Nelson, D. et al. The IllustrisTNG simulations: public data release. Comput. Astrophys. Cosmol. 6, 2 (2019).

    Article  ADS  Google Scholar 

  38. Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611–619 (2018).

    Article  ADS  Google Scholar 

  39. Helmi, A. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk. Nature 563, 85–88 (2018).

    Article  ADS  Google Scholar 

  40. Gallart, C. et al. Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. Nat. Astron. 3, 932–939 (2019).

    Article  ADS  Google Scholar 

  41. Bonaca, A. et al. Timing the early assembly of the Milky Way with the H3 survey. Astrophys. J. Lett. 897, L18 (2020).

    Article  ADS  Google Scholar 

  42. Naidu, R. P. et al. Reconstructing the last major merger of the Milky Way with the H3 survey. Astrophys. J. 923, 92 (2021).

    Article  ADS  Google Scholar 

  43. Lilleengen, S. et al. The effect of the deforming dark matter haloes of the Milky Way and the Large Magellanic Cloud on the Orphan-Chenab stream. Mon. Not. R. Astron. Soc. 518, 774–790 (2023).

    Article  ADS  Google Scholar 

  44. Peter, A. H. G., Rocha, M., Bullock, J. S. & Kaplinghat, M. Cosmological simulations with self-interacting dark matter II: halo shapes versus observations. Mon. Not. R. Astron. Soc. 430, 105–120 (2013).

    Article  ADS  Google Scholar 

  45. Evans, N. W., O’Hare, C. A. J. & McCabe, C. Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage. Phys. Rev. D. 99, 023012 (2019).

    Article  ADS  Google Scholar 

  46. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

    Article  ADS  Google Scholar 

  47. Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    Article  ADS  Google Scholar 

  48. Miyamoto, M. & Nagai, R. Three-dimensional models for the distribution of mass in galaxies. Publ. Astron. Soc. Jpn 27, 533–543 (1975).

    ADS  Google Scholar 

  49. Hernquist, L. An analytical model for spherical galaxies and bulges. Astrophys. J. 356, 359 (1990).

    Article  ADS  Google Scholar 

  50. Price-Whelan, A. M. Gala: a Python package for galactic dynamics. J. Open Source Softw. 2, 388 (2017).

    Article  ADS  Google Scholar 

  51. Negroponte, J. & White, S. D. M. Simulations of mergers between disc-halo galaxies. Mon. Not. R. Astron. Soc. 205, 1009–1029 (1983).

    Article  ADS  Google Scholar 

  52. Carlberg, R. G. & Freedman, W. L. Dissipative models of spiral galaxies. Astrophys. J. 298, 486–492 (1985).

    Article  ADS  Google Scholar 

  53. Frankel, N., Rix, H.-W., Ting, Y.-S., Ness, M. & Hogg, D. W. Measuring radial orbit migration in the Galactic disk. Astrophys. J. 865, 96 (2018).

    Article  ADS  Google Scholar 

  54. Sellwood, J. A. & Binney, J. J. Radial mixing in galactic discs. Mon. Not. R. Astron. Soc. 336, 785–796 (2002).

    Article  ADS  Google Scholar 

  55. Frankel, N., Sanders, J., Rix, H.-W., Ting, Y.-S. & Ness, M. The inside-out growth of the Galactic disk. Astrophys. J. 884, 99 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L.H. acknowledges support from the Simons Collaboration on ‘Learning the Universe’.

Author information

Authors and Affiliations

Authors

Contributions

J.J.H. conceived of and led the project. C.C. contributed to the warp analysis and writing of the paper. L.H. contributed to the sticky particle simulation and the writing of the paper. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Jiwon Jesse Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4: Supplementary Fig. 1: Present-day distribution of star particles in the simulation in Galactocentric cylindrical coordinates. Negative R indicates azimuthal angles that are within 90 of the northern warp, and positive R indicates azimuthal angles that are within 90 of the southern warp. The top panels show the warp, and the bottom panels show the vertical deviation from the average warp. The vertical deviation systematically increases towards the outer Galaxy, demonstrating the flare of the disk. Points that are in the outer Galaxy are plotted with larger circles. Particles coloured based on birth radius reveal that the magnitude of the warp correlates strongly with the birth radius. Supplementary Fig. 2: Time evolution of the warp amplitude at fixed radius R = 16 kpc. At t = 0, the disk is initialized to have no warp. Error bars indicate 1σ statistical uncertainty in the warp fit. Within a few hundred Myr, the warp reaches maximum amplitude. After a transient oscillatory phase from t = 500–1500 Myr, the warp reaches a steady-state amplitude. This plot demonstrates that the warp onsets quickly, within one rotation period of the disk (400 Myr for a star at 16 kpc). Supplementary Fig. 3: Variation of (1) the scale length of the tilted component of the dark halo and (2) the present-day scale length of the tracer particles. Apart from the two parameters being modulated, all other parameters are fixed to the simulation presented in Fig. 1. In each panel, we show the fraction of stars that are off the Z = 0 plane by more than 0.25 kpc, Nwarp/Nplane. If this fraction is greater than 0.5%, we fit a warp model (dotted lines) and show the warp amplitude at 20 kpc as Z20. The warp amplitude correlates positively with the scale length of the disk and anti-correlates with the scale length of the tilted dark halo. Supplementary Fig. 4: Variation of (1) the tilt angle of the dark halo (2) the mass fraction of the tilted component of the dark halo. Apart from the two parameters being modulated, all other parameters are fixed to the simulation presented in Fig. 1. Similar to Supplementary Fig. 3, we show the fraction of stars that are off the Z = 0 plane by more than 0.25 kpc, Nwarp/Nplane. If this fraction is greater than 0.5%, we fit a warp model (dotted lines) and show the warp amplitude at 20 kpc as Z20. The warp amplitude correlates positively with both the tilt angle and the mass fraction of the tilted halo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J.J., Conroy, C. & Hernquist, L. A tilted dark halo origin of the Galactic disk warp and flare. Nat Astron 7, 1481–1485 (2023). https://doi.org/10.1038/s41550-023-02076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02076-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing