Abstract
Long gamma-ray bursts are produced by energy dissipation within ultra-relativistic jets launched by newborn black holes after the collapse of a peculiar class of massive stars. Right after the luminous and highly variable gamma-ray emission, a multi-wavelength afterglow is released by external dissipation of the jet energy in the medium that surrounds the progenitor star. We report the discovery of a very bright (~10 mag) optical emission ~28 s after the explosion of the extremely luminous and energetic GRB 210619B located at redshift 1.937. We observed the transition from a bright reverse to the forward shock emission, demonstrating that the early and late gamma-ray-burst multi-wavelength emission originated from a narrow, magnetized jet propagating into a rarefied interstellar medium. These conditions are found to be optimal to produce the bright optical flash from the reverse shock. Slower jets propagating in denser media are expected to cause a flash of very-high-energy radiation, which is yet to be discovered.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
Swift/XRT raw data are public and available from the UK Swift Science Data Centre at the University of Leicester. The light curve data are available at: https://www.swift.ac.uk/xrt_curves/GRB_ID/flux.qdp where GRB_ID is the GRB observation ID. The spectra were obtained at: https://www.swift.ac.uk/xrt_spectra/addspec.php?targ=GRB_ID. The details of the automatic spectral analysis are available at: https://www.swift.ac.uk/xrt_spectra/docs.php. Fermi/LAT raw data are public and can be downloaded using GTBURST software at: https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html. Fermi/LAT 2nd GRB catalogue data are available at: https://www-glast.stanford.edu/pub_data/953/. All reduced data are available from the corresponding author upon reasonable request.
Code availability
HEASoft, Xspec and PyXspec are freely available at: https://heasarc.gsfc.nasa.gov/docs/software/heasoft, https://heasarc.gsfc.nasa.gov/xanadu/xspec and https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/python/html/index.html. Gtburst is one of the Fermi Science Tools packages, freely available at: https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/. The details of the gtburst analysis can be found at: https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/gtburst.html. The emcee Python package is available at: https://emcee.readthedocs.io/en/stable/user/install/. All computer code is available from the corresponding author upon reasonable request.
References
D’Avanzo, P. et al. GRB 210619B: Swift detection of a bright burst and optical counterpart. GRB Coord. Netw. Circ. No. 30261 (2021).
Zhao, Y. et al. GECAM detection of GRB 210619B. GRB Coord. Netw. Circ. No. 30264 (2021).
Svinkin, D. et al. Konus-Wind detection of GRB 210619B. GRB Coord. Netw. Circ. No. 30276 (2021).
Poolakkil, S. & Meegan, C. GRB 210619B: Fermi GBM detection. GRB Coord. Netw. Circ. No. 30279 (2021).
Nekola, M. et al. Robotic telescopes for high energy astrophysics in Ondřejov. Exp. Astron. 28, 79–85 (2010).
Jelinek, M., Strobl, J., Hudec, R. & Polasek, C. GRB 210619B: Ondrejov D50 detection. GRB Coord. Netw. Circ. No. 30263 (2021).
Beskin, G. M. et al. Wide-field optical monitoring with Mini-MegaTORTORA (MMT-9) multichannel high temporal resolution telescope. Astrophys. Bull. 72, 81–92 (2017).
de Ugarte Postigo, A. et al. GRB 210619B: redshift from OSIRIS/GTC. GRB Coord. Netw. Circ. No. 30272 (2021).
Rees, M. J. & Meszaros, P. Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. Lett. 430, L93 (1994).
Drenkhahn, G. & Spruit, H. C. Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 391, 1141–1153 (2002).
Lyutikov, M. & Blandford, R. Gamma ray bursts as electromagnetic outflows. Preprint at arXiv https://doi.org/10.48550/arXiv.astro-ph/0312347 (2003).
Derishev, E. V., Kocharovsky, V. V. & Kocharovsky, V. V. Physical parameters and emission mechanism in gamma-ray bursts. Astron. Astrophys. 372, 1071–1077 (2001).
Piran, T., Sari, R. & Zou, Y.-C. Observational limits on inverse Compton processes in gamma-ray bursts. Mon. Not. R. Astron. Soc. 393, 1107–1113 (2009).
Derishev, E. V., Kocharovsky, V. V. & Kocharovsky, V. V. The neutron component in fireballs of gamma-ray bursts: dynamics and observable imprints. Astrophys. J. 521, 640–649 (1999).
Beloborodov, A. M. Nuclear composition of gamma-ray burst fireballs. Astrophys. J. 588, 931–944 (2003).
Fan, Y.-Z., Zhang, B. & Wei, D.-M. Naked-eye optical flash from gamma-ray burst 080319B: tracing the decaying neutrons in the outflow. Phys. Rev. D 79, 021301 (2009).
Ghirlanda, G. et al. Bulk Lorentz factors of gamma-ray bursts. Astron. Astrophys. 609, A112 (2018).
Mészáros, P. & Rees, M. J. Poynting jets from black holes and cosmological gamma-ray bursts. Astrophys. J. Lett. 482, L29–L32 (1997).
Sari, R. & Piran, T. Predictions for the very early afterglow and the optical flash. Astrophys. J. 520, 641–649 (1999).
Kobayashi, S. Light curves of gamma-ray burst optical flashes. Astrophys. J. 545, 807–812 (2000).
Laskar, T. et al. A reverse shock in GRB 130427A. Astrophys. J. 776, 119 (2013).
Laskar, T. et al. ALMA detection of a linearly polarized reverse shock in GRB 190114C. Astrophys. J. Lett. 878, L26 (2019).
Laskar, T. et al. A reverse shock in GRB 181201A. Astrophys. J. 884, 121 (2019).
Perley, D. A. et al. The afterglow of GRB 130427A from 1 to 1016 GHz. Astrophys. J. 781, 37 (2014).
Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB080319B. Nature 455, 183–188 (2008).
Beskin, G. et al. Fast optical variability of a naked-eye burst—manifestation of the periodic activity of an internal engine. Astrophys. J. Lett. 719, L10–L14 (2010).
Akerlof, C. et al. Observation of contemporaneous optical radiation from a γ-ray burst. Nature 398, 400–402 (1999).
Paczynski, B. & Rhoads, J. E. Radio transients from gamma-ray bursters. Astrophys. J. Lett. 418, L5 (1993).
Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, L17–L20 (1998).
Eichler, D. & Waxman, E. The efficiency of electron acceleration in collisionless shocks and gamma-ray burst energetics. Astrophys. J. 627, 861–867 (2005).
Guilbert, P. W., Fabian, A. C. & Rees, M. J. Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 205, 593–603 (1983).
Evans, P. A. et al. GRB 130925A: an ultralong gamma ray burst with a dust-echo afterglow, and implications for the origin of the ultralong GRBs. Mon. Not. R. Astron. Soc. 444, 250–267 (2014).
Laskar, T. et al. GRB 120521C at z ~6 and the properties of high-redshift γ-ray bursts. Astrophys. J. 781, 1 (2014).
Laskar, T. et al. Energy injection in gamma-ray burst afterglows. Astrophys. J. 814, 1 (2015).
Laskar, T. et al. A reverse shock in GRB 160509A. Astrophys. J. 833, 88 (2016).
Alexander, K. D. et al. A reverse shock and unusual radio properties in GRB 160625B. Astrophys. J. 848, 69 (2017).
Piro, L. et al. A hot cocoon in the ultralong GRB 130925A: hints of a POPIII-like progenitor in a low-density wind environment. Astrophys. J. Lett. 790, L15 (2014).
Fan, Y.-Z., Dai, Z.-G., Huang, Y.-F. & Lu, T. Optical flash of GRB 990123: constraints on the physical parameters of the reverse shock. Chin. J. Astron. Astrophys. 2, 449–453 (2002).
Zhang, B., Kobayashi, S. & Mészáros, P. Gamma-ray burst early optical afterglows: implications for the initial Lorentz factor and the central engine. Astrophys. J. 595, 950–954 (2003).
Zhang, B. & Kobayashi, S. Gamma-ray burst early afterglows: reverse shock emission from an arbitrarily magnetized ejecta. Astrophys. J. 628, 315–334 (2005).
Giannios, D., Mimica, P. & Aloy, M. A. On the existence of a reverse shock in magnetized gamma-ray burst ejecta. Astron. Astrophys. 478, 747–753 (2008).
Mizuno, Y. et al. Magnetohydrodynamic effects in propagating relativistic jets: reverse shock and magnetic acceleration. Astrophys. J. Lett. 690, L47–L51 (2009).
Amati, L. et al. Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81–89 (2002).
Yonetoku, D. et al. Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophys. J. 609, 935–951 (2004).
Ghirlanda, G., Ghisellini, G. & Lazzati, D. The collimation-corrected gamma-ray burst energies correlate with the peak energy of their νFν spectrum. Astrophys. J. 616, 331–338 (2004).
Kobayashi, S., Piran, T. & Sari, R. Can internal shocks produce the variability in gamma-ray bursts? Astrophys. J. 490, 92 (1997).
Daigne, F. & Mochkovitch, R. Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral properties. Mon. Not. R. Astron. Soc. 296, 275–286 (1998).
Beloborodov, A. M. Optical and GeV-TeV flashes from gamma-ray bursts. Astrophys. J. Lett. 618, L13–L16 (2005).
Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at arXiv https://doi.org/10.48550/arXiv.1612.05560 (2016).
Becker, A. HOTPANTS: high order transform of PSF and template subtraction. Astrophysics Source Code Library ascl:1504.004 (2015).
Perley, D. A. GRB 210619B: Liverpool telescope imaging of a red afterglow. GRB Coord. Netw. Circ. No. 30271 (2021).
Pei, Y. C. Interstellar dust from the Milky Way to the Magellanic Clouds. Astrophys. J. 395, 130 (1992).
Caballero-García, M. D. et al. Multiwavelength study of the luminous GRB 210619B observed with Fermi and ASIM. Mon. Not. R. Astron. Soc. 519, 3201–3226 (2023).
Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009).
Arnaud, K. A. XSPEC: The first ten years. Astronomical Data Analysis Software and Systems V, A.S.P. Conference Series, Vol. 101 (Jacoby, G. H. & Barnes, J. eds), p. 17 (1996).
Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).
Meegan, C. et al. The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009).
Band, D. et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281 (1993).
Oganesyan, G., Nava, L., Ghirlanda, G., Melandri, A. & Celotti, A. Prompt optical emission as a signature of synchrotron radiation in gamma-ray bursts. Astron. Astrophys. 628, A59 (2019).
Burgess, J. M. et al. Gamma-ray bursts as cool synchrotron sources. Nat. Astron. 4, 174–179 (2020).
Ackermann, M. et al. The first Fermi-LAT Gamma-Ray Burst Catalog. Astrophys. J. Suppl. Ser. 209, 11 (2013).
Page, K. L. et al. GRB 210619B: Swift-XRT refined analysis. GRB Coord. Netw. Circ. No. 30269 (2021).
Nakar, E. & Piran, T. Early afterglow emission from a reverse shock as a diagnostic tool for gamma-ray burst outflows. Mon. Not. R. Astron. Soc. 353, 647–653 (2004).
Blandford, R. D. & McKee, C. F. Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130–1138 (1976).
Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst afterglows. Astrophys. J. 568, 820–829 (2002).
Rhoads, J. E. How to tell a jet from a balloon: a proposed test for beaming in gamma-ray bursts. Astrophys. J. Lett. 487, L1–L4 (1997).
Salafia, O. S. et al. Multiwavelength view of the close-by GRB 190829A sheds light on gamma-ray burst physics. Astrophys. J. Lett. 931, L19 (2022).
Granot, J. Interaction of a highly magnetized impulsive relativistic flow with an external medium. Mon. Not. R. Astron. Soc. 421, 2442–2466 (2012).
Mei, A. et al. Gigaelectronvolt emission from a compact binary merger. Nature 612, 236–239 (2022).
Nava, L. et al. Clustering of LAT light curves: a clue to the origin of high-energy emission in gamma-ray bursts. Mon. Not. R. Astron. Soc. 443, 3578–3585 (2014).
Beniamini, P. & van der Horst, A. J. Electrons’ energy in GRB afterglows implied by radio peaks. Mon. Not. R. Astron. Soc. 472, 3161–3168 (2017).
Panaitescu, A. & Kumar, P. Analytic light curves of gamma-ray burst afterglows: homogeneous versus wind external media. Astrophys. J. 543, 66–76 (2000).
Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Gomboc, A. et al. Optical flashes, reverse shocks and magnetization. In Gamma-ray Burst: Sixth Huntsville Symposium Conference Series Vol. 1133 (eds Meegan, C. et al.) 145–150 (American Institute of Physics, 2009).
Sari, R. & Piran, T. Hydrodynamic timescales and temporal structure of gamma-ray bursts. Astrophys. J. Lett. 455, L143 (1995).
Haislip, J. B. et al. A photometric redshift of z = 6.39 ± 0.12 for GRB 050904. Nature 440, 181–183 (2006).
Troja, E. et al. Significant and variable linear polarization during the prompt optical flash of GRB 160625B. Nature 547, 425–427 (2017).
Vestrand, W. T. et al. The bright optical flash and afterglow from the gamma-ray burst GRB 130427A. Science 343, 38–41 (2014).
Page, K. L. et al. Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution. Mon. Not. R. Astron. Soc. 400, 134–146 (2009).
Kobayashi, S. & Zhang, B. GRB 021004: reverse shock emission. Astrophys. J. Lett. 582, L75–L78 (2003).
Li, W., Filippenko, A. V., Chornock, R. & Jha, S. The early light curve of the optical afterglow of GRB 021211. Astrophys. J. Lett. 586, L9–L12 (2003).
Blustin, A. J. et al. Swift panchromatic observations of the bright gamma-ray burst GRB 050525a. Astrophys. J. 637, 901–913 (2006).
Gomboc, A. et al. Multiwavelength analysis of the intriguing GRB 061126: the reverse shock scenario and magnetization. Astrophys. J. 687, 443–455 (2008).
Jin, Z.-P. et al. GRB 081007 and GRB 090424: the surrounding medium, outflows, and supernovae. Astrophys. J. 774, 114 (2013).
Gendre, B. et al. Testing gamma-ray burst models with the afterglow of GRB 090102. Mon. Not. R. Astron. Soc. 405, 2372–2380 (2010).
Gruber, D. et al. Fermi/GBM observations of the ultra-long GRB 091024. A burst with an optical flash. Astron. Astrophys. 528, A15 (2011).
Cano, Z. et al. GRB 091024 : Faulkes telescope north–afterglow confirmation. GRB Coord. Netw. Circ. No. 1066 (2009).
Henden, A., Gross, J., Denny, B., Terrell, D. & Cooney, W. GRB091024: VRcIc afterglow observations. GRB Coord. Netw. Circ. No. 1073 (2009).
Updike, A. C. & Hartmann, D. H. GRB 090118: KPNO 4m detection of candidate afterglow. GRB Coord. Netw. Circ. No. 8829 (2009).
Gupta, R. et al. GRB 140102A: insight into prompt spectral evolution and early optical afterglow emission. Mon. Not. R. Astron. Soc. 505, 4086–4105 (2021).
Huang, X.-L. et al. Very bright prompt and reverse shock emission of GRB 140512A. Astrophys. J. 833, 100 (2016).
Jordana-Mitjans, N. et al. Lowly polarized light from a highly magnetized jet of GRB 190114C. Astrophys. J. 892, 97 (2020).
Acknowledgements
S.K. and M.P. acknowledge support from the European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports (Project CoGraDS– CZ.02.1.01/0.0/0.0/15_003/0000437). FRAM-ORM operation is supported by the Czech Ministry of Education, Youth and Sports (project numbers LM2015046, LM2018105 and LTT17006) and by the European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports (project numbers CZ.02.1.01/0.0/0.0/16_013/0001403 and CZ.02.1.01/0.0/0.0/18_046/0016007). The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the AHEAD2020 project (grant agreement number 871158). B.B. and M.B. acknowledge financial support from MIUR (PRIN 2017 grant number 20179ZF5KS). This research was supported under the Ministry of Science and Higher Education of the Russian Federation grant number 075-15-2022-262 (13.MNPMU.21.0003). This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester.
Author information
Authors and Affiliations
Contributions
S.K. carried out the analysis of the optical data provided by D50, FRAM-ORM and MMT-9. G.O. analysed the Swift/XRT, Swift/BAT and Fermi/GBM data. G.O. and O.S.S. led the interpretation of the multi-wavelength afterglow emission. G.O. led the writing of the paper. S.K. and O.S.S. provided major contributions to the writing of the paper. B.B. reduced the Fermi/LAT data. B.B. and S.R. collected the sample of the bright optical light curves. S.R. conducted the comparison of GRB properties with the population of long GRBs in the Amati and Yonetoku relations. M.J., G.B., J.Š., C.P., R.H., E.I., E.K., A.P., A.B., N.L., V.S., M.M., P.J., J.E., J.J., R.C. and M.P. organized the observations, ensured the operation of and provided the data from D50, FRAM-ORM and MMT-9 telescopes. All the authors contributed to discussions and edited the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Zhi-Ping Jin and Tanmoy Laskar for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7 and Tables 1–12.
Supplementary Table 6
Machine-readable version of Supplementary Table 6.
Supplementary Table 7
Machine-readable version of Supplementary Table 7.
Supplementary Table 8
Machine-readable version of Supplementary Table 8.
Supplementary Table 9
Machine-readable version of Supplementary Table 9.
Supplementary Table 10
Machine-readable version of Supplementary Table 10.
Supplementary Table 11
Machine-readable version of Supplementary Table 11.
Supplementary Table 12
Machine-readable version of Supplementary Table 12.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oganesyan, G., Karpov, S., Salafia, O.S. et al. Exceptionally bright optical emission from a rare and distant gamma-ray burst. Nat Astron 7, 843–855 (2023). https://doi.org/10.1038/s41550-023-01972-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-023-01972-4