Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolutionary paths of active galactic nuclei and their host galaxies

Abstract

The tight correlations between the masses of supermassive black holes (BHs) and the properties of their host galaxies suggest that BHs co-evolve with galaxies. However, what is the link between BH mass (MBH) and the properties of the host galaxies of active galactic nuclei (AGNs) in the nearby Universe? We measure stellar masses (M*), colours and structural properties for ~11,500 redshift ≤0.35 broad-line AGNs, nearly 40 times more than that in any previous work, as far as we are aware. We find that early-type and late-type AGNs follow a similar MBHM* relation. The position of AGNs on the MBHM* plane is connected with the properties of star formation and BH accretion. Our results unveil the evolutionary paths of galaxies on the MBHM* plane: objects above the relation tend to evolve more horizontally, with substantial M* growth; objects on the relation move along the local relation; and objects below the relation migrate more vertically, with substantial MBH growth. These trajectories suggest that radiative-mode feedback cannot quench the growth of BHs and their host galaxies for AGNs that lie below the relation, while kinetic-mode feedback barely suppresses long-term star formation for AGNs situated above the relation. This work provides important constraints for numerical simulations and offers a framework for studying the cosmic co-evolution of supermassive BHs and their host galaxies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The relation between MBH and M* for z ≤ 0.35 type 1 AGNs.
Fig. 2: The relation between MBH and M* for z ≤ 0.35 AGNs.
Fig. 3: The relation between MBH and M* for z ≤ 0.35 AGNs.
Fig. 4: Evolutionary paths towards z = 0 of objects on the MBHM* plane.
Fig. 5: Comparison of the current distribution of low-z AGNs (blue) and the expected distribution (red) when they have evolved to z = 0.

Similar content being viewed by others

Data availability

Pan-STARRS1 images are available from the Pan-STARRS1 data archive (https://outerspace.stsci.edu/display/PANSTARRS/Pan-STARRS1+data+archive+home+page). The basic properties of the final AGN sample, the PS1 flux densities and the derived physical properties of the host galaxies are available at https://doi.org/10.12149/101278 (ref. 148).

Code availability

Astropy, dustmaps, LOESS, Matplotlib, Numpy and Scipy are available from the Python Package Index (PyPI) (https://pypi.org/). CIGALE is available at https://cigale.lam.fr/. GALFITM is available at https://www.nottingham.ac.uk/astronomy/megamorph/. linmix is available at https://linmix.readthedocs.io/en/latest/. SExtractor and SWarp are available at https://www.astromatic.net/software/.

References

  1. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Google Scholar 

  2. Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    ADS  Google Scholar 

  3. Weinberger, R. et al. Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc. 479, 4056–4072 (2018).

    ADS  Google Scholar 

  4. Peng, C. Y. How mergers may affect the mass scaling relation between gravitationally bound systems. Astrophys. J. 671, 1098–1107 (2007).

    ADS  Google Scholar 

  5. Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    ADS  Google Scholar 

  6. Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).

    ADS  Google Scholar 

  7. Wang, J.-G. et al. Estimating black hole masses in active galactic nuclei using the Mg II λ2800 emission line. Astrophys. J. 707, 1334–1346 (2009).

    ADS  Google Scholar 

  8. Peng, C. Y. et al. Probing the coevolution of supermassive black holes and galaxies using gravitationally lensed quasar hosts. Astrophys. J. 649, 616–634 (2006).

    ADS  Google Scholar 

  9. Alexander, D. M. et al. Weighing the black holes in z ≈ 2 submillimeter-emitting galaxies hosting active galactic nuclei. Astron. J. 135, 1968–1981 (2008).

  10. Schulze, A. & Wisotzki, L. Accounting for selection effects in the BH-bulge relations: no evidence for cosmological evolution. Mon. Not. R. Astron. Soc. 438, 3422–3433 (2014).

    ADS  Google Scholar 

  11. Neeleman, M. et al. The kinematics of z 6 quasar host galaxies. Astrophys. J. 911, 141 (2021).

  12. Kelly, B. C. Some aspects of measurement error in linear regression of astronomical data. Astrophys. J. 665, 1489–1506 (2007).

    ADS  Google Scholar 

  13. Bennert, V. N. et al. A local baseline of the black hole mass scaling relations for active galaxies. IV. Correlations between MBH and host galaxy σ, stellar mass, and luminosity. Astrophys. J. 921, 36 (2021).

  14. Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local universe. Astrophys. J. 813, 82 (2015).

    ADS  Google Scholar 

  15. Kim, M. & Ho, L. C. Evidence for a young stellar population in nearby type 1 active galaxies. Astrophys. J. 876, 35 (2019).

    ADS  Google Scholar 

  16. Ho, L. C. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astrophys. 46, 475–539 (2008).

    ADS  Google Scholar 

  17. Boroson, T. A. & Green, R. F. The emission-line properties of low-redshift quasi-stellar objects. Astrophys. J. Suppl. Ser. 80, 109 (1992).

    ADS  Google Scholar 

  18. Urrutia, T. et al. Spitzer observations of young red quasars. Astrophys. J. 757, 125 (2012).

    ADS  Google Scholar 

  19. Sun, M. et al. Evolution in the black hole—galaxy scaling relations and the duty cycle of nuclear activity in star-forming galaxies. Astrophys. J. 802, 14 (2015).

    ADS  Google Scholar 

  20. Zhao, Y. et al. The diverse morphology, stellar population, and black hole scaling relations of the host galaxies of nearby quasars. Astrophys. J. 911, 94 (2021).

    ADS  Google Scholar 

  21. Mathur, S., Fields, D., Peterson, B. M. & Grupe, D. Supermassive black holes, pseudobulges, and the narrow-line Seyfert 1 galaxies. Astrophys. J. 754, 146 (2012).

    ADS  Google Scholar 

  22. Greene, J. E. & Ho, L. C. The MBHσ* relation in local active galaxies. Astrophys. J. Lett. 641, L21–L24 (2006).

  23. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    ADS  Google Scholar 

  24. Graham, A. W. & Sahu, N. Appreciating mergers for understanding the non-linear Mbh-M*,spheroid and MbhM*,galaxy relations, updated herein, and the implications for the (reduced) role of AGN feedback. Mon. Not. R. Astron. Soc. 518, 2177–2200 (2023).

  25. Steinborn, L. K. et al. Cosmological simulations of black hole growth II: how (in)significant are merger events for fuelling nuclear activity? Mon. Not. R. Astron. Soc. 481, 341–360 (2018).

    ADS  Google Scholar 

  26. Zhuang, M.-Y. & Ho, L. C. The interplay between star formation and black hole accretion in nearby active galaxies. Astrophys. J. 896, 108 (2020).

    ADS  Google Scholar 

  27. Zhuang, M.-Y. & Ho, L. C. The star-forming main sequence of the host galaxies of low-redshift quasars. Astrophys. J. 934, 130 (2022).

    ADS  Google Scholar 

  28. Farrah, D. et al. Stellar and black hole assembly in z < 0.3 infrared-luminous mergers: intermittent starbursts versus super-Eddington accretion. Mon. Not. R. Astron. Soc. 513, 4770–4786 (2022).

    ADS  Google Scholar 

  29. Borys, C. et al. The relationship between stellar and black hole mass in submillimeter galaxies. Astrophys. J. 635, 853–863 (2005).

    ADS  Google Scholar 

  30. Veilleux, S. et al. A deep Hubble Space Telescope H-band imaging survey of massive gas-rich mergers. Astrophys. J. 643, 707–723 (2006).

    ADS  Google Scholar 

  31. Chen, C.-C. et al. JWST sneaks a peek at the stellar morphology of z ~ 2 submillimeter galaxies: bulge formation at cosmic noon. Astrophys. J. Lett. 939, L7 (2022).

    ADS  Google Scholar 

  32. Greve, T. R. et al. An interferometric CO survey of luminous submillimetre galaxies. Mon. Not. R. Astron. Soc. 359, 1165–1183 (2005).

    ADS  Google Scholar 

  33. Shangguan, J. et al. Interstellar medium and star formation of starburst galaxies on the merger sequence. Astrophys. J. 870, 104 (2019).

    ADS  Google Scholar 

  34. Orban de Xivry, G. et al. The role of secular evolution in the black hole growth of narrow-line Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 417, 2721–2736 (2011).

    ADS  Google Scholar 

  35. Shangguan, J., Ho, L. C., Bauer, F. E., Wang, R. & Treister, E. AGN feedback and star formation of quasar host galaxies: insights from the molecular gas. Astrophys. J. 899, 112 (2020).

    ADS  Google Scholar 

  36. Xie, Y., Ho, L. C., Zhuang, M.-Y. & Shangguan, J. The infrared emission and vigorous star formation of low-redshift quasars. Astrophys. J. 910, 124 (2021).

    ADS  Google Scholar 

  37. Kennicutt, J. & Robert, C. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    ADS  Google Scholar 

  38. Martini, P. in Coevolution of Black Holes and Galaxes (ed. Ho, L. C.) Ch. 11 (Cambridge Univ. Press, 2004).

  39. Habouzit, M., Volonteri, M. & Dubois, Y. Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Mon. Not. R. Astron. Soc. 468, 3935–3948 (2017).

    ADS  Google Scholar 

  40. Çatmabacak, O. et al. Black hole-galaxy scaling relations in FIRE: the importance of black hole location and mergers. Mon. Not. R. Astron. Soc. 511, 506–535 (2022).

    ADS  Google Scholar 

  41. Koss, M. J. et al. BAT AGN spectroscopic survey. XX. Molecular gas in nearby hard-X-ray-selected AGN galaxies. Astrophys. J. Suppl. Ser. 252, 29 (2021).

    ADS  Google Scholar 

  42. Molina, J. et al. Compact molecular gas distribution in quasar host galaxies. Astrophys. J. 908, 231 (2021).

    ADS  Google Scholar 

  43. Aird, J., Coil, A. L. & Georgakakis, A. X-rays across the galaxy population–III. The incidence of AGN as a function of star formation rate. Mon. Not. R. Astron. Soc. 484, 4360–4378 (2019).

    ADS  Google Scholar 

  44. Decarli, R. et al. An ALMA [C II] survey of 27 quasars at z > 5.94. Astrophys. J. 854, 97 (2018).

    ADS  Google Scholar 

  45. Inayoshi, K., Visbal, E. & Haiman, Z. The assembly of the first massive black holes. Annu. Rev. Astron. Astrophys. 58, 27–97 (2020).

    ADS  Google Scholar 

  46. Daddi, E. et al. Passively evolving early-type galaxies at 1.4 z 2.5 in the Hubble ultra deep field. Astrophys. J. 626, 680–697 (2005).

    ADS  Google Scholar 

  47. van Dokkum, P. G. et al. The growth of massive galaxies since z = 2. Astrophys. J. 709, 1018–1041 (2010).

  48. Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H. & Burkert, A. The two phases of galaxy formation. Astrophys. J. 725, 2312–2323 (2010).

    ADS  Google Scholar 

  49. Davari, R. H., Ho, L. C., Mobasher, B. & Canalizo, G. Detection of prominent stellar disks in the progenitors of present-day massive elliptical galaxies. Astrophys. J. 836, 75 (2017).

    ADS  Google Scholar 

  50. Zhuang, M.-Y., Ho, L. C. & Shangguan, J. Black hole accretion correlates with star formation rate and star formation efficiency in nearby luminous type 1 active galaxies. Astrophys. J. 906, 38 (2021).

    ADS  Google Scholar 

  51. Ward, S. R., Harrison, C. M., Costa, T. & Mainieri, V. Cosmological simulations predict that AGN preferentially live in gas-rich, star-forming galaxies despite effective feedback. Mon. Not. R. Astron. Soc. 514, 2936–2957 (2022).

    ADS  Google Scholar 

  52. King, A. & Pounds, K. Powerful outflows and feedback from active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 115–154 (2015).

    ADS  Google Scholar 

  53. Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740–753 (2002).

    ADS  Google Scholar 

  54. Gao, H., Ho, L. C., Barth, A. J. & Li, Z.-Y. The Carnegie-Irvine galaxy survey. VIII. Demographics of bulges along the Hubble sequence. Astrophys. J. Suppl. Ser. 244, 34 (2019).

    ADS  Google Scholar 

  55. Ding, Y., Li, R., Ho, L. C. & Ricci, C. Accretion disk outflow during the X-ray flare of the super-Eddington active nucleus of I Zwicky 1. Astrophys. J. 931, 77 (2022).

  56. Davé, R. et al. SIMBA: cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 486, 2827–2849 (2019).

    ADS  Google Scholar 

  57. Liu, H.-Y. et al. A comprehensive and uniform sample of broad-line active galactic nuclei from the SDSS DR7. Astrophys. J. Suppl. Ser. 243, 21 (2019).

    ADS  Google Scholar 

  58. Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).

    ADS  Google Scholar 

  59. York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000).

    ADS  Google Scholar 

  60. Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey data release 7. Astrophys. J. Suppl. Ser. 194, 45 (2011).

    ADS  Google Scholar 

  61. Oh, K. et al. A new catalog of type 1 AGNs and its implications on the AGN unified model. Astrophys. J. Suppl. Ser. 219, 1 (2015).

    ADS  Google Scholar 

  62. Lyke, B. W. et al. The Sloan Digital Sky Survey quasar catalog: sixteenth data release. Astrophys. J. Suppl. Ser. 250, 8 (2020).

    ADS  Google Scholar 

  63. Rakshit, S., Stalin, C. S. & Kotilainen, J. Spectral properties of quasars from Sloan Digital Sky Survey data release 14: the catalog. Astrophys. J. Suppl. Ser. 249, 17 (2020).

    ADS  Google Scholar 

  64. McLure, R. J. & Dunlop, J. S. The cosmological evolution of quasar black hole masses. Mon. Not. R. Astron. Soc. 352, 1390–1404 (2004).

    ADS  Google Scholar 

  65. Ho, L. C. & Kim, M. A revised calibration of the virial mass estimator for black holes in active galaxies based on single-epoch Hβ spectra. Astrophys. J. 809, 123 (2015).

  66. Ho, L. C. & Kim, M. The black hole mass scale of classical and pseudo bulges in active galaxies. Astrophys. J. 789, 17 (2014).

    ADS  Google Scholar 

  67. Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005).

  68. Woo, J.-H., Yoon, Y., Park, S., Park, D. & Kim, S. C. The black hole mass–stellar velocity dispersion relation of narrow-line Seyfert 1 galaxies. Astrophys. J. 801, 38 (2015).

  69. Du, P. et al. Supermassive black holes with high accretion rates in active galactic nuclei. V. A new size-luminosity scaling relation for the broad-line region. Astrophys. J. 825, 126 (2016).

    ADS  Google Scholar 

  70. Du, P. & Wang, J.-M. The radius–luminosity relationship depends on optical spectra in active galactic nuclei. Astrophys. J. 886, 42 (2019).

  71. Dalla Bontà, E. et al. The Sloan Digital Sky Survey reverberation mapping project: estimating masses of black holes in quasars with single-epoch spectroscopy. Astrophys. J. 903, 112 (2020).

    ADS  Google Scholar 

  72. Fonseca Alvarez, G. et al. The Sloan Digital Sky Survey reverberation mapping project: the Hβ radius-luminosity relation. Astrophys. J. 899, 73 (2020).

  73. Treu, T., Woo, J.-H., Malkan, M. A. & Blandford, R. D. Cosmic evolution of black holes and spheroids. II. Scaling relations at z=0.36. Astrophys. J. 667, 117–130 (2007).

  74. Bennert, V. N. et al. Cosmic evolution of black holes and spheroids. IV. The MBH-Lsph relation. Astrophys. J. 708, 1507–1527 (2010).

  75. Falomo, R., Bettoni, D., Karhunen, K., Kotilainen, J. K. & Uslenghi, M. Low-redshift quasars in the Sloan Digital Sky Survey Stripe 82. The host galaxies. Mon. Not. R. Astron. Soc. 440, 476–493 (2014).

    ADS  Google Scholar 

  76. Matsuoka, Y., Strauss, M. A., Price, I., Ted, N. & DiDonato, M. S. Massive star-forming host galaxies of quasars on Sloan Digital Sky Survey Stripe 82. Astrophys. J. 780, 162 (2014).

    ADS  Google Scholar 

  77. Bentz, M. C. & Manne-Nicholas, E. Black hole–galaxy scaling relationships for active galactic nuclei with reverberation masses. Astrophys. J. 864, 146 (2018).

  78. Ishino, T. et al. Subaru Hyper Suprime-Cam view of quasar host galaxies at z < 1. Publ. Astron. Soc. Jpn 72, 83 (2020).

    ADS  Google Scholar 

  79. Li, J. et al. The sizes of quasar host galaxies in the Hyper Suprime-Cam Subaru Strategic Program. Astrophys. J. 918, 22 (2021).

    ADS  Google Scholar 

  80. Li, J. I. H. et al. The Sloan Digital Sky Survey reverberation mapping project: the MBH-host relations at 0.2 z 0.6 from reverberation mapping and Hubble Space Telescope imaging. Astrophys. J. 906, 103 (2021).

    ADS  Google Scholar 

  81. Son, S., Kim, M., Barth, A. J. & Ho, L. C. Relation between black hole mass and bulge luminosity in hard X-ray selected type 1 AGNs. J. Korean Astron. Soc. 55, 37–57 (2022).

    ADS  Google Scholar 

  82. Heckman, T. M. An optical and radio survey of the nuclei of bright galaxies - activity in the normal galactic nuclei. Astron. Astrophys. 87, 152 (1980).

    ADS  Google Scholar 

  83. Baldwin, J. A., Phillips, M. M. & Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 93, 5–19 (1981).

    ADS  Google Scholar 

  84. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  85. Kron, R. G. Photometry of a complete sample of faint galaxies. Astrophys. J. Suppl. Ser. 43, 305–325 (1980).

    ADS  Google Scholar 

  86. Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).

    ADS  Google Scholar 

  87. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996).

    ADS  Google Scholar 

  88. Bertin, E. et al. in Astronomical Data Analysis Software and Systems XI, ASP Conference Series, Vol. 281 of (eds Bohlender, D. et al.) 228 (ASP, 2002).

  89. Farrow, D. J. et al. Pan-STARRS1: galaxy clustering in the Small Area Survey 2. Mon. Not. R. Astron. Soc. 437, 748–770 (2014).

    ADS  Google Scholar 

  90. Moffat, A. F. J. A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry. Astron. Astrophys. 3, 455 (1969).

    ADS  Google Scholar 

  91. Häußler, B. et al. MegaMorph–multiwavelength measurement of galaxy structure: complete Sérsic profile information from modern surveys. Mon. Not. R. Astron. Soc. 430, 330–369 (2013).

  92. Vika, M. et al. MegaMorph - multiwavelength measurement of galaxy structure. Sérsic profile fits to galaxies near and far. Mon. Not. R. Astron. Soc. 435, 623–649 (2013).

    ADS  Google Scholar 

  93. Sersic, J. L. Atlas de Galaxias Australes (Observatorio Astronomico, 1968).

  94. Kelvin, L. S. et al. Galaxy And Mass Assembly (GAMA): structural investigation of galaxies via model analysis. Mon. Not. R. Astron. Soc. 421, 1007–1039 (2012).

    ADS  Google Scholar 

  95. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed structural decomposition of galaxy images. Astron. J. 124, 266–293 (2002).

    ADS  Google Scholar 

  96. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    ADS  Google Scholar 

  97. Häußler, B. et al. GALAPAGOS-2/GALFITM/GAMA–Multi-wavelength measurement of galaxy structure: separating the properties of spheroid and disk components in modern surveys. Astron. Astrophys. 664, A92 (2022).

  98. Zhuang, M.-Y. & Shen, Y. Characterization of JWST NIRCam PSFs and implications for AGN+Host image decomposition. Preprint at https://arxiv.org/abs/2304.13776 (2023).

  99. Casura, S. et al. Galaxy And Mass Assembly (GAMA): bulge-disc decomposition of KiDS data in the nearby universe. Mon. Not. R. Astron. Soc. 516, 942–974 (2022).

    ADS  Google Scholar 

  100. Häussler, B. et al. GEMS: galaxy fitting catalogs and testing parametric galaxy fitting codes: GALFIT and GIM2D. Astrophys. J. Suppl. Ser. 172, 615–633 (2007).

    ADS  Google Scholar 

  101. Gao, H. & Ho, L. C. An optimal strategy for accurate bulge-to-disk decomposition of disk galaxies. Astrophys. J. 845, 114 (2017).

    ADS  Google Scholar 

  102. Fan, L. et al. Structure and morphology of X-ray-selected active galactic nucleus hosts at 1 < z < 3 in the CANDELS-COSMOS field. Astrophys. J. Lett. 784, L9 (2014).

    ADS  Google Scholar 

  103. Simard, L., Mendel, J. T., Patton, D. R., Ellison, S. L. & McConnachie, A. W. A catalog of bulge+disk decompositions and updated photometry for 1.12 million galaxies in the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 196, 11 (2011).

    ADS  Google Scholar 

  104. Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. Ser. 166, 470–497 (2006).

    ADS  Google Scholar 

  105. Boquien, M. et al. CIGALE: a Python Code Investigating GALaxy Emission. Astron. Astrophys. 622, A103 (2019).

    Google Scholar 

  106. Yang, G. et al. Fitting AGN/galaxy X-ray-to-radio SEDs with CIGALE and improvement of the code. Astrophys. J. 927, 192 (2022).

    ADS  Google Scholar 

  107. Green, G. M. dustmaps: A Python interface for maps of interstellar dust. J. Open Source Softw. 3, 695 (2018).

    ADS  Google Scholar 

  108. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    ADS  Google Scholar 

  109. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    ADS  Google Scholar 

  110. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS  Google Scholar 

  111. Inoue, A. K. Rest-frame ultraviolet-to-optical spectral characteristics of extremely metal-poor and metal-free galaxies. Mon. Not. R. Astron. Soc. 415, 2920–2931 (2011).

    ADS  Google Scholar 

  112. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Google Scholar 

  113. Mitchell, P. D., Lacey, C. G., Baugh, C. M. & Cole, S. How well can we really estimate the stellar masses of galaxies from broad-band photometry? Mon. Not. R. Astron. Soc. 435, 87–114 (2013).

    ADS  Google Scholar 

  114. Ciesla, L. et al. Constraining the properties of AGN host galaxies with spectral energy distribution modelling. Astron. Astrophys. 576, A10 (2015).

    Google Scholar 

  115. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    ADS  Google Scholar 

  116. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Google Scholar 

  117. Bell, E. F., McIntosh, D. H., Katz, N. & Weinberg, M. D. The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. Astrophys. J. Suppl. Ser. 149, 289–312 (2003).

    ADS  Google Scholar 

  118. Stalevski, M., Fritz, J., Baes, M., Nakos, T. & Popović, L. Č. 3D radiative transfer modelling of the dusty tori around active galactic nuclei as a clumpy two-phase medium. Mon. Not. R. Astron. Soc. 420, 2756–2772 (2012).

    ADS  Google Scholar 

  119. Stalevski, M. et al. The dust covering factor in active galactic nuclei. Mon. Not. R. Astron. Soc. 458, 2288–2302 (2016).

    ADS  Google Scholar 

  120. Baldry, I. K. et al. Quantifying the bimodal color-magnitude distribution of galaxies. Astrophys. J. 600, 681–694 (2004).

    ADS  Google Scholar 

  121. Blanton, M. R. & Moustakas, J. Physical properties and environments of nearby galaxies. Annu. Rev. Astron. Astrophys. 47, 159–210 (2009).

    ADS  Google Scholar 

  122. Blanton, M. R. et al. The broadband optical properties of galaxies with redshifts 0.02 < z < 0.22. Astrophys. J. 594, 186–207 (2003).

    ADS  Google Scholar 

  123. Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998).

    ADS  Google Scholar 

  124. Trump, J. R. et al. A census of broad-line active galactic nuclei in nearby galaxies: coeval star formation and rapid black hole growth. Astrophys. J. 763, 133 (2013).

    ADS  Google Scholar 

  125. Salim, S. et al. GALEX-SDSS-WISE Legacy Catalog (GSWLC): star formation rates, stellar masses, and dust attenuations of 700,000 low-redshift galaxies. Astrophys. J. Suppl. Ser. 227, 2 (2016).

    ADS  Google Scholar 

  126. Salim, S., Boquien, M. & Lee, J. C. Dust attenuation curves in the local universe: demographics and new laws for star-forming galaxies and high-redshift analogs. Astrophys. J. 859, 11 (2018).

    ADS  Google Scholar 

  127. Weinmann, S. M., van den Bosch, F. C., Yang, X. & Mo, H. J. Properties of galaxy groups in the Sloan Digital Sky Survey - I. The dependence of colour, star formation and morphology on halo mass. Mon. Not. R. Astron. Soc. 366, 2–28 (2006).

    ADS  Google Scholar 

  128. Huang, S., Haynes, M. P., Giovanelli, R. & Brinchmann, J. The Arecibo Legacy Fast ALFA Survey: the galaxy population detected by ALFALFA. Astrophys. J. 756, 113 (2012).

    ADS  Google Scholar 

  129. Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004).

    ADS  Google Scholar 

  130. Ravindranath, S. et al. The evolution of disk galaxies in the GOODS-south field: number densities and size distribution. Astrophys. J. Lett. 604, L9–L12 (2004).

    ADS  Google Scholar 

  131. Gabor, J. M. et al. Active galactic nucleus host galaxy morphologies in COSMOS. Astrophys. J. 691, 705–722 (2009).

    ADS  Google Scholar 

  132. Dewsnap, C. et al. GALFIT-ing AGN host galaxies in COSMOS: HST versus Subaru. Astrophys. J. 944, 137 (2023).

  133. Willett, K. W. et al. Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 435, 2835–2860 (2013).

    ADS  Google Scholar 

  134. Hart, R. E. et al. Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias. Mon. Not. R. Astron. Soc. 461, 3663–3682 (2016).

    ADS  Google Scholar 

  135. Kormendy, J., Kennicutt, J. & Robert, C. Secular evolution and the formation of pseudobulges in disk galaxies. Annu. Rev. Astron. Astrophys. 42, 603–683 (2004).

    ADS  Google Scholar 

  136. Gao, H., Ho, L. C., Barth, A. J. & Li, Z.-Y. The Carnegie-Irvine Galaxy Survey. IX. Classification of bulge types and statistical properties of pseudo bulges. Astrophys. J. Suppl. Ser. 247, 20 (2020).

    ADS  Google Scholar 

  137. Kim, M., Ho, L. C., Peng, C. Y., Barth, A. J. & Im, M. Stellar photometric structures of the host galaxies of nearby type 1 active galactic nuclei. Astrophys. J. Suppl. Ser. 232, 21 (2017).

    ADS  Google Scholar 

  138. Kim, M., Barth, A. J., Ho, L. C. & Son, S. A Hubble Space Telescope imaging survey of low-redshift Swift-BAT active galaxies. Astrophys. J. Suppl. Ser. 256, 40 (2021).

    ADS  Google Scholar 

  139. Zhao, D., Ho, L. C., Zhao, Y., Shangguan, J. & Kim, M. The role of major mergers and nuclear star formation in nearby obscured quasars. Astrophys. J. 877, 52 (2019).

    ADS  Google Scholar 

  140. Martín-Navarro, I., Shankar, F. & Mezcua, M. Rejuvenation triggers nuclear activity in nearby galaxies. Mon. Not. R. Astron. Soc. 513, L10–L14 (2022).

    ADS  Google Scholar 

  141. Frank, J., King, A. & Raine, D. Accretion Power in Astrophysics (Cambridge Univ. Press, 1992).

  142. Aversa, R., Lapi, A., de Zotti, G., Shankar, F. & Danese, L. Black hole and galaxy coevolution from continuity equation and abundance matching. Astrophys. J. 810, 74 (2015).

    ADS  Google Scholar 

  143. Delvecchio, I. et al. The evolving AGN duty cycle in galaxies since z ~ 3 as encoded in the X-ray luminosity function. Astrophys. J. 892, 17 (2020).

    ADS  Google Scholar 

  144. Ananna, T. T. et al. BASS. XXX. Distribution functions of DR2 Eddington ratios, black hole masses, and X-ray luminosities. Astrophys. J. Suppl. Ser. 261, 9 (2022).

    ADS  Google Scholar 

  145. Lamperti, I. et al. BAT AGN spectroscopic survey - IV: Near-infrared coronal lines, hidden broad lines, and correlation with hard X-ray emission. Mon. Not. R. Astron. Soc. 467, 540–572 (2017).

    ADS  Google Scholar 

  146. Ricci, F. et al. BASS. XXIX. The near-infrared view of the broad-line region (BLR): the effects of obscuration in BLR characterization. Astrophys. J. Suppl. Ser. 261, 8 (2022).

    ADS  Google Scholar 

  147. Abbott, T. M. C. et al. The Dark Energy Survey data release 2. Astrophys. J. Suppl. Ser. 255, 20 (2021).

    ADS  Google Scholar 

  148. Zhuang, M.-Y. & Ho, L. C. Basic information and derived properties of the final AGN sample. National Astronomical Data Center of China https://doi.org/10.12149/101278 (2023).

  149. Cappellari, M. et al. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function. Mon. Not. R. Astron. Soc. 432, 1862–1893 (2013).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant no. 2022YFF0503401), the National Science Foundation of China (grant nos. 11721303, 11991052, 12011540375 and 12233001) and the China Manned Space Project (grant nos. CMS-CSST-2021-A04 and CMS-CSST-2021-A06).

Author information

Authors and Affiliations

Authors

Contributions

M.-Y.Z. and L.C.H. developed and discussed the idea. M.-Y.Z. reduced the data, performed the analyses and wrote the paper. L.C.H. revised the paper.

Corresponding author

Correspondence to Ming-Yang Zhuang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Rest-frame SDSS \({g}^{{\prime} }-{r}^{{\prime} }\) colour [\({({g}^{{\prime} }-{r}^{{\prime} })}_{0}\)] versus stellar mass (M*) for the inactive galaxy sample (red) and AGN sample (blue).

Objects with z < 0.15 are shown in panel (a), and objects with 0.15≤z≤0.35 are shown in panel (b). Contours indicate the distribution of 10%, 30%, 60%, and 90% of the entire sample, respectively. Dots are individual objects located outside the 90% contour. The lower-right corner of each panel shows the typical uncertainties.

Extended Data Fig. 2 The relation between MBH and M* for z≤0.35 type 1 AGNs without smoothing.

Colours represent (a) rest-frame optical colour \({({g}^{{\prime} }-{r}^{{\prime} })}_{0}\), (b) Eddington ratio (λE), and (c) relative Fe II strength. Best-fit relations from ref. 5 for local early-type galaxies (black dashed line), late-type galaxies (black dotted line), and both types combined (black solid line; intrinsic scatter of 0.81 dex indicated as shaded gray region). This figure shows the version of Fig. 2 without smoothing to demonstrate that the trends are still present in the original data.

Extended Data Fig. 3 The relation between MBH and M* for z≤0.35 type 1 AGNs without smoothing and with MBH derived from broad Hα emission with a virial factor f = 4.47.

Colours represent (a) rest-frame optical colour \({({g}^{{\prime} }-{r}^{{\prime} })}_{0}\), (b) Eddington ratio (λE), and (c) relative Fe II strength. Best-fit relations from ref. 5 for local early-type galaxies (black dashed line), late-type galaxies (black dotted line), and both types combined (black solid line; intrinsic scatter of 0.81 dex indicated as shaded gray region). This figure demonstrates that switching to the Hα-based MBH estimator does not qualitatively affect our main conclusions.

Extended Data Fig. 4 Rest-frame SDSS \({g}^{{\prime} }-{r}^{{\prime} }\) colour [\({({g}^{{\prime} }-{r}^{{\prime} })}_{0}\)] versus stellar mass (M*) for AGNs.

AGNs with early-type and late-type morphologies are shown in magenta and green, respectively. Objects with z < 0.15 are shown in panel (a), and objects with 0.15≤z≤0.35 are shown in panel (b). Contours indicate the distribution of 10%, 30%, 60%, and 90% of the entire sample, respectively. Dots are individual objects located outside the 90% contour. The lower-right corner of each panel shows the typical uncertainties.

Extended Data Fig. 5 The relation between MBH and M* for local (z < 0.1) type 2 AGNs.

BH masses are derived from broad emission lines in the near-infrared (see Methods). Their evolution to z = 0 is indicated by the direction and length of each arrow. Best-fit relations from ref. 5 for local early-type galaxies (black dashed line), late-type galaxies (black dotted line), and both types combined (black solid line; intrinsic scatter of 0.81 dex indicated as shaded gray region). Typical uncertainties are shown in the lower-right corner.

Extended Data Fig. 6 Rest-frame optical colour \({({g}^{{\prime} }-{r}^{{\prime} })}_{0}\) versus λE for AGNs.

AGNs with early-type, late-type, and both types combined morphologies are shown in magenta, green, and black, respectively. Contours indicate the distribution of 10%, 30%, 60%, and 90% of the entire sample, respectively. Dots are individual objects located outside the 90% contour. Thick solid and dashed lines represent 50th, 16th, and 84th percentiles of the objects. The Spearman correlation coefficient ρ and p-value are shown in the lower-left corner. Typical uncertainties are shown in the upper-right corner.

Extended Data Fig. 7 The relation between MBH and Mbulge for z≤0.35 AGNs with MBH growth fraction larger than 20%.

Colours represent growth fraction of MBH. Mbulge is predicted from M* with a bulge-to-total ratio of 0.2. We show the best-fit relations from ref. 5 for local early-type galaxies (black dashed line), late-type galaxies (black dotted line), and both types combined (black solid line; intrinsic scatter of 0.81 dex indicated as shaded gray region).

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, MY., Ho, L.C. Evolutionary paths of active galactic nuclei and their host galaxies. Nat Astron 7, 1376–1389 (2023). https://doi.org/10.1038/s41550-023-02051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02051-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing