Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact mixing among rocky planetesimals in the early Solar System from angrite oxygen isotopes


Angrite meteorites are thought to represent ancient basaltic igneous rocks that formed inward of Jupiter’s orbit on the basis of their isotopic parameters such as ε50Ti, ε54Cr and Δ17O in addition to Fe/Mn ratios of pyroxene. New bulk oxygen isotope measurements of nine angrites, and of olivine ‘xenocrysts’ and groundmass fractions from three quenched angrites, however, reveal clear isotopic disequilibrium, implying an impact melt origin. Groundmass fractions from Asuka 12209, Asuka 881371 and Northwest Africa 12320 quenched angrites demonstrate an average Δ17O value of −0.003 ± 0.020‰. Here, excluding the bulk value and all groundmass fractions of Northwest Africa 12320, which is contaminated by an impactor, we determine a new well constrained average Δ17O value for the angrite parent body (−0.066 ± 0.016‰). Microstructural investigations of Northwest Africa 12320 reveal the presence of both fully recrystallized and undeformed olivine xenocrysts, indicating that some xenocrysts underwent high-temperature processes. These results suggest that angrites bear signatures of impact-driven isotopic mixing, possibly in response to early giant planet migration. The evidence for impact mixing raises doubts about the utility of quenched angrites as a suitable Pb–Pb isotopic anchor, which in turn has consequences for accurately defining the timeline of other Solar System events.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Triple oxygen isotope systematics for angrites, pallasites and howardite–eucrite–diogenite (HED) meteorites.
Fig. 2: Chemical and structural characterization of relict olivine grains in NWA 12320.
Fig. 3: A schematic depicting a possible scenario that causes the oxygen isotopic disequilibrium in the quenched angrite meteorites.

Data availability

All data generated or analysed during this study are included in either the article or its supplementary information.


  1. Keil, K. Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic–plutonic mafic meteorites, and the history of their parent asteroid. Geochemistry 72, 191–218 (2012).

  2. Mittlefehldt, D. W., Killgore, M. & Lee, M. T. Petrology and geochemistry of D’Orbigny, geochemistry of Sahara 99555 and the origin of angrites. Meteorit. Planet. Sci. 37, 345–369 (2002).

    Article  ADS  Google Scholar 

  3. Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).

    Article  ADS  Google Scholar 

  4. Papike, J. J., Burger, P. V., Bell, A. S. & Shearer, C. K. Mn–Fe systematics in major planetary body reservoirs in the solar system and the positioning of the Angrite Parent Body: a crystal-chemical perspective. Am. Mineral. 102, 1759–1762 (2017).

    Article  ADS  Google Scholar 

  5. Zhu, K. et al. Timing and origin of the Angrite Parent Body inferred from Cr isotopes. Astrophys. J. Lett. 887, L13 (2019).

    Article  ADS  Google Scholar 

  6. Santos, A. R., Agee, C. B., Shearer, C. K., & McCubbin, F. M. Northwest Africa 8535 and Northwest Africa 10463: new insights into the angrite parent body. Abstr. Lun. Planet. Sci. Conf. 47, 2590 (2016).

  7. Reger, P. M. et al. Chronology of the unique angrite Northwest Africa 10463. In Proc. 84th Annual Meeting of the Meteoritical Society 6235 (LPI, 2021).

  8. Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005).

    Article  ADS  Google Scholar 

  9. Greenwood, R. C., Burbine, T. H., Miller, M. F. & Franchi, I. A. Melting and differentiation of early-formed asteroids: the perspective from high precision oxygen isotope studies. Geochemistry 77, 1–43 (2017).

    Article  Google Scholar 

  10. Scott, E. R. D. & Bottke, W. F. Impact histories of angrites, eucrites and their parent bodies. Meteorit. Planet. Sci. 46, 1878–1887 (2011).

    Article  ADS  Google Scholar 

  11. Jambon, A. et al. Mineralogy and petrology of the angrite Northwest Africa 1296. Meteorit. Planet. Sci. 40, 361–375 (2005).

