Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A calibration point for stellar evolution from massive star asteroseismology

An Author Correction to this article was published on 18 July 2023

This article has been updated

Abstract

Massive stars are progenitors of supernovae, neutron stars and black holes. During the hydrogen-core burning phase, their convective cores are the prime drivers of their evolution, but inferences of core masses are subject to unconstrained boundary mixing processes. Moreover, uncalibrated transport mechanisms can lead to strong envelope mixing and differential radial rotation. Ascertaining the efficiency of the transport mechanisms is challenging because of a lack of observational constraints. Here we deduce the convective core mass and robustly demonstrate non-rigid radial rotation in a supernova progenitor, the \(12.{0}_{-1.5}^{+1.5}\) solar-mass hydrogen-burning star HD 192575, using asteroseismology, Transiting Exoplanet Survey Satellite photometry, high-resolution spectroscopy and Gaia astrometry. We infer a convective core mass (\({M}_{{{{\rm{cc}}}}}=2.{9}_{-0.8}^{+0.5}\) solar masses), and find the core to be rotating between 1.4 and 6.3 times faster than the stellar envelope, depending on the location of the rotational shear layer. Our results deliver a robust inferred core mass of a massive star using asteroseismology from space-based photometry. HD 192575 is a unique anchor point for studying interior rotation and mixing processes, and thus also angular momentum transport mechanisms inside massive stars.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TESS data of the β Cep star HD 192575.
Fig. 2: Dominant pulsation modes in the best structure model of HD 192575 and their rotational kernels.
Fig. 3: Forward asteroseismic modelling results overview.
Fig. 4: Structure of the best-fitting model of HD 192575.
Fig. 5: Asteroseismic estimates of fcc/fenv in the massive star regime and predictions by rotating stellar evolution models.

Data availability

The cycle 2 TESS data for HD 192575 can be retrieved from the MAST archive (https://archive.stsci.edu/). For information regarding the HERMES spectra, we refer to http://www.mercator.iac.es. The full frequency list in machine-readable format and the MESA/GYRE inlists needed to reproduce our results and figures are available through the open repository Zenodo (doi: 10.5281/zenodo.7823538).

Code availability

The iterative pre-whitening code is freely available and documented at https://github.com/IvS-KULeuven/IvSPythonRepository. Information about access to the FASTWIND stellar atmosphere code can be found at https://fys.kuleuven.be/ster/research-projects/equation-folder/codes-folder/fastwind. The iacob-broad tool from the IACOB project is freely available from http://research.iac.es/proyecto/iacob/pages/en/useful-tools.php. The stellar evolution code, MESA, is freely available and documented at http://mesa.sourceforge.net/, and the stellar pulsation code, GYRE, is freely available from https://github.com/rhdtownsend/gyre and documented at https://gyre.readthedocs.io/en/stable/index.html.

Change history

References

  1. Maeder, A. Physics, Formation and Evolution of Rotating Stars (Springer, 2009).

  2. Langer, N. Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012).

    Article  ADS  Google Scholar 

  3. Aerts, C. Probing the interior physics of stars through asteroseismology. Rev. Mod. Phys. 93, 015001 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  4. Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010).

    Article  ADS  Google Scholar 

  5. Gehan, C., Mosser, B., Michel, E., Samadi, R. & Kallinger, T. Core rotation braking on the red giant branch for various mass ranges. Astron. Astrophys. 616, A24 (2018).

    Article  ADS  Google Scholar 

  6. Pedersen, M. G. et al. Internal mixing of rotating stars inferred from dipole gravity modes. Nat. Astron. 5, 715–722 (2021).

    Article  ADS  Google Scholar 

  7. Aerts, C., Mathis, S. & Rogers, T. M. Angular momentum transport in stellar interiors. Annu. Rev. Astron. Astrophys. 57, 35–78 (2019).

    Article  ADS  Google Scholar 

  8. Bowman, D. M. Asteroseismology of high-mass stars: new insights of stellar interiors with space telescopes. Front. Astron. Space Sci. 7, 578584 (2020).

    Article  Google Scholar 

  9. Stankov, A. & Handler, G. Catalog of galactic β Cephei stars. Astrophys. J. Suppl. Ser. 158, 193–216 (2005).

    Article  ADS  Google Scholar 

  10. Aerts, C. et al. Asteroseismology of HD 129929: core overshooting and nonrigid rotation. Science 300, 1926–1928 (2003).

    Article  ADS  Google Scholar 

  11. Dupret, M.-A. et al. Asteroseismology of the β Cep star HD 129929. II. Seismic constraints on core overshooting, internal rotation and stellar parameters. Astron. Astrophys. 415, 251–257 (2004).

    Article  ADS  Google Scholar 

  12. Pamyatnykh, A. A., Handler, G. & Dziembowski, W. A. Asteroseismology of the β Cephei star ν Eridani: interpretation and applications of the oscillation spectrum. Mon. Not. R. Astron. Soc. 350, 1022–1028 (2004).

    Article  ADS  Google Scholar 

  13. Dziembowski, W. A. & Pamyatnykh, A. A. The two hybrid B-type pulsators: ν Eridani and 12 Lacertae. Mon. Not. R. Astron. Soc. 385, 2061–2068 (2008).

    Article  ADS  Google Scholar 

  14. Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1, 014003 (2015).

    Article  ADS  Google Scholar 

  15. Unno, W., Osaki, Y., Ando, H., Saio, H. & Shibahashi, H. Nonradial Oscillations of Stars. (University of Tokyo Press, 1989).

  16. Aizenman, M., Smeyers, P. & Weigert, A. Avoided crossing of modes of non-radial Stellar oscillations. Astron. Astrophys. 58, 41–46 (1977).

  17. Mazumdar, A., Briquet, M., Desmet, M. & Aerts, C. An asteroseismic study of the β Cephei star β Canis Majoris. Astron. Astrophys. 459, 589–596 (2006).

    Article  ADS  Google Scholar 

  18. Raskin, G. et al. HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope. Astron. Astrophys. 526, A69 (2011).

    Article  Google Scholar 

  19. Walczak, P., Fontes, C. J., Colgan, J., Kilcrease, D. P. & Guzik, J. A. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities. Astron. Astrophys. 580, L9 (2015).

    Article  ADS  Google Scholar 

  20. Aerts, C. et al. Forward asteroseismic modeling of stars with a convective core from gravity-mode oscillations: parameter estimation and stellar model selection. Astrophys. J. Suppl. Ser. 237, 15 (2018).

  21. Michielsen, M., Aerts, C. & Bowman, D. M. Probing the temperature gradient in the core boundary layer of stars with gravito-inertial modes. The case of KIC 7760680. Astron. Astrophys. 650, A175 (2021).

    Article  ADS  Google Scholar 

  22. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

  23. Townsend, R. H. D., Goldstein, J. & Zweibel, E. G. Angular momentum transport by heat-driven g-modes in slowly pulsating B stars. Mon. Not. R. Astron. Soc. 475, 879–893 (2018).

    Article  ADS  Google Scholar 

  24. Ausseloos, M., Scuflaire, R., Thoul, A. & Aerts, C. Asteroseismology of the β Cephei star ν Eridani: massive exploration of standard and non-standard stellar models to fit the oscillation data. Mon. Not. R. Astron. Soc. 355, 352–358 (2004).

    Article  ADS  Google Scholar 

  25. Salmon, S. J. A. J. et al. Asteroseismology of β Cephei stars: the stellar inferences tested in hare and hound exercises. Astron. Astrophys. 659, A142 (2022).

    Article  Google Scholar 

  26. Ledoux, P. The nonradial oscillations of gaseous stars and the problem of beta Canis Majoris. Astrophys. J. 114, 373–384 (1951).

  27. Deheuvels, S. et al. Seismic evidence for a rapidly rotating core in a lower-giant-branch star observed with Kepler. Astrophys. J. 756, 19 (2012).

  28. Deheuvels, S. et al. Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants. Astron. Astrophys. 564, A27 (2014).

    Article  Google Scholar 

  29. Georgy, C. et al. Populations of rotating stars. I. Models from 1.7 to 15 M at Z = 0.014, 0.006, and 0.002 with Ω/Ωcrit between 0 and 1. Astron. Astrophys. 553, A24 (2013).

    Article  Google Scholar 

  30. Spruit, H. C. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002).

    Article  ADS  Google Scholar 

  31. Fuller, J., Piro, A. L. & Jermyn, A. S. Slowing the spins of stellar cores. Mon. Not. R. Astron. Soc. 485, 3661–3680 (2019).

    Article  ADS  Google Scholar 

  32. Salmon, S. J. A. J., Moyano, F. D., Eggenberger, P., Haemmerlé, L. & Buldgen, G. Backtracing the internal rotation history of the β Cep star HD 129929. Astron. Astrophys. 664, L1 (2022).

    Article  ADS  Google Scholar 

  33. Granada, A. & Haemmerlé, L. Evolution of single B-type stars with a large angular momentum content. Astron. Astrophys. 570, A18 (2014).

    Article  ADS  Google Scholar 

  34. Suárez, J. C. et al. Seismology of β Cephei stars: differentially rotating models for interpreting the oscillation spectrum of ν Eridani. Astrophys. J. 690, 1401–1411 (2009).

    Article  ADS  Google Scholar 

  35. Rieutord, M., Espinosa Lara, F. & Putigny, B. An algorithm for computing the 2D structure of fast rotating stars. J. Comput. Phys. 318, 277–304 (2016).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Triana, S. A. et al. The internal rotation profile of the B-type star KIC 10526294 from frequency inversion of its dipole gravity modes. Astrophys. J. 810, 16 (2015).

    Article  ADS  Google Scholar 

  37. Deheuvels, S. & Michel, E. Constraints on the structure of the core of subgiants via mixed modes: the case of HD 49385. Astron. Astrophys. 535, A91 (2011).

    Article  ADS  Google Scholar 

  38. Rauer, H. et al. The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014).

    Article  ADS  Google Scholar 

  39. Hohle, M. M., Neuhäuser, R. & Schutz, B. F. Masses and luminosities of O- and B-type stars and red supergiants. Astron. Nachr. 331, 349 (2010).

    Article  ADS  Google Scholar 

  40. Gaia Collaboration et al. Gaia data release 3: summary of the content and survey properties. Preprint at arXiv https://arxiv.org/abs/2208.00211 (2022).

  41. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M. & Andrae, R. Estimating distances from parallaxes. V. Geometric and photogeometric distances to 1.47 billion stars in Gaia early data release 3. Astron. J. 161, 147 (2021).

    Article  ADS  Google Scholar 

  42. Serenelli, A. et al. Weighing stars from birth to death: mass determination methods across the HRD. Astron. Astrophys. Rev. 29, 4 (2021).

    Article  ADS  Google Scholar 

  43. Banyard, G. et al. The observed multiplicity properties of B-type stars in the Galactic young open cluster NGC 6231. Astron. Astrophys. 658, A69 (2022).

    Article  Google Scholar 

  44. Wilson, R. E. General Catalogue of Stellar Radial Velocities (Carnegie Institute, 1953).

  45. Aerts, C. & De Cat, P. β Cep stars from a spectroscopic point of view. Space Sci. Rev. 105, 453–492 (2003).

    Article  ADS  Google Scholar 

  46. Puls, J., Vink, J. S. & Najarro, F. Mass loss from hot massive stars. Astron. Astrophys. Rev. 16, 209–325 (2008).

    Article  ADS  Google Scholar 

  47. Aerts, C., Christensen-Dalsgaard, J. & Kurtz, D. W. Asteroseismology (Springer, 2010).

  48. Simón-Díaz, S. & Herrero, A. The IACOB project. I. Rotational velocities in northern Galactic O- and early B-type stars revisited. The impact of other sources of line-broadening. Astron. Astrophys. 562, A135 (2014).

    Article  ADS  Google Scholar 

  49. Simón-Díaz, S. The chemical composition of the Orion star forming region. I. Homogeneity of O and Si abundances in B-type stars. Astron. Astrophys. 510, A22 (2010).

    Article  ADS  Google Scholar 

  50. Santolaya-Rey, A. E., Puls, J. & Herrero, A. Atmospheric NLTE-models for the spectroscopic analysis of luminous blue stars with winds. Astron. Astrophys. 323, 488–512 (1997).

    ADS  Google Scholar 

  51. Puls, J. et al. Atmospheric NLTE-models for the spectroscopic analysis of blue stars with winds. II. Line-blanketed models. Astron. Astrophys. 435, 669–698 (2005).

    Article  ADS  Google Scholar 

  52. Rivero González, J. G., Puls, J., Najarro, F. & Brott, I. Nitrogen line spectroscopy of O-stars. II. Surface nitrogen abundances for O-stars in the Large Magellanic Cloud. Astron. Astrophys. 537, A79 (2012).

    Article  ADS  Google Scholar 

  53. Carneiro, L. P., Puls, J., Sundqvist, J. O. & Hoffmann, T. L. Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds. III. X-ray emission from wind-embedded shocks. Astron. Astrophys. 590, A88 (2016).

    Article  ADS  Google Scholar 

  54. Sundqvist, J. O. & Puls, J. Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds. IV. Porosity in physical and velocity space. Astron. Astrophys. 619, A59 (2018).

    Article  ADS  Google Scholar 

  55. Puls, J., Najarro, F., Sundqvist, J. O. & Sen, K. Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds. V. Complete comoving frame transfer, and updated modeling of X-ray emission. Astron. Astrophys. 642, A172 (2020).

    Article  ADS  Google Scholar 

  56. Nieva, M. F. & Przybilla, N. Present-day cosmic abundances. A comprehensive study of nearby early B-type stars and implications for stellar and Galactic evolution and interstellar dust models. Astron. Astrophys. 539, A143 (2012).

    Article  Google Scholar 

  57. Nieva, M. F. & Simón-Díaz, S. The chemical composition of the Orion star forming region. III. C, N, Ne, Mg, and Fe abundances in B-type stars revisited. Astron. Astrophys. 532, A2 (2011).

    Article  Google Scholar 

  58. Pedersen, M. G., Escorza, A., Pápics, P. I. & Aerts, C. Recipes for bolometric corrections and Gaia luminosities of B-type stars: application to an asteroseismic sample. Mon. Not. R. Astron. Soc. 495, 2738–2753 (2020).

    Article  ADS  Google Scholar 

  59. Riello, M. et al. Gaia early data release 3. Photometric content and validation. Astron. Astrophys. 649, A3 (2021).

    Article  Google Scholar 

  60. Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S. & Finkbeiner, D. A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019).

    Article  ADS  Google Scholar 

  61. Salsi, A. et al. Progress on the calibration of surface brightness-color relations for early- and late-type stars. Astron. Astrophys. 652, A26 (2021).

    Article  Google Scholar 

  62. Oja, T. UBV photometry of stars whose positions are accurately known. VI. Astron. Astrophys. Suppl. Ser. 89, 415 (1991).

    ADS  Google Scholar 

  63. Cutri, R. M. et al. VizieR online data catalog: 2MASS all-sky catalog of point sources (Cutri+ 2003). Centre de Donnees astronomique de Strasbourg (2003); https://cdsarc.cds.unistra.fr/viz-bin/cat/II/246

  64. Lallement, R. et al. 3D maps of the local ISM from inversion of individual color excess measurements. Astron. Astrophys. 561, A91 (2014).

    Article  Google Scholar 

  65. Capitanio, L., Lallement, R., Vergely, J. L., Elyajouri, M. & Monreal-Ibero, A. Three-dimensional mapping of the local interstellar medium with composite data. Astron. Astrophys. 606, A65 (2017).

    Article  ADS  Google Scholar 

  66. Lightkurve Collaboration et al. Lightkurve: Kepler and TESS time series analysis in Python. Astrophysics Source Code Library (2018). Available at https://pypi.org/project/lightkurve/

  67. Gaia Collaboration. et al. Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  68. Jenkins, J. M. et al. The TESS science processing operations center. In Proc. Software and Cyberinfrastructure for Astronomy IV (ed. Gianluca Chiozzi & Juan C. Guzman) vol. 9913 (SPIE, 2016).

  69. Pápics, P. I. et al. Gravito-inertial and pressure modes detected in the B3 IV CoRoT target HD 43317. Astron. Astrophys. 542, A55 (2012).

    Article  Google Scholar 

  70. Bowman, D. M. & Michielsen, M. Towards a systematic treatment of observational uncertainties in forward asteroseismic modelling of gravity-mode pulsators. Astron. Astrophys. 656, A158 (2021).

    Article  ADS  Google Scholar 

  71. Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    Article  ADS  Google Scholar 

  72. Scargle, J. D. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    Article  ADS  Google Scholar 

  73. Baran, A. S., Koen, C. & Pokrzywka, B. A detection threshold in the amplitude spectra calculated from Kepler data obtained during K2 mission. Mon. Not. R. Astron. Soc. 448, L16–L19 (2015).

    Article  ADS  Google Scholar 

  74. Baran, A. S. & Koen, C. A detection threshold in the amplitude spectra calculated from TESS time-series data. Acta Astron. 71, 113–121 (2021).

    ADS  Google Scholar 

  75. Van Beeck, J. et al. Detection of non-linear resonances among gravity modes of slowly pulsating B stars: results from five iterative pre-whitening strategies. Astron. Astrophys. 655, A59 (2021).

    Article  Google Scholar 

  76. Saio, H. Rotational and tidal perturbations of nonradial oscillations in polytropic star. Astrophys. J. 244, 299–315 (1981).

    Article  ADS  Google Scholar 

  77. Dziembowski, W. A. & Goode, P. R. Effects of differential rotation on stellar oscillations: a second-order theory. Astrophys. J. 394, 670–687 (1992).

    Article  ADS  Google Scholar 

  78. Moya, A. et al. Inter-comparison of the g-, f- and p-modes calculated using different oscillation codes for a given stellar model. Astrophys. Space Sci. 316, 231–249 (2008).

    Article  ADS  Google Scholar 

  79. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  80. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  81. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    Article  ADS  Google Scholar 

  82. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    Article  ADS  Google Scholar 

  83. Seaton, M. J. Opacity project data on CD for mean opacities and radiative accelerations. Mon. Not. R. Astron. Soc. 362, L1–L3 (2005).

    Article  ADS  Google Scholar 

  84. Henyey, L., Vardya, M. S. & Bodenheimer, P. Studies in stellar evolution. III. The calculation of model envelopes. Astrophys. J. 142, 841–854 (1965).

  85. Cox, J. P. & Giuli, R. T. Principles of Stellar Structure. (Gordon and Breach, 1968).

  86. Herwig, F. The evolution of AGB stars with convective overshoot. Astron. Astrophys. 360, 952–968 (2000).

    ADS  Google Scholar 

  87. Pedersen, M. G., Aerts, C., Pápics, P. I. & Rogers, T. M. The shape of convective core overshooting from gravity-mode period spacings. Astron. Astrophys. 614, A128 (2018).

    Article  ADS  Google Scholar 

  88. Rogers, T. M. & McElwaine, J. N. On the chemical mixing induced by internal gravity waves. Astrophys. J. Lett. 848, L1 (2017).

    Article  ADS  Google Scholar 

  89. Varghese, A., Ratnasingam, R. P., Vanon, R., Edelmann, P. V. F. & Rogers, T. M. Chemical mixing induced by internal gravity waves in intermediate mass stars. Astrophys. J. https://doi.org/10.3847/1538-4357/aca092 (2023).

  90. Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. In Proc. Modelling of Stellar Atmospheres, IAU Symposium (eds. Piskunov, N., Weiss, W. W. & Gray, D. F.) vol. 210. (Astronomical Society of the Pacific, 2003).

  91. Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    Article  ADS  Google Scholar 

  92. Puls, J., Sundqvist, J. O. & Markova, N. Physics of mass loss in massive stars. In Proc. New Windows on Massive Stars, IAU Symposium (eds. Meynet, G., Georgy, C., Groh, J. & Stee, P.) vol. 307, 25–36 (Cambridge University Press, 2015).

  93. Björklund, R., Sundqvist, J. O., Puls, J. & Najarro, F. New predictions for radiation-driven, steady-state mass-loss and wind-momentum from hot, massive stars. II. A grid of O-type stars in the Galaxy and the Magellanic Clouds. Astron. Astrophys. 648, A36 (2021).

    Article  ADS  Google Scholar 

  94. Townsend, R. H. D. & Teitler, S. A. GYRE: an open-source stellar oscillation code based on a new Magnus multiple shooting scheme. Mon. Not. R. Astron. Soc. 435, 3406–3418 (2013).

    Article  ADS  Google Scholar 

  95. Goldstein, J. & Townsend, R. H. D. The contour method: a new approach to finding modes of nonadiabatic stellar pulsations. Astrophys. J. 899, 116 (2020).

  96. Handler, G. et al. Asteroseismological studies of three β Cephei stars: IL Vel, V433 Car and KZ Mus. Mon. Not. R. Astron. Soc. 341, 1005–1019 (2003).

    Article  ADS  Google Scholar 

  97. Cotton, D. V. et al. Polarimetric detection of non-radial oscillation modes in the β Cephei star β Crucis. Nat. Astron. 6, 154–164 (2022).

    Article  ADS  Google Scholar 

  98. Mombarg, J. S. G., Van Reeth, T. & Aerts, C. Constraining stellar evolution theory with asteroseismology of γ Doradus stars using deep learning. Stellar masses, ages, and core-boundary mixing. Astron. Astrophys. 650, A58 (2021).

    Article  Google Scholar 

  99. Tkachenko, A. et al. The mass discrepancy in intermediate- and high-mass eclipsing binaries: the need for higher convective core masses. Astron. Astrophys. 637, A60 (2020).

    Article  Google Scholar 

  100. Johnston, C. One size does not fit all: evidence for a range of mixing efficiencies in stellar evolution calculations. Astron. Astrophys. 655, A29 (2021).

    Article  ADS  Google Scholar 

  101. Aver, E. et al. Improving helium abundance determinations with Leo P as a case study. J. Cosmol. Astropart. Phys. 2021, 027 (2021).

    Article  Google Scholar 

  102. Verma, K. et al. Helium abundance in a sample of cool stars: measurements from asteroseismology. Mon. Not. R. Astron. Soc. 483, 4678–4694 (2019).

    Article  ADS  Google Scholar 

  103. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  Google Scholar 

  104. Gizon, L. & Solanki, S. K. Determining the inclination of the rotation axis of a Sun-like star. Astrophys. J. 589, 1009–1019 (2003).

    Article  ADS  Google Scholar 

  105. Gehan, C., Mosser, B., Michel, E. & Cunha, M. S. Automated approach to measure stellar inclinations: validation through large-scale measurements on the red giant branch. Astron. Astrophys. 645, A124 (2021).

    Article  ADS  Google Scholar 

  106. Aerts, C. et al. Asteroseismology of the β Cep star HD 129929. I. Observations, oscillation frequencies and stellar parameters. Astron. Astrophys. 415, 241–249 (2004).

    Article  ADS  Google Scholar 

  107. Handler, G. et al. Asteroseismology of the β Cephei star ν Eridani - I. Photometric observations and pulsational frequency analysis. Mon. Not. R. Astron. Soc. 347, 454–462 (2004).

    Article  ADS  Google Scholar 

  108. Handler, G., Shobbrook, R. R. & Mokgwetsi, T. An asteroseismic study of the β Cephei star θ Ophiuchi: photometric results. Mon. Not. R. Astron. Soc. 362, 612–618 (2005).

    Article  ADS  Google Scholar 

  109. Briquet, M. et al. An asteroseismic study of the β Cephei star θ Ophiuchi: constraints on global stellar parameters and core overshooting. Mon. Not. R. Astron. Soc. 381, 1482–1488 (2007).

    Article  ADS  Google Scholar 

  110. Handler, G. et al. Asteroseismology of the β Cephei star 12 (DD) Lacertae: photometric observations, pulsational frequency analysis and mode identification. Mon. Not. R. Astron. Soc. 365, 327–338 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 670519: MAMSIE). D.M.B. gratefully acknowledges a senior postdoctoral fellowship from the Research Foundation Flanders with grant agreement no. 1286521N. M.M. gratefully acknowledges a PhD scholarship from the Research Foundation Flanders under project no. 11F7120N. The research leading to these results has (partially) received funding from the KU Leuven Research Council (grant C16/18/005: PARADISE). S.S.-D. acknowledges support from the Spanish Government Ministerio de Ciencia e Innovación through grants PGC-2018-091 3741-B-C22 and PID2021-122397NB-C21, and from the Canarian Agency for Research, Innovation and Information Society, of the Canary Islands Government, and the European Regional Development Fund, under grant with reference ProID2020010016. V.V. gratefully acknowledges support from the Research Foundation Flanders under grant agreement no. 1156923N. R.H.D.T. acknowledges support from NSF grant ACI-1663696 and NASA grant 80NSSC20K0515. G.H. acknowledges financial support by the Polish NCN grants 2015/18/A/ST9/00578 and 2021/43/B/ST9/02972. J.S.G.M. gratefully acknowledges funding from the French Agence Nationale de la Recherche (ANR), under grant MASSIF (ANR-21-CE31-0018-02). The MESA and GYRE developers are thanked for their efforts in providing, maintaining and supporting the use of the open-source stellar evolution code and pulsation codes. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. The TESS data presented in this paper were obtained from the MAST at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support to MAST for these data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts. Funding for the TESS mission is provided by the NASA Explorer Program. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Based on observations obtained with the HERMES spectrograph, which is supported by the Research Foundation Flanders, Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique, Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany. This work presents results from the European Space Agency space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia multilateral agreement. The computational resources and services used in this work were provided by the Flemish Supercomputer Center, funded by the Research Foundation Flanders and the Flemish government department EWI.

Author information

Authors and Affiliations

Authors

Contributions

S.B. discovered the variability of HD 192575 in TESS mission data, performed the photometric analysis, computed the model grid, performed the asteroseismic modelling and wrote the manuscript. D.M.B. defined the project, supervised S.B., contributed to the photometric and seismic analysis and guided the interpretation. M.M. and R.H.D.T. contributed to the modelling set-up and seismic analysis. S.S.D. performed the spectroscopic analysis and contributed the final atmospheric parameters. C.A. provided context, guided the exploitation of the avoided crossings and helped with the interpretation. V.V. contributed to the derivation of the stellar rotation profiles. G.B. contributed to the gathering of spectra and the RV analysis. N.N. provided the radius measurement from SBCRs. G.H. aided in the frequency analysis and the identification of the rotationally split multiplets. J.S.G.M. contributed to the gathering of spectra. R.V and G.R. are the deputy PI and the PI of the TESS mission, respectively. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Siemen Burssens or Dominic M. Bowman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Charlotte Gehan, Anwesh Mazumdar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burssens, S., Bowman, D.M., Michielsen, M. et al. A calibration point for stellar evolution from massive star asteroseismology. Nat Astron 7, 913–930 (2023). https://doi.org/10.1038/s41550-023-01978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01978-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing