Abstract
Massive astrophysical compact halo object (MACHO) 80.7443.1718 is a high mass, eccentric binary system exhibiting the largest-known-amplitude tidally excited oscillations. The system’s ±20% photometric amplitude, along with the high mass of the primary star, ~35 M⊙, make this the most extreme of the class of periodically perturbed ‘heartbeat stars.’ Here, we use a hydrodynamic simulation to demonstrate that with each periapse passage, an unseen companion star raises tidal waves so large that they break, shock-heating and dissipating energy and angular momentum on the surface of the star. The shock-heated material forms a rapidly rotating circumstellar atmosphere, which is stripped and reassembled with each periapse passage. The dissipation of nonlinear tides through surface wave breaking explains the super-synchronous rotation of the primary star, the evolution of spectral emission features and the observed decay of the binary orbital period. Connecting these features demonstrates that MACHO 80.7443.1718 is a natural product of massive binary star evolution, and that it provides an ideal laboratory for the direct study of nonlinear tidal dissipation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data needed to reproduce the results and figures of this article are available online via the Harvard Dataverse81.
Code availability
The software used to run the simulation models described in this article and perform the analysis that reproduces the figures of this article is available online at https://github.com/morganemacleod/HBStarWaveBreaking and via Zenodo82.
Change history
12 September 2023
A Correction to this paper has been published: https://doi.org/10.1038/s41550-023-02094-7
References
Alcock, C. et al. The MACHO Project – a search for the dark matter in the Milky-Way. In Sky Surveys. Protostars to Protogalaxies, Astronomical Society of the Pacific Conference Series Soifer (ed. Soifer, B. T.) 43, 291 (ASP, 1993).
Kumar, P., Ao, C. O. & Quataert, E. J. Tidal excitation of modes in binary systems with applications to binary pulsars. Astrophys. J. 449, 294 (1995).
Lai, D. Dynamical tides in rotating binary stars. Astrophys. J. 490, 847–862 (1997).
Welsh, W. F. et al. KOI-54: the Kepler discovery of tidally excited pulsations and brightenings in a highly eccentric binary. Astrophys. J. Suppl. Ser. 197, 4 (2011).
Thompson, S. E. et al. A class of eccentric binaries with dynamic tidal distortions discovered with Kepler. Astrophys. J. 753, 86 (2012).
Burkart, J., Quataert, E., Arras, P. & Weinberg, N. N. Tidal asteroseismology: Kepler’s KOI-54. Mon. Not. R. Astron. Soc. 421, 983–1006 (2012).
Fuller, J. & Lai, D. Dynamical tides in eccentric binaries and tidally excited stellar pulsations in Kepler KOI-54. Mon. Not. R. Astron. Soc. 420, 3126–3138 (2012).
Wrona, M. et al. The OGLE collection of variable stars: one thousand heartbeat stars in the Galactic bulge and Magellanic Clouds. Astrophys. J. Suppl. Ser. 259, 16 (2022).
Wrona, M., Kołaczek-Szymański, P. A., Ratajczak, M. & Kozłowski, S. Photometric analysis of the OGLE heartbeat stars. Astrophys. J. 928, 135 (2022).
Jayasinghe, T. et al. An extreme amplitude, massive heartbeat system in the LMC characterized using ASAS-SN and TESS. Mon. Not. R. Astron. Soc. 489, 4705–4711 (2019).
Jayasinghe, T. et al. The loudest stellar heartbeat: characterizing the most extreme amplitude heartbeat star system. Mon. Not. R. Astron. Soc. 506, 4083–4100 (2021).
Kołaczek-Szymański, P. A., Pigulski, A., Wrona, M., Ratajczak, M. & Udalski, A. Tidally excited oscillations in MACHO 80.7443.1718: changing amplitudes and frequencies, high-frequency tidally excited mode, and a decrease in the orbital period. Astron. Astrophys. 659, A47 (2022).
Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).
Su, Y. & Lai, D. Dynamical tides in eccentric binaries containing massive main-sequence stars: analytical expressions. Mon. Not. R. Astron. Soc. 510, 4943–4951 (2022).
Zahn, J. P. Tidal friction in close binary systems. Astron. Astrophys. 57, 383–394 (1977).
Hut, P. Tidal evolution in close binary systems for high eccentricity. Astron. Astrophys. 110, 37–42 (1982).
Kochanek, C. S. The dynamical evolution of tidal capture binaries. Astrophys. J. 385, 604 (1992).
Verbunt, F. & Phinney, E. S. Tidal circularization and the eccentricity of binaries containing giant stars. Astron. Astrophys. 296, 709 (1995).
Sun, M., Townsend, R. H. D. & Guo, Z. gyre_tides: Modeling binary tides within the GYRE stellar oscillation code. Astrophys. J. https://doi.org/10.3847/1538-4357/acb33a (2023).
Vigna-Gómez, A. et al. Common envelope episodes that lead to double neutron star formation. Publ. Astron. Soc. Aust. 37, e038 (2020).
Vick, M., MacLeod, M., Lai, D. & Loeb, A. Tidal dissipation impact on the eccentric onset of common envelope phases in massive binary star systems. Mon. Not. R. Astron. Soc. 503, 5569–5582 (2021).
Pfahl, E., Arras, P. & Paxton, B. Ellipsoidal oscillations induced by substellar companions: a prospect for the Kepler mission. Astrophys. J. 679, 783–796 (2008).
Aronson, H., Baumgarte, T. W. & Shapiro, S. L. Did a close tidal encounter cause the Great Dimming of Betelgeuse? Mon. Not. R. Astron. Soc. 516, 5021–5026 (2022).
Maeder, A. Physics, Formation and Evolution of Rotating Stars (Springer, 2009).
MacLeod, M., Vick, M. & Loeb, A. Tidal wave breaking in the eccentric lead-in to mass transfer and common envelope phases. Astrophys. J. 937, 37 (2022).
Stone, J. M., Tomida, K., White, C. J. & Felker, K. G. The Athena++ adaptive mesh refinement framework: design and magnetohydrodynamic solvers. Astrophys. J. Suppl. Ser. 249, 4 (2020).
Witte, M. G. & Savonije, G. J. The dynamical tide in a rotating 10M⊙ main sequence star. A study of g- and r-mode resonances. Astron. Astrophys. 341, 842–852 (1999).
Witte, M. G. & Savonije, G. J. Tidal evolution of eccentric orbits in massive binary systems. A study of resonance locking. Astron. Astrophys. 350, 129–147 (1999).
Weinberg, N. N., Arras, P., Quataert, E. & Burkart, J. Nonlinear tides in close binary systems. Astrophys. J. 751, 136 (2012).
O’Leary, R. M. & Burkart, J. It takes a village to raise a tide: non-linear multiple-mode coupling and mode identification in KOI-54. Mon. Not. R. Astron. Soc. 440, 3036–3050 (2014).
Burkart, J., Quataert, E. & Arras, P. Dynamical resonance locking in tidally interacting binary systems. Mon. Not. R. Astron. Soc. 443, 2957–2973 (2014).
Fuller, J., Hambleton, K., Shporer, A., Isaacson, H. & Thompson, S. Accelerated tidal circularization via resonance locking in KIC 8164262. Mon. Not. R. Astron. Soc. 472, L25–L29 (2017).
Fuller, J. Heartbeat stars, tidally excited oscillations and resonance locking. Mon. Not. R. Astron. Soc. 472, 1538–1564 (2017).
Hambleton, K. et al. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking. Mon. Not. R. Astron. Soc. 473, 5165–5176 (2018).
Fuller, J. & Lai, D. Dynamical tides in compact white dwarf binaries: tidal synchronization and dissipation. Mon. Not. R. Astron. Soc. 421, 426–445 (2012).
Kastaun, W., Willburger, B. & Kokkotas, K. D. Saturation amplitude of the f-mode instability. Phys. Rev. D 82, 104036 (2010).
Fuller, J. & Lai, D. Tidal novae in compact binary white dwarfs. Astrophys. J. Lett. 756, L17 (2012).
Fabian, A. C., Pringle, J. E. & Rees, M. J. Tidal capture formation of binary systems and X-ray sources in globular clusters. Mon. Not. R. Astron. Soc. 172, 15 (1975).
Press, W. H. & Teukolsky, S. A. On formation of close binaries by two-body tidal capture. Astrophys. J. 213, 183–192 (1977).
Lin, D. N. C., Bodenheimer, P. & Richardson, D. C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996).
Kumar, P. & Goodman, J. Nonlinear damping of oscillations in tidal-capture binaries. Astrophys. J. 466, 946 (1996).
Baumgardt, H., Hopman, C., Portegies Zwart, S. & Makino, J. Tidal capture of stars by intermediate-mass black holes. Mon. Not. R. Astron. Soc. 372, 467–478 (2006).
Lai, D. & Wu, Y. Resonant tidal excitations of inertial modes in coalescing neutron star binaries. Phys. Rev. D 74, 024007 (2006).
Ivanov, P. B. & Papaloizou, J. C. B. Dynamic tides in rotating objects: orbital circularization of extrasolar planets for realistic planet models. Mon. Not. R. Astron. Soc. 376, 682–704 (2007).
Fabrycky, D. & Tremaine, S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007).
Fuller, J. & Lai, D. Dynamical tides in compact white dwarf binaries: helium core white dwarfs, tidal heating and observational signatures. Mon. Not. R. Astron. Soc. 430, 274–287 (2013).
Li, G. & Loeb, A. Accumulated tidal heating of stars over multiple pericentre passages near SgrA*. Mon. Not. R. Astron. Soc. 429, 3040–3046 (2013).
Michaely, E. & Perets, H. B. Tidal capture formation of low-mass X-ray binaries from wide binaries in the field. Mon. Not. R. Astron. Soc. 458, 4188–4197 (2016).
Naoz, S., Fragos, T., Geller, A., Stephan, A. P. & Rasio, F. A. Formation of black hole low-mass X-ray binaries in hierarchical triple systems. Astrophys. J. Lett. 822, L24 (2016).
Weinberg, N. N., Sun, M., Arras, P. & Essick, R. Tidal dissipation in WASP-12. Astrophys. J. Lett. 849, L11 (2017).
Vick, M., Lai, D. & Fuller, J. Tidal dissipation and evolution of white dwarfs around massive black holes: an eccentric path to tidal disruption. Mon. Not. R. Astron. Soc. 468, 2296–2310 (2017).
Klencki, J., Wiktorowicz, G., Gładysz, W. & Belczynski, K. Dynamical formation of black hole low-mass X-ray binaries in the field: an alternative to the common envelope. Mon. Not. R. Astron. Soc. 469, 3088–3101 (2017).
Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. Formation of tidal captures and gravitational wave inspirals in binary-single interactions. Astrophys. J. 846, 36 (2017).
Wu, Y. Diffusive tidal evolution for migrating hot Jupiters. Astron. J. 155, 118 (2018).
Vick, M., Lai, D. & Anderson, K. R. Chaotic tides in migrating gas giants: forming hot and transient warm Jupiters via Lidov-Kozai migration. Mon. Not. R. Astron. Soc. 484, 5645–5668 (2019).
Podsiadlowski, P. The response of tidally heated stars. Mon. Not. R. Astron. Soc. 279, 1104 (1996).
Alexander, T. & Kumar, P. Tidal spin-up of stars in dense stellar cusps around massive black holes. Astrophys. J. 549, 948–958 (2001).
Gu, P.-G., Lin, D. N. C. & Bodenheimer, P. H. The effect of tidal inflation instability on the mass and dynamical evolution of extrasolar planets with ultrashort periods. Astrophys. J. 588, 509–534 (2003).
Gu, P.-G., Bodenheimer, P. H. & Lin, D. N. C. The internal structural adjustment due to tidal heating of short-period inflated giant planets. Astrophys. J. 608, 1076–1094 (2004).
Barker, A. J. & Ogilvie, G. I. On internal wave breaking and tidal dissipation near the centre of a solar-type star. Mon. Not. R. Astron. Soc. 404, 1849–1868 (2010).
Barker, A. J. Three-dimensional simulations of internal wave breaking and the fate of planets around solar-type stars. Mon. Not. R. Astron. Soc. 414, 1365–1378 (2011).
Ogilvie, G. I. Tidal dissipation in stars and giant planets. Annu. Rev. Astron. Astrophys. 52, 171–210 (2014).
MacLeod, M., Ostriker, E. C. & Stone, J. M. Runaway coalescence at the onset of common envelope episodes. Astrophys. J. 863, 5 (2018).
MacLeod, M., Ostriker, E. C. & Stone, J. M. Bound outflows, unbound ejecta, and the shaping of bipolar remnants during stellar coalescence. Astrophys. J. 868, 136 (2018).
MacLeod, M., Vick, M., Lai, D. & Stone, J. M. Polygram stars: resonant tidal excitation of fundamental oscillation modes in asynchronous stellar coalescence. Astrophys. J. 877, 28 (2019).
MacLeod, M. & Loeb, A. Runaway coalescence of pre-common-envelope stellar binaries. Astrophys. J. 893, 106 (2020).
MacLeod, M. & Loeb, A. Pre-common-envelope mass loss from coalescing binary systems. Astrophys. J. 895, 29 (2020).
Hernquist, L. & Katz, N. TREESPH: a unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 70, 419 (1989).
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).
Townsend, R. H. D. & Teitler, S. A. GYRE: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme. Mon. Not. R. Astron. Soc. 435, 3406–3418 (2013).
Townsend, R. H. D., Goldstein, J. & Zweibel, E. G. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars. Mon. Not. R. Astron. Soc. 475, 879–893 (2018).
Goldstein, J. & Townsend, R. H. D. The contour method: a new approach to finding modes of nonadiabatic stellar pulsations. Astrophys. J. 899, 116 (2020).
von Zeipel, H. The radiative equilibrium of a rotating system of gaseous masses. Mon. Not. R. Astron. Soc. 84, 665–683 (1924).
von Zeipel, H. The radiative equilibrium of a slightly oblate rotating star. Mon. Not. R. Astron. Soc. 84, 684–701 (1924).
von Zeipel, H. Radiative equilibrium of a double-star system with nearly spherical components. Mon. Not. R. Astron. Soc. 84, 702 (1924).
Cox, A. N. Allen’s Astrophysical Quantities 4th edn (Springer, 2000).
MacLeod, M. Replication Data for: Breaking Waves on the Surface of the Heartbeat Star MACHO 80.7443.1718. Harvard Dataverse https://doi.org/10.7910/DVN/47WXLT (2023).
MacLeod, M. morganemacleod/hbstarwavebreaking: v1.0 (2023); https://doi.org/10.5281/zenodo.7986580
Acknowledgements
We acknowledge helpful conversations with C. Alcock, A. Dupree, V. Kalogera and J. Stone. We are particularly grateful to M. Vick for many discussions and collaboration on tidal wave breaking. This work was supported by the National Science Foundation under Grant No. 1909203 and by a Clay Postdoctoral Fellowship at the Smithsonian Astrophysical Observatory. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI1548562. In particular, use of XSEDE resource Stampede2 at TACC through allocation TG-AST200014 enabled this work. A.L. was supported in part by Harvard’s Black Hole Initiative, which is funded by GBMF and JTF grants.
Author information
Authors and Affiliations
Contributions
M.M. and A.L. both contributed to the conceptualization, analysis and writing of the manuscript. M.M. designed and performed the numerical simulations and associated analysis.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Adrian Barker and Jim Fuller for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Comparison of the radiative envelope of a MESA stellar evolution model to a polytropic approximation with Γ = 1.307.
The polytrope model joins to an isothermal atmosphere outside of the stellar profile. The MESA model has evolved just past the ignition of Helium in the core when it reaches the conditions matching those observed in MACHO 80.7443.1718. The right-hand panel compares the propagation diagram of the MESA and polytropic models, showing the dimensionless Lamb frequency (Sl, evaluated for l = 2) and Brunt-Väisälä frequency (N). Acoustic, p-modes propagate above the envelope set by these two frequencies, while buoyancy, g-modes propagate below.
Extended Data Fig. 2 Lomb-Scargle periodogram of tidally-excited oscillations between periapse passages.
The periodogram of the simulation differs from that of the data, showing that different modes are excited most strongly. In the simulation case, we see most of the power near the rotational frequency, while in the data, the 25th harmonic of the orbital frequency is most-strongly excited.
Extended Data Fig. 3 An l = 1 g-mode propagates through the model star between periapse passages.
This mode leads to oscillatory motions in the ϕ direction, which modulate the envelope angular frequency. In addition to oscillations in Ω/Ωenv, dissipation spins the envelope to higher average frequencies near the surface.
Extended Data Fig. 4 Vorticity and perpendicular mach number in the rotating frame.
A vortex sheet marks the shear layer in the l = 1 g-mode. This shear interface becomes corrugated and breaks when the mach number in the rotating frame is on the order of unity. The associated dissipation drives the spin up of the outer stellar layers.
Extended Data Fig. 5 Slice through the midplane of model MACHO 80.7443.1718 primary star near orbital apoapse.
Through shocks and dissipation, the atmosphere layers acquire rotation similar to the Keplerian rate outside the stellar surface (the profile in the simulation outside 30R⊙ is similar to 2/3vkep), indicating that these high angular momentum layers will be rotationally supported even if they cool.
Supplementary information
Supplementary Information
Supplementary text and Figs. 1–4.
Supplementary Video 1
Animation of main text Fig. 1. A slice of density through the orbital plane shows interaction between the envelope of the primary star and the companion. Each passage, waves are raised that crash to the stellar surface, creating a rotating, shock-heated atmosphere.
Supplementary Video 2
Animation of main text Fig. 1, but zoomed in on the primary-star envelope and moving in the orbiting reference frame. This provides a closer perspective on the tidal waves and shock-laced atmosphere that develop.
Supplementary Video 3
Three-dimensional rendering of the photospheric surface, as in main text Fig. 2. Colours represent surface flux, and the orientation is identical to the observer orientation relative to MACHO 80.7443.1718. Following each passage, the corrugated surface of breaking waves are visible near the stellar equator.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
MacLeod, M., Loeb, A. Breaking waves on the surface of the heartbeat star MACHO 80.7443.1718. Nat Astron 7, 1218–1227 (2023). https://doi.org/10.1038/s41550-023-02036-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-023-02036-3