Abstract
The absorption features in spectra of high-redshift background radio sources, caused by hyperfine structure lines of hydrogen atoms in the intervening structures, are known collectively as the 21-cm forest. They provide a unique probe of small-scale structures during the epoch of reionization, and can be used to constrain the properties of the dark matter (DM) thought to govern small-scale structure formation. However, the signals are easily suppressed by heating processes that are degenerate with a warm DM model. Here we propose a probe of both the DM particle mass and the heating history of the Universe, using the one-dimensional power spectrum of the 21-cm forest. The one-dimensional power spectrum measurement not only breaks the DM model degeneracy but also increases the sensitivity, making the probe actually feasible. Making 21-cm forest observations with the upcoming Square Kilometre Array has the potential to simultaneously determine both the DM particle mass and the heating level in the early Universe, shedding light on the nature of DM and the first galaxies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
The main data that support the results in this work are provided with this paper, and are also available at https://doi.org/10.57760/sciencedb.08093. Further datasets are available from the corresponding authors upon reasonable request. Source data are provided with this paper.
Code availability
The code 21cmFAST used for large-scale simulation is publicly available at https://github.com/andreimesinger/21cmFAST, the codes for simulating small-scale structures and 21-cm forest signals are available from the corresponding authors upon reasonable request, and the GADGET code is available at https://wwwmpa.mpa-garching.mpg.de/gadget.
References
Carilli, C. L., Gnedin, N. Y. & Owen, F. H i 21 centimeter absorption beyond the epoch of reionization. Astrophys. J. 577, 22–30 (2002).
Furlanetto, S. R. & Loeb, A. The 21 centimeter forest: radio absorption spectra as probes of minihalos before reionization. Astrophys. J. 579, 1 (2002).
Furlanetto, S. R. The 21-cm forest. Mon. Not. R. Astron. Soc. 370, 1867–1875 (2006).
Xu, Y., Chen, X., Fan, Z., Trac, H. & Cen, R. The 21 cm forest as a probe of the reionization and the temperature of the intergalactic medium. Astrophys. J. 704, 1396–1404 (2009).
Xu, Y., Ferrara, A., Kitaura, F. S. & Chen, X. Searching for the earliest galaxies in the 21 cm forest. Sci. China Phys. Mech. Astron. 53, 1124–1129 (2010).
Xu, Y., Ferrara, A. & Chen, X. The earliest galaxies seen in 21 cm line absorption. Mon. Not. R. Astron. Soc. 410, 2025–2042 (2011).
Ciardi, B. et al. Prospects for detecting the 21 cm forest from the diffuse intergalactic medium with LOFAR. Mon. Not. R. Astron. Soc. 428, 1755–1765 (2013).
Avila-Reese, V., Colín, P., Valenzuela, O., D’Onghia, E. & Firmani, C. Formation and structure of halos in a warm dark matter cosmology. Astrophys. J. 559, 516–530 (2001).
Smith, R. E. & Markovic, K. Testing the warm dark matter paradigm with large-scale structures. Phys. Rev. D 84, 063507 (2011).
Schneider, A., Smith, R. E. & Reed, D. Halo mass function and the free streaming scale. Mon. Not. R. Astron. Soc. 433, 1573–1587 (2013).
Viel, M., Becker, G. D., Bolton, J. S. & Haehnelt, M. G. Warm dark matter as a solution to the small scale crisis: new constraints from high redshift Lyman-α forest data. Phys. Rev. D 88, 043502 (2013).
Baur, J., Palanque-Delabrouille, N., Yèche, C., Magneville, C. & Viel, M. Lyman-alpha forests cool warm dark matter. J. Cosmol. Astropart. Phys. 2016, 012 (2016).
Iršič, V. et al. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D 96, 023522 (2017).
Shimabukuro, H., Ichiki, K., Inoue, S. & Yokoyama, S. Probing small-scale cosmological fluctuations with the 21 cm forest: effects of neutrino mass, running spectral index, and warm dark matter. Phys. Rev. D 90, 083003 (2014).
Shimabukuro, H., Ichiki, K. & Kadota, K. Constraining the nature of ultra light dark matter particles with the 21 cm forest. Phys. Rev. D 101, 043516 (2020).
Mack, K. J. & Wyithe, J. S. B. Detecting the redshifted 21 cm forest during reionization. Mon. Not. R. Astron. Soc. 425, 2988–3001 (2012).
Ewall-Wice, A., Dillon, J. S., Mesinger, A. & Hewitt, J. Detecting the 21 cm forest in the 21 cm power spectrum. Mon. Not. R. Astron. Soc. 441, 2476–2496 (2014).
Thyagarajan, N. Statistical detection of IGM structures during cosmic reionization using absorption of the redshifted 21 cm line by H i against compact background radio sources. Astrophys. J. 899, 16 (2020).
Mesinger, A., Furlanetto, S. & Cen, R. 21cmFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. Mon. Not. R. Astron. Soc. 411, 955–972 (2011).
Cooray, A. & Sheth, R. Halo models of large scale structure. Phys. Rep. 372, 1–129 (2002).
Zentner, A. R. The excursion set theory of halo mass functions, halo clustering, and halo growth. Int. J. Mod. Phys. D 16, 763–815 (2007).
Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).
Barkana, R. A model for infall around virialized haloes. Mon. Not. R. Astron. Soc. 347, 59–66 (2004).
Menci, N. et al. Observing the very low surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on dark matter scenarios. Astron. Astrophys. 604, A59 (2017).
Garzilli, A., Ruchayskiy, O., Magalich, A. & Boyarsky, A. How warm is too warm? Towards robust Lyman-α forest bounds on warm dark matter. Mon. Not. R. Astron. Soc. 502, 2356–2363 (2021).
Palanque-Delabrouille, N. et al. Hints, neutrino bounds, and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data. J. Cosmol. Astropart. Phys. 2020, 038 (2020).
Nadler, E. O. et al. Constraints on dark matter properties from observations of Milky Way satellite galaxies. Phys. Rev. Lett. 126, 091101 (2021).
Wouthuysen, S. A. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31–32 (1952).
Field, G. B. The spin temperature of intergalactic neutral hydrogen. Astrophys. J. 129, 536–550 (1959).
Furlanetto, S. R. The global 21-centimeter background from high redshifts. Mon. Not. R. Astron. Soc. 371, 867–878 (2006).
de Lera Acedo, E., Pienaar, H. & Fagnoni, N. Antenna design for the SKA1-LOW and HERA super radio telescopes. Preprint at https://arxiv.org/abs/2003.10733 (2020).
SKA Telescope specifications. SKAO https://www.skao.int/en/science-users/118/ska-telescope-specifications (2022).
Sitwell, M., Mesinger, A., Ma, Y.-Z. & Sigurdson, K. The imprint of warm dark matter on the cosmological 21-cm signal. Mon. Not. R. Astron. Soc. 438, 2664–2671 (2014).
Muñoz, J. B., Dvorkin, C. & Cyr-Racine, F.-Y. Probing the small-scale matter power spectrum with large-scale 21-cm data. Phys. Rev. D 101, 063526 (2020).
Hibbard, J. J. et al. Constraining warm dark matter and population III stars with the global 21 cm signal. Astrophys. J. 929, 151 (2022).
Ciardi, B. & Ferrara, A. The first cosmic structures and their effects. Space Sci. Rev. 116, 625–705 (2005).
Shao, Y. et al. Observations by GMRT at 323 MHz of radio-loud quasars at z > 5. Astron. Astrophys. 641, A85 (2020).
Liu, Y. et al. Constraining the quasar radio-loud fraction at z ~ 6 with deep radio observations. Astrophys. J. 908, 124 (2021).
Shao, Y. et al. The radio spectral turnover of radio-loud quasars at z > 5. Astron. Astrophys. 659, A159 (2022).
Bañados, E. et al. The discovery of a highly accreting, radio-loud quasar at z = 6.82. Astrophys. J. 909, 80 (2021).
Ighina, L. et al. Radio detection of VIK J2318−3113, the most distant radio-loud quasar (z = 6.44). Astron. Astrophys. 647, L11 (2021).
Gloudemans, A. J. et al. Discovery of 24 radio-bright quasars at 4.9 ≤ z ≤ 6.6 using low-frequency radio observations. Astron. Atrophys. 668, A27 (2022).
Gloudemans, A. J. et al. Low frequency radio properties of the z > 5 quasar population. Astron. Astrophys. 656, A137 (2021).
Haiman, Z., Quataert, E. & Bower, G. C. Modeling the counts of faint radio-loud quasars: constraints on the supermassive black hole population and predictions for high redshift. Astrophys. J. 612, 698–705 (2004).
Salvaterra, R. et al. GRB090423 at a redshift of z ≈ 8.1. Nature 461, 1258–1260 (2009).
Cucchiara, A. et al. A photometric redshift of z ~9.4 for GRB 090429B. Astrophys. J. 736, 7 (2011).
Kinugawa, T., Harikane, Y. & Asano, K. Long gamma-ray burst rate at very high redshift. Astrophys. J. 878, 128 (2019).
Enzi, W. et al. Joint constraints on thermal relic dark matter from strong gravitational lensing, the Ly α forest, and Milky Way satellites. Mon. Not. R. Astron. Soc. 506, 5848–5862 (2021).
Abdurashidova, Z. et al. HERA Phase I limits on the cosmic 21 cm signal: constraints on astrophysics and cosmology during the epoch of reionization. Astrophys. J. 924, 51 (2022).
Field, G. B. An attempt to observe neutral hydrogen between the galaxies. Astrophys. J. 129, 525 (1959).
Madau, P., Meiksin, A. & Rees, M. J. 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429–444 (1997).
Planck Collaboration Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974).
Bode, P., Ostriker, J. P. & Turok, N. Haloformation in warm dark matter models. Astrophys. J. 556, 93–107 (2001).
Viel, M., Lesgourgues, J., Haehnelt, M. G., Matarrese, S. & Riotto, A. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-α forest. Phys. Rev. D 71, 063534 (2005).
Makino, N., Sasaki, S. & Suto, Y. X-ray gas density profile of clusters of galaxies from the universal dark matter halo. Astrophys. J. 497, 555–558 (1998).
Bryan, G. L. & Norman, M. L. Statistical properties of X-ray clusters: analytic and numerical comparisons. Astrophys. J. 495, 80–99 (1998).
Abel, T., Bryan, G. L. & Norman, M. L. The formation of the first star in the Universe. Science 295, 93–98 (2002).
Keshet, U., Waxman, E., Loeb, A., Springel, V. & Hernquist, L. Gamma rays from intergalactic shocks. Astrophys. J. 585, 128–150 (2003).
Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).
Xu, Y., Yue, B. & Chen, X. Maximum absorption of the global 21 cm spectrum in the standard cosmological model. Astrophys. J. 923, 98 (2021).
Yue, B. & Chen, X. Reionization in the warm dark matter model. Astrophys. J. 747, 127 (2012).
Dayal, P., Choudhury, T. R., Bromm, V. & Pacucci, F. Reionization and galaxy formation in warm dark matter cosmologies. Astrophys. J. 836, 16 (2017).
Cen, R. A hydrodynamic approach to cosmology: methodology. Astrophys. J. Suppl. Ser. 78, 341–364 (1992).
Hui, L. & Gnedin, N. Y. Equation of state of the photoionized intergalactic medium. Mon. Not. R. Astron. Soc. 292, 27–42 (1997).
Hui, L. & Haiman, Z. The thermal memory of reionization history. Astrophys. J. 596, 9–18 (2003).
Valdés, M. & Ferrara, A. The energy cascade from warm dark matter decays. Mon. Not. R. Astron. Soc. 387, L8–L12 (2008).
Salvadori, S. & Ferrara, A. Ultra faint dwarfs: probing early cosmic star formation. Mon. Not. R. Astron. Soc. 395, L6–L10 (2009).
Thompson, A. R., Moran, J. M. & Swenson, G. W. Jr Interferometry and Synthesis in Radio Astronomy 3rd edn (Springer, 2017).
Acknowledgements
We thank Y. Li, P.-J. Wu, J.-Z. Qi and B. Yue for helpful discussions. This work was supported by National Key R&D Program of China (grant no. 2022YFF0504300), the National Natural Science Foundation of China (grant nos. 11973047, 11975072, 11835009, 11988101 and 12022306) and the National SKA Program of China (grant nos. 2020SKA0110401, 2020SKA0110100, 2022SKA0110200 and 2022SKA0110203). Y.X. and X.C. also acknowledge support by the CAS grant (grant no. ZDKYYQ20200008). Y.W. acknowledges support by the CAS Interdisciplinary Innovation Team (grant no. JCTD-2019-05). R.L. acknowledges support by the CAS grant (grant no. YSBR-062) and the grant from K.C.Wong Education Foundation.
Author information
Authors and Affiliations
Contributions
Y.S. performed most of the computation and analysis, and wrote part of the paper. Y.X. led the study, contributed to the simulations and wrote the majority of the paper. Y.W. and W.Y. contributed to the computation of the 1D power spectrum. Y.X. and R.L. proposed the study. X.Z. and X.C. contributed to the collaboration organization, the Fisher forecasts and the writing of the paper, and supervised the study. All authors discussed the results and commented on the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 The overdensity (left panel), optical depth (middle panel) and brightness temperature (right panel) for a line of sight of 2 comoving Mpc in the CDM model at z = 9.
The green, yellow and red lines correspond to local overdensities of δ0 = 0, 1 and 2, respectively. The flux density of the background source in the right panel is assumed to be S150 = 10 mJy.
Extended Data Fig. 2 1-D power spectrum of a synthetic 21-cm forest spectrum in the CDM model, for a line of sight penetrating through an unheated IGM (fX = 0) with different local overdensities at z = 9.
The green, yellow and red curves correspond to δ0 = 0, 1 and 2, respectively. The flux density of the background source is assumed to be S150 = 10 mJy.
Supplementary information
Supplementary Information
Supplementary Figs. 1–9.
Source data
Source Data Fig. 1
Statistical source data.
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Source Data Fig. 5
Statistical source data.
Source Data Fig. 6
Statistical source data.
Source Data Extended Data Fig. 1
Statistical source data.
Source Data Extended Data Fig. 2
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shao, Y., Xu, Y., Wang, Y. et al. The 21-cm forest as a simultaneous probe of dark matter and cosmic heating history. Nat Astron 7, 1116–1126 (2023). https://doi.org/10.1038/s41550-023-02024-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-023-02024-7