    Article  ADS  Google Scholar 

  12. Jambon, A. et al. Petrology and mineralogy of the angrite Northwest Africa 1670. Meteorit. Planet. Sci. 43, 1783–1795 (2008).

    Article  ADS  Google Scholar 

  13. Mikouchi, T., Hasegawa, H., Takenouchi, A., & Kagi, H. Olivine xenocrysts in Asuka-881371 revisited. Abstr. Lun. Planet. Sci. Conf. 46, 2065 (2015).

  14. Mikouchi, T., et al. Mineralogy of olivine xenocrysts in Asuka 12009 angrite. Abstr. Lun. Planet. Sci. Conf. 48, 2206 (2017).

  15. Miller, M. F., Franchi, I. A., Sexton, A. S. & Pillinger, C. T. High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications. Rapid Commun. Mass Spectrom. 13, 1211–1217 (1999).

    Article  ADS  Google Scholar 

  16. Starkey, N. A. et al. Triple oxygen isotopic composition of the high-3He/4He mantle. Geochim. Cosmochim. Acta 176, 227–238 (2016).

    Article  ADS  Google Scholar 

  17. Trepmann, C. A., Renner, J. & Druiventak, A. Experimental deformation and recrystallization of olivine—processes and timescales of damage healing during postseismic relaxation at mantle depths. Solid Earth Discuss. 5, 463–524 (2013).

    ADS  Google Scholar 

  18. Janots, E. et al. Jiddat al Harasis 556: a howardite impact melt breccia with an H chondrite component. Meteorit. Planet. Sci. 47, 1558–1574 (2012).

    Article  ADS  Google Scholar 

  19. Janots, E. et al. Jiddat al Harasis 422: a ureilite with an extremely high degree of shock melting. Meteorit. Planet. Sci. 46, 134–148 (2011).

    ADS  Google Scholar 

  20. Nazarov, M. A., Brandstätter, F., & Kurat, G. Angrite-like clasts from the Erevan howardite. Abstr. Lun. Planet. Sci. Conf. 26, 1033 (1995).

  21. Cohen, B. A., Goodrich, C. A. & Keil, K. Feldspathic clast populations in polymict ureilites: stalking the missing basalts from the ureilite parent body. Geochim. Cosmochim. Acta 64, 4249–4266 (2004).

    Article  ADS  Google Scholar 

  22. Kita, N. T. et al. Origin of ureilites, inferred from a SIMS oxygen isotopic and trace element study of clasts in the Dar al Gani polymict ureilites. Geochim. Cosmochim. Acta 68, 4213–4235 (2004).

    Article  ADS  Google Scholar 

  23. Zhang, A. C. et al. Unique angrite-like fragments in a CH3 chondrite reveal a new basaltic planetesimal. Geochim. Cosmochim. Acta 275, 48–63 (2020).

    Article  ADS  Google Scholar 

  24. Jambon, A., Baghdadi, B., & Barrat, J. A. Peridotitic angrites are chimerolites. Abstr. Lun. Planet. Sci. Conf. 43, 1758 (2012).

  25. Sarafian, A. R. et al. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Phil. Trans. R. Soc. 375, 20160209.

  26. Deligny, C., Füri, E. & Deloule, E. Origin and timing of volatile delivery (N, H) to the angrite parent body: constraints from in situ analyses of melt inclusions. Geochim. Cosmochim. Acta 313, 243–256 (2021).

    Article  ADS  Google Scholar 

  27. Greenwood, R. C., Burbine, T. H. & Franchi, I. A. Linking asteroids and meteorites to the primordial planetesimal population. Geochim. Cosmochim. Acta 277, 377–406 (2020).

    Article  ADS  Google Scholar 

  28. Clayton, R. N., Mayeda, T. K., Goswami, J. N. & Olsen, E. J. Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991).

    Article  ADS  Google Scholar 

  29. Riches, A. J. V. et al. Rhenium–osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth Planet. Sci. Lett. 353354, 208–218 (2012).

    Article  ADS  Google Scholar 

  30. Steenstra, E. S. et al. The effect of melt composition on metal–silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body. Geochim. Cosmochim. Acta 212, 62–83 (2017).

    Article  ADS  Google Scholar 

  31. Isa, J., Rubin, A. E. & Wasson, J. T. R-chondrite bulk-chemical compositions and diverse oxides: implications for parent-body processes. Geochim. Cosmochim. Acta 124, 131–151 (2014).

    Article  ADS  Google Scholar 

  32. Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A. & Bottke, W. F. in Asteroids IV (eds Michel, P. et al.) 493–507 (Univ. Arizona Press, 2015).

  33. Greenwood, R. C. et al. Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Sci. Adv. 4, eaao5928 (2018).

    Article  ADS  Google Scholar 

  34. Qin, L. & Carlson, R. W. Nucleosynthetic isotope anomalies and their cosmochemical significance. Geochem. J. 50, 43–65 (2016).

    Article  ADS  Google Scholar 

  35. Raymond, S. N., Izidoro, A. & Morbidelli, A. in Planetary Astrobiology (eds Meadows, V. et al.) 287–234 (Univ. Arizona Press, 2020).

  36. Johnson, B. C., Walsh, K. J., Minton, D. A., Krot, A. N. & Levison, H. F. Timing of the formation and migration of giant planets as constrained by CB chondrites. Sci. Adv. 2, e1601658 (2016).

    Article  ADS  Google Scholar 

  37. Walsh, K., Morbidelli, A., Raymond, S., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  ADS  Google Scholar 

  38. Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    Article  ADS  Google Scholar 

  39. Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).

    Article  ADS  Google Scholar 

  40. Brennecka, G. A. & Wadhwa, M. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl Acad. Sci. USA 109, 9299–9303 (2012).

    Article  ADS  Google Scholar 

  41. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 60, 1999–2017 (1996).

    Article  ADS  Google Scholar 

  42. Miller, M. F. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66, 1881–1889 (2002).

    Article  ADS  Google Scholar 

  43. Martins, Z. et al. Amino acid composition, petrology, geochemistry, 14C terrestrial age and oxygen isotopes of the Shisr 033 CR chondrite. Meteorit. Planet. Sci. 42, 1581–1595 (2010).

    Article  ADS  Google Scholar 

Download references


K. Green and M. Higgins are thanked for their help in sample preparation. G. Degli-Alessandrini is thanked for her assistance with scanning electron microscopy and EBSD analyses. J. Malley is thanked for assisting with laser-fluorination work. G. Ensor is thanked for his help in procuring the NWA angrites. B.G.R.-S. was supported by an STFC studentship. M.A. and I.A.F. acknowledge support from STFC grant ST/T000228/1. Acquisition and analysis of A 12209 and A 881371 were supported by JSPS KAKENHI (JP19H01959 to A.Y., JP19H00726 and JP21K1845 to T.M.) and NIPR (research project KP307 to A.Y.), in collaboration with the Belgian Science Policy (Belspo) project BELAM for A 12209. V.D., S.G. and P.C. acknowledge the FWO-FNRS Excellence of Science (EOS) programme ET-HoME. V.D., L.P., S.G. and P.C. also acknowledge the Belspo project BELAM for past funding. V.D. thanks FRS-FNRS for support. S.G. and P.C. acknowledge the support of the VUB Strategic Programme.

Author information

Authors and Affiliations



R.C.G., M.A. and I.A.F. devised the project. M.A. acquired the NWA samples while A samples were provided by A.Y. B.G.R.-S. and R.C.G. led the data acquisition and processing, supported by other authors. B.G.R.-S. produced the first draft of the paper. All authors participated in data interpretation and contributed during various stages of paper revision.

Corresponding author

Correspondence to B. G. Rider-Stokes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Alexander Krot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–5 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rider-Stokes, B.G., Greenwood, R.C., Anand, M. et al. Impact mixing among rocky planetesimals in the early Solar System from angrite oxygen isotopes. Nat Astron (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing