Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breaking waves on the surface of the heartbeat star MACHO 80.7443.1718

An Author Correction to this article was published on 12 September 2023

This article has been updated

Abstract

Massive astrophysical compact halo object (MACHO) 80.7443.1718 is a high mass, eccentric binary system exhibiting the largest-known-amplitude tidally excited oscillations. The system’s ±20% photometric amplitude, along with the high mass of the primary star, ~35 M, make this the most extreme of the class of periodically perturbed ‘heartbeat stars.’ Here, we use a hydrodynamic simulation to demonstrate that with each periapse passage, an unseen companion star raises tidal waves so large that they break, shock-heating and dissipating energy and angular momentum on the surface of the star. The shock-heated material forms a rapidly rotating circumstellar atmosphere, which is stripped and reassembled with each periapse passage. The dissipation of nonlinear tides through surface wave breaking explains the super-synchronous rotation of the primary star, the evolution of spectral emission features and the observed decay of the binary orbital period. Connecting these features demonstrates that MACHO 80.7443.1718 is a natural product of massive binary star evolution, and that it provides an ideal laboratory for the direct study of nonlinear tidal dissipation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the evolution of the representative hydrodynamic simulation of MACHO 80.7443.1718 through a ~32.8-day orbital period.
Fig. 2: Synthetic light and radial velocity curves through two orbits of the model system as compared to photometric and spectroscopic data.
Fig. 3: Detail of photometric variations through a periapse passage.
Fig. 4: Snapshot showing features of oscillations and turbulence between periapse passages.
Fig. 5: The dynamics of nonlinear wave breaking in the tidal stream during the periapse passage.
Fig. 6: Line-of-sight velocities of the extended, wave breaking atmosphere through a periapse passage.

Similar content being viewed by others

Data availability

The data needed to reproduce the results and figures of this article are available online via the Harvard Dataverse81.

Code availability

The software used to run the simulation models described in this article and perform the analysis that reproduces the figures of this article is available online at https://github.com/morganemacleod/HBStarWaveBreaking and via Zenodo82.

Change history

References

  1. Alcock, C. et al. The MACHO Project – a search for the dark matter in the Milky-Way. In Sky Surveys. Protostars to Protogalaxies, Astronomical Society of the Pacific Conference Series Soifer (ed. Soifer, B. T.) 43, 291 (ASP, 1993).

  2. Kumar, P., Ao, C. O. & Quataert, E. J. Tidal excitation of modes in binary systems with applications to binary pulsars. Astrophys. J. 449, 294 (1995).

    Article  ADS  Google Scholar 

  3. Lai, D. Dynamical tides in rotating binary stars. Astrophys. J. 490, 847–862 (1997).

    Article  ADS  Google Scholar 

  4. Welsh, W. F. et al. KOI-54: the Kepler discovery of tidally excited pulsations and brightenings in a highly eccentric binary. Astrophys. J. Suppl. Ser. 197, 4 (2011).

    Article  ADS  Google Scholar 

  5. Thompson, S. E. et al. A class of eccentric binaries with dynamic tidal distortions discovered with Kepler. Astrophys. J. 753, 86 (2012).

    Article  ADS  Google Scholar 

  6. Burkart, J., Quataert, E., Arras, P. & Weinberg, N. N. Tidal asteroseismology: Kepler’s KOI-54. Mon. Not. R. Astron. Soc. 421, 983–1006 (2012).

    Article  ADS  Google Scholar 

  7. Fuller, J. & Lai, D. Dynamical tides in eccentric binaries and tidally excited stellar pulsations in Kepler KOI-54. Mon. Not. R. Astron. Soc. 420, 3126–3138 (2012).

    Article  ADS  Google Scholar 

  8. Wrona, M. et al. The OGLE collection of variable stars: one thousand heartbeat stars in the Galactic bulge and Magellanic Clouds. Astrophys. J. Suppl. Ser. 259, 16 (2022).

    Article  ADS  Google Scholar 

  9. Wrona, M., Kołaczek-Szymański, P. A., Ratajczak, M. & Kozłowski, S. Photometric analysis of the OGLE heartbeat stars. Astrophys. J. 928, 135 (2022).

    Article  ADS  Google Scholar 

  10. Jayasinghe, T. et al. An extreme amplitude, massive heartbeat system in the LMC characterized using ASAS-SN and TESS. Mon. Not. R. Astron. Soc. 489, 4705–4711 (2019).

    Article  ADS  Google Scholar 

  11. Jayasinghe, T. et al. The loudest stellar heartbeat: characterizing the most extreme amplitude heartbeat star system. Mon. Not. R. Astron. Soc. 506, 4083–4100 (2021).

    Article  ADS  Google Scholar 

  12. Kołaczek-Szymański, P. A., Pigulski, A., Wrona, M., Ratajczak, M. & Udalski, A. Tidally excited oscillations in MACHO 80.7443.1718: changing amplitudes and frequencies, high-frequency tidally excited mode, and a decrease in the orbital period. Astron. Astrophys. 659, A47 (2022).

    Article  ADS  Google Scholar 

  13. Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981).

    ADS  MATH  Google Scholar 

  14. Su, Y. & Lai, D. Dynamical tides in eccentric binaries containing massive main-sequence stars: analytical expressions. Mon. Not. R. Astron. Soc. 510, 4943–4951 (2022).

    Article  ADS  Google Scholar 

  15. Zahn, J. P. Tidal friction in close binary systems. Astron. Astrophys. 57, 383–394 (1977).

    ADS  Google Scholar 

  16. Hut, P. Tidal evolution in close binary systems for high eccentricity. Astron. Astrophys. 110, 37–42 (1982).

    ADS  Google Scholar 

  17. Kochanek, C. S. The dynamical evolution of tidal capture binaries. Astrophys. J. 385, 604 (1992).

    Article  ADS  Google Scholar 

  18. Verbunt, F. & Phinney, E. S. Tidal circularization and the eccentricity of binaries containing giant stars. Astron. Astrophys. 296, 709 (1995).

    ADS  Google Scholar 

  19. Sun, M., Townsend, R. H. D. & Guo, Z. gyre_tides: Modeling binary tides within the GYRE stellar oscillation code. Astrophys. J. https://doi.org/10.3847/1538-4357/acb33a (2023).

  20. Vigna-Gómez, A. et al. Common envelope episodes that lead to double neutron star formation. Publ. Astron. Soc. Aust. 37, e038 (2020).

    Article  ADS  Google Scholar 

  21. Vick, M., MacLeod, M., Lai, D. & Loeb, A. Tidal dissipation impact on the eccentric onset of common envelope phases in massive binary star systems. Mon. Not. R. Astron. Soc. 503, 5569–5582 (2021).

    Article  ADS  Google Scholar 

  22. Pfahl, E., Arras, P. & Paxton, B. Ellipsoidal oscillations induced by substellar companions: a prospect for the Kepler mission. Astrophys. J. 679, 783–796 (2008).

    Article  ADS  Google Scholar 

  23. Aronson, H., Baumgarte, T. W. & Shapiro, S. L. Did a close tidal encounter cause the Great Dimming of Betelgeuse? Mon. Not. R. Astron. Soc. 516, 5021–5026 (2022).

    Article  ADS  Google Scholar 

  24. Maeder, A. Physics, Formation and Evolution of Rotating Stars (Springer, 2009).

  25. MacLeod, M., Vick, M. & Loeb, A. Tidal wave breaking in the eccentric lead-in to mass transfer and common envelope phases. Astrophys. J. 937, 37 (2022).

    Article  ADS  Google Scholar 

  26. Stone, J. M., Tomida, K., White, C. J. & Felker, K. G. The Athena++ adaptive mesh refinement framework: design and magnetohydrodynamic solvers. Astrophys. J. Suppl. Ser. 249, 4 (2020).

    Article  ADS  Google Scholar 

  27. Witte, M. G. & Savonije, G. J. The dynamical tide in a rotating 10M main sequence star. A study of g- and r-mode resonances. Astron. Astrophys. 341, 842–852 (1999).

    ADS  Google Scholar 

  28. Witte, M. G. & Savonije, G. J. Tidal evolution of eccentric orbits in massive binary systems. A study of resonance locking. Astron. Astrophys. 350, 129–147 (1999).

    ADS  Google Scholar 

  29. Weinberg, N. N., Arras, P., Quataert, E. & Burkart, J. Nonlinear tides in close binary systems. Astrophys. J. 751, 136 (2012).

    Article  ADS  Google Scholar 

  30. O’Leary, R. M. & Burkart, J. It takes a village to raise a tide: non-linear multiple-mode coupling and mode identification in KOI-54. Mon. Not. R. Astron. Soc. 440, 3036–3050 (2014).

    Article  ADS  Google Scholar 

  31. Burkart, J., Quataert, E. & Arras, P. Dynamical resonance locking in tidally interacting binary systems. Mon. Not. R. Astron. Soc. 443, 2957–2973 (2014).

    Article  ADS  Google Scholar 

  32. Fuller, J., Hambleton, K., Shporer, A., Isaacson, H. & Thompson, S. Accelerated tidal circularization via resonance locking in KIC 8164262. Mon. Not. R. Astron. Soc. 472, L25–L29 (2017).

    Article  ADS  Google Scholar 

  33. Fuller, J. Heartbeat stars, tidally excited oscillations and resonance locking. Mon. Not. R. Astron. Soc. 472, 1538–1564 (2017).

    Article  ADS  Google Scholar 

  34. Hambleton, K. et al. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking. Mon. Not. R. Astron. Soc. 473, 5165–5176 (2018).

    Article  ADS  Google Scholar 

  35. Fuller, J. & Lai, D. Dynamical tides in compact white dwarf binaries: tidal synchronization and dissipation. Mon. Not. R. Astron. Soc. 421, 426–445 (2012).

    ADS  Google Scholar 

  36. Kastaun, W., Willburger, B. & Kokkotas, K. D. Saturation amplitude of the f-mode instability. Phys. Rev. D 82, 104036 (2010).

    Article  ADS  Google Scholar 

  37. Fuller, J. & Lai, D. Tidal novae in compact binary white dwarfs. Astrophys. J. Lett. 756, L17 (2012).

    Article  ADS  Google Scholar 

  38. Fabian, A. C., Pringle, J. E. & Rees, M. J. Tidal capture formation of binary systems and X-ray sources in globular clusters. Mon. Not. R. Astron. Soc. 172, 15 (1975).

    Article  ADS  Google Scholar 

  39. Press, W. H. & Teukolsky, S. A. On formation of close binaries by two-body tidal capture. Astrophys. J. 213, 183–192 (1977).

    Article  ADS  Google Scholar 

  40. Lin, D. N. C., Bodenheimer, P. & Richardson, D. C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996).

    Article  ADS  Google Scholar 

  41. Kumar, P. & Goodman, J. Nonlinear damping of oscillations in tidal-capture binaries. Astrophys. J. 466, 946 (1996).

    Article  ADS  Google Scholar 

  42. Baumgardt, H., Hopman, C., Portegies Zwart, S. & Makino, J. Tidal capture of stars by intermediate-mass black holes. Mon. Not. R. Astron. Soc. 372, 467–478 (2006).

    Article  ADS  Google Scholar 

  43. Lai, D. & Wu, Y. Resonant tidal excitations of inertial modes in coalescing neutron star binaries. Phys. Rev. D 74, 024007 (2006).

    Article  ADS  Google Scholar 

  44. Ivanov, P. B. & Papaloizou, J. C. B. Dynamic tides in rotating objects: orbital circularization of extrasolar planets for realistic planet models. Mon. Not. R. Astron. Soc. 376, 682–704 (2007).

    Article  ADS  Google Scholar 

  45. Fabrycky, D. & Tremaine, S. Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007).

    Article  ADS  Google Scholar 

  46. Fuller, J. & Lai, D. Dynamical tides in compact white dwarf binaries: helium core white dwarfs, tidal heating and observational signatures. Mon. Not. R. Astron. Soc. 430, 274–287 (2013).

    Article  ADS  Google Scholar 

  47. Li, G. & Loeb, A. Accumulated tidal heating of stars over multiple pericentre passages near SgrA*. Mon. Not. R. Astron. Soc. 429, 3040–3046 (2013).

    Article  ADS  Google Scholar 

  48. Michaely, E. & Perets, H. B. Tidal capture formation of low-mass X-ray binaries from wide binaries in the field. Mon. Not. R. Astron. Soc. 458, 4188–4197 (2016).

    Article  ADS  Google Scholar 

  49. Naoz, S., Fragos, T., Geller, A., Stephan, A. P. & Rasio, F. A. Formation of black hole low-mass X-ray binaries in hierarchical triple systems. Astrophys. J. Lett. 822, L24 (2016).

    Article  ADS  Google Scholar 

  50. Weinberg, N. N., Sun, M., Arras, P. & Essick, R. Tidal dissipation in WASP-12. Astrophys. J. Lett. 849, L11 (2017).

    Article  ADS  Google Scholar 

  51. Vick, M., Lai, D. & Fuller, J. Tidal dissipation and evolution of white dwarfs around massive black holes: an eccentric path to tidal disruption. Mon. Not. R. Astron. Soc. 468, 2296–2310 (2017).

    Article  ADS  Google Scholar 

  52. Klencki, J., Wiktorowicz, G., Gładysz, W. & Belczynski, K. Dynamical formation of black hole low-mass X-ray binaries in the field: an alternative to the common envelope. Mon. Not. R. Astron. Soc. 469, 3088–3101 (2017).

    Article  ADS  Google Scholar 

  53. Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. Formation of tidal captures and gravitational wave inspirals in binary-single interactions. Astrophys. J. 846, 36 (2017).

    Article  ADS  Google Scholar 

  54. Wu, Y. Diffusive tidal evolution for migrating hot Jupiters. Astron. J. 155, 118 (2018).

    Article  ADS  Google Scholar 

  55. Vick, M., Lai, D. & Anderson, K. R. Chaotic tides in migrating gas giants: forming hot and transient warm Jupiters via Lidov-Kozai migration. Mon. Not. R. Astron. Soc. 484, 5645–5668 (2019).

    ADS  Google Scholar 

  56. Podsiadlowski, P. The response of tidally heated stars. Mon. Not. R. Astron. Soc. 279, 1104 (1996).

    Article  ADS  Google Scholar 

  57. Alexander, T. & Kumar, P. Tidal spin-up of stars in dense stellar cusps around massive black holes. Astrophys. J. 549, 948–958 (2001).

    Article  ADS  Google Scholar 

  58. Gu, P.-G., Lin, D. N. C. & Bodenheimer, P. H. The effect of tidal inflation instability on the mass and dynamical evolution of extrasolar planets with ultrashort periods. Astrophys. J. 588, 509–534 (2003).

    Article  ADS  Google Scholar 

  59. Gu, P.-G., Bodenheimer, P. H. & Lin, D. N. C. The internal structural adjustment due to tidal heating of short-period inflated giant planets. Astrophys. J. 608, 1076–1094 (2004).

    Article  ADS  Google Scholar 

  60. Barker, A. J. & Ogilvie, G. I. On internal wave breaking and tidal dissipation near the centre of a solar-type star. Mon. Not. R. Astron. Soc. 404, 1849–1868 (2010).

    ADS  Google Scholar 

  61. Barker, A. J. Three-dimensional simulations of internal wave breaking and the fate of planets around solar-type stars. Mon. Not. R. Astron. Soc. 414, 1365–1378 (2011).

    Article  ADS  Google Scholar 

  62. Ogilvie, G. I. Tidal dissipation in stars and giant planets. Annu. Rev. Astron. Astrophys. 52, 171–210 (2014).

    Article  ADS  Google Scholar 

  63. MacLeod, M., Ostriker, E. C. & Stone, J. M. Runaway coalescence at the onset of common envelope episodes. Astrophys. J. 863, 5 (2018).

    Article  ADS  Google Scholar 

  64. MacLeod, M., Ostriker, E. C. & Stone, J. M. Bound outflows, unbound ejecta, and the shaping of bipolar remnants during stellar coalescence. Astrophys. J. 868, 136 (2018).

    Article  ADS  Google Scholar 

  65. MacLeod, M., Vick, M., Lai, D. & Stone, J. M. Polygram stars: resonant tidal excitation of fundamental oscillation modes in asynchronous stellar coalescence. Astrophys. J. 877, 28 (2019).

    Article  ADS  Google Scholar 

  66. MacLeod, M. & Loeb, A. Runaway coalescence of pre-common-envelope stellar binaries. Astrophys. J. 893, 106 (2020).

    Article  ADS  Google Scholar 

  67. MacLeod, M. & Loeb, A. Pre-common-envelope mass loss from coalescing binary systems. Astrophys. J. 895, 29 (2020).

    Article  ADS  Google Scholar 

  68. Hernquist, L. & Katz, N. TREESPH: a unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 70, 419 (1989).

    Article  ADS  Google Scholar 

  69. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  70. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  71. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    Article  ADS  Google Scholar 

  72. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    Article  ADS  Google Scholar 

  73. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    Article  ADS  Google Scholar 

  74. Townsend, R. H. D. & Teitler, S. A. GYRE: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme. Mon. Not. R. Astron. Soc. 435, 3406–3418 (2013).

    Article  ADS  Google Scholar 

  75. Townsend, R. H. D., Goldstein, J. & Zweibel, E. G. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars. Mon. Not. R. Astron. Soc. 475, 879–893 (2018).

    Article  ADS  Google Scholar 

  76. Goldstein, J. & Townsend, R. H. D. The contour method: a new approach to finding modes of nonadiabatic stellar pulsations. Astrophys. J. 899, 116 (2020).

    Article  ADS  Google Scholar 

  77. von Zeipel, H. The radiative equilibrium of a rotating system of gaseous masses. Mon. Not. R. Astron. Soc. 84, 665–683 (1924).

    Article  ADS  Google Scholar 

  78. von Zeipel, H. The radiative equilibrium of a slightly oblate rotating star. Mon. Not. R. Astron. Soc. 84, 684–701 (1924).

    Article  ADS  Google Scholar 

  79. von Zeipel, H. Radiative equilibrium of a double-star system with nearly spherical components. Mon. Not. R. Astron. Soc. 84, 702 (1924).

    Article  ADS  Google Scholar 

  80. Cox, A. N. Allen’s Astrophysical Quantities 4th edn (Springer, 2000).

  81. MacLeod, M. Replication Data for: Breaking Waves on the Surface of the Heartbeat Star MACHO 80.7443.1718. Harvard Dataverse https://doi.org/10.7910/DVN/47WXLT (2023).

  82. MacLeod, M. morganemacleod/hbstarwavebreaking: v1.0 (2023); https://doi.org/10.5281/zenodo.7986580

Download references

Acknowledgements

We acknowledge helpful conversations with C. Alcock, A. Dupree, V. Kalogera and J. Stone. We are particularly grateful to M. Vick for many discussions and collaboration on tidal wave breaking. This work was supported by the National Science Foundation under Grant No. 1909203 and by a Clay Postdoctoral Fellowship at the Smithsonian Astrophysical Observatory. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI1548562. In particular, use of XSEDE resource Stampede2 at TACC through allocation TG-AST200014 enabled this work. A.L. was supported in part by Harvard’s Black Hole Initiative, which is funded by GBMF and JTF grants.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and A.L. both contributed to the conceptualization, analysis and writing of the manuscript. M.M. designed and performed the numerical simulations and associated analysis.

Corresponding author

Correspondence to Morgan MacLeod.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Adrian Barker and Jim Fuller for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of the radiative envelope of a MESA stellar evolution model to a polytropic approximation with Γ = 1.307.

The polytrope model joins to an isothermal atmosphere outside of the stellar profile. The MESA model has evolved just past the ignition of Helium in the core when it reaches the conditions matching those observed in MACHO 80.7443.1718. The right-hand panel compares the propagation diagram of the MESA and polytropic models, showing the dimensionless Lamb frequency (Sl, evaluated for l = 2) and Brunt-Väisälä frequency (N). Acoustic, p-modes propagate above the envelope set by these two frequencies, while buoyancy, g-modes propagate below.

Extended Data Fig. 2 Lomb-Scargle periodogram of tidally-excited oscillations between periapse passages.

The periodogram of the simulation differs from that of the data, showing that different modes are excited most strongly. In the simulation case, we see most of the power near the rotational frequency, while in the data, the 25th harmonic of the orbital frequency is most-strongly excited.

Extended Data Fig. 3 An l = 1 g-mode propagates through the model star between periapse passages.

This mode leads to oscillatory motions in the ϕ direction, which modulate the envelope angular frequency. In addition to oscillations in Ω/Ωenv, dissipation spins the envelope to higher average frequencies near the surface.

Extended Data Fig. 4 Vorticity and perpendicular mach number in the rotating frame.

A vortex sheet marks the shear layer in the l = 1 g-mode. This shear interface becomes corrugated and breaks when the mach number in the rotating frame is on the order of unity. The associated dissipation drives the spin up of the outer stellar layers.

Extended Data Fig. 5 Slice through the midplane of model MACHO 80.7443.1718 primary star near orbital apoapse.

Through shocks and dissipation, the atmosphere layers acquire rotation similar to the Keplerian rate outside the stellar surface (the profile in the simulation outside 30R is similar to 2/3vkep), indicating that these high angular momentum layers will be rotationally supported even if they cool.

Supplementary information

Supplementary Information

Supplementary text and Figs. 1–4.

Supplementary Video 1

Animation of main text Fig. 1. A slice of density through the orbital plane shows interaction between the envelope of the primary star and the companion. Each passage, waves are raised that crash to the stellar surface, creating a rotating, shock-heated atmosphere.

Supplementary Video 2

Animation of main text Fig. 1, but zoomed in on the primary-star envelope and moving in the orbiting reference frame. This provides a closer perspective on the tidal waves and shock-laced atmosphere that develop.

Supplementary Video 3

Three-dimensional rendering of the photospheric surface, as in main text Fig. 2. Colours represent surface flux, and the orientation is identical to the observer orientation relative to MACHO 80.7443.1718. Following each passage, the corrugated surface of breaking waves are visible near the stellar equator.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacLeod, M., Loeb, A. Breaking waves on the surface of the heartbeat star MACHO 80.7443.1718. Nat Astron 7, 1218–1227 (2023). https://doi.org/10.1038/s41550-023-02036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02036-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing