Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI

Abstract

Planetary debris disks around other stars are analogous to the asteroid and Kuiper belts in the Solar System. Their structure reveals the configuration of small bodies and provides hints for the presence of planets. The nearby star Fomalhaut hosts one of the most prominent debris disks, resolved by the Hubble Space Telescope, Spitzer, Herschel and the Atacama Large Millimeter Array. Images of this system at mid-infrared wavelengths using JWST/MIRI not only show the narrow Kuiper belt-analogue outer ring, but also that (1) what was thought from indirect evidence to be an asteroid-analogue structure is instead broad, extending outward into the outer system, and (2) there is an intermediate belt, probably shepherded by an unseen planet. The newly discovered belt is demarcated by an inner gap, located at ~78 au, and it is misaligned relative to the outer belt. The previously known collisionally generated dust cloud, Fomalhaut b, could have originated from this belt, suggesting increased dynamical stirring and collision rates there. We also discovered a large dust cloud within the outer ring, possible evidence of another dust-creating collision. Taken together with previous observations, Fomalhaut appears to be the site of a complex and possibly dynamically active planetary system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The architecture of the Fomalhaut debris disk system.
Fig. 2: The JWST gallery of the Fomalhaut system with deprojections.
Fig. 3: Total encircled energy.
Fig. 4: Surface brightness and encircled energy in the deprojected images.
Fig. 5: The recalibrated IRS spectra and JWST photometry of the Fomalhaut debris disk system.

Similar content being viewed by others

Data availability

The final reduced and processed JWST MIRI imaging data that we present in this paper (and others including geometric distortion corrections) can be downloaded from https://github.com/merope82/Fomalhaut. The raw and general pipeline processed data products will be available from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute following their public release. The JWST observations are associated with programme 1193, while the HST observations are associated with programme 15905.

References

  1. Aumann, H. H. et al. Discovery of a shell around Alpha Lyrae. Astrophys. J. Lett. 278, L23–L27 (1984).

    Article  ADS  Google Scholar 

  2. Gillett, F. C. IRAS observations of cool excess around main sequence stars. In Light on Dark Matter (ed. Israel, F. P.) 61–69 (Astrophysics and Space Science Library Vol. 124, Springer, 1986).

  3. van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

    Article  ADS  Google Scholar 

  4. MacGregor, M. A. et al. A complete ALMA map of the Fomalhaut debris disk. Astrophys. J. 842, 8 (2017).

    Article  ADS  Google Scholar 

  5. Rhee, J. H., Song, I., Zuckerman, B. & McElwain, M. Characterization of dusty debris disks: the IRAS and Hipparcos catalogs. Astrophys. J. 660, 1556–1571 (2007).

    Article  ADS  Google Scholar 

  6. Kalas, P., Graham, J. R. & Clampin, M. A planetary system as the origin of structure in Fomalhaut’s dust belt. Nature 435, 1067–1070 (2005).

    Article  ADS  Google Scholar 

  7. Galicher, R., Marois, C., Zuckerman, B. & Macintosh, B. Fomalhaut b: independent analysis of the Hubble Space Telescope public archive data. Astrophys. J. 769, 42 (2013).

    Article  ADS  Google Scholar 

  8. Gáspár, A. & Rieke, G. New HST data and modeling reveal a massive planetesimal collision around Fomalhaut. Proc. Natl Acad. Sci. USA 117, 9712–9722 (2020).

    Article  ADS  Google Scholar 

  9. Stapelfeldt, K. R. et al. First look at the Fomalhaut debris disk with the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 458–462 (2004).

    Article  ADS  Google Scholar 

  10. Acke, B. et al. Herschel images of Fomalhaut. An extrasolar Kuiper belt at the height of its dynamical activity. Astron. Astrophys. 540, A125 (2012).

    Article  Google Scholar 

  11. Holland, W. S. et al. Submillimetre images of dusty debris around nearby stars. Nature 392, 788–791 (1998).

    Article  ADS  Google Scholar 

  12. Holland, W. S. et al. Submillimeter observations of an asymmetric dust disk around Fomalhaut. Astrophys. J. 582, 1141–1146 (2003).

    Article  ADS  Google Scholar 

  13. Boley, A. C. et al. Constraining the planetary system of Fomalhaut using high-resolution ALMA observations. Astrophys. J. Lett. 750, L21 (2012).

    Article  ADS  Google Scholar 

  14. White, S. M. et al. Observing the Sun with the Atacama Large Millimeter/Submillimeter Array (ALMA): fast-scan single-dish mapping. Sol. Phys. 292, 88 (2017).

    Article  ADS  Google Scholar 

  15. Espinoza, P., Su, K., Rieke, G. & Stapelfeldt, K. Discovery of an extended halo in the Fomalhaut debris system. Am. Astron. Soc. Meet. Abstr. 217, 339.01 (2011).

  16. Lebreton, J. et al. An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin. Astron. Astrophys. 555, A146 (2013).

    Article  Google Scholar 

  17. Su, K. Y. L. et al. Asteroid belts in debris disk twins: Vega and Fomalhaut. Astrophys. J. 763, 118 (2013).

    Article  ADS  Google Scholar 

  18. Adams, J. D., Herter, T. L., Lau, R. M., Trinh, C. & Hankins, M. Dust production rates in the Fomalhaut debris disk from SOFIA/FORCAST mid-infrared imaging. Astrophys. J. 862, 161 (2018).

    Article  ADS  Google Scholar 

  19. Absil, O. et al. An interferometric study of the Fomalhaut inner debris disk. I. Near-infrared detection of hot dust with VLTI/VINCI. Astrophys. J. 704, 150–160 (2009).

    Article  ADS  Google Scholar 

  20. Mennesson, B. et al. An interferometric study of the Fomalhaut inner debris disk. II. Keck Nuller mid-infrared observations. Astrophys. J. 763, 119 (2013).

    Article  ADS  Google Scholar 

  21. Roman, N. G. Planets of other suns. Astron. J. 64, 344–345 (1959).

    Article  Google Scholar 

  22. Quillen, A. C. Predictions for a planet just inside Fomalhaut’s eccentric ring. Mon. Not. R. Astron. Soc. 372, L14–L18 (2006).

    Article  ADS  Google Scholar 

  23. Chiang, E., Kite, E., Kalas, P., Graham, J. R. & Clampin, M. Fomalhaut’s debris disk and planet: constraining the mass of Fomalhaut b from disk morphology. Astrophys. J. 693, 734–749 (2009).

    Article  ADS  Google Scholar 

  24. Kalas, P. et al. Optical images of an exosolar planet 25 light-years from Earth. Science 322, 1345–1348 (2008).

    Article  ADS  Google Scholar 

  25. Lawler, S. M., Greenstreet, S. & Gladman, B. Fomalhaut b as a dust cloud: frequent collisions within the Fomalhaut disk. Astrophys. J. Lett. 802, L20 (2015).

    Article  ADS  Google Scholar 

  26. Morales, F. Y. et al. Common warm dust temperatures around main-sequence stars. Astrophys. J. Lett. 730, L29 (2011).

    Article  ADS  Google Scholar 

  27. Su, K. Y. L. & Rieke, G. H. Signposts of multiple planets in debris disks. Proc. Int. Astron. Union 8, 318–321 (2013).

  28. Ballering, N. P., Rieke, G. H. & Gáspár, A. Probing the terrestrial regions of planetary systems: warm debris disks with emission features. Astrophys. J. 793, 57 (2014).

    Article  ADS  Google Scholar 

  29. Kennedy, G. M. & Wyatt, M. C. Do two-temperature debris discs have multiple belts? Mon. Not. R. Astron. Soc. 444, 3164–3182 (2014).

    Article  ADS  Google Scholar 

  30. Ballering, N. P., Rieke, G. H., Su, K. Y. L. & Gáspár, A. What sets the radial locations of warm debris disks? Astrophys. J. 845, 120 (2017).

    Article  ADS  Google Scholar 

  31. Geiler, F. & Krivov, A. V. Does warm debris dust stem from asteroid belts? Mon. Not. R. Astron. Soc. 468, 959–970 (2017).

    Article  ADS  Google Scholar 

  32. Boccaletti, A. et al. JWST/MIRI coronagraphic performances as measured on-sky. Astron. Astrophys. 667, A165 (2022).

    Article  Google Scholar 

  33. Esposito, T. M. et al. Debris disk results from the Gemini Planet Imager Exoplanet Survey’s polarimetric imaging campaign. Astron. J. 160, 24 (2020).

    Article  ADS  Google Scholar 

  34. Wolff, S. G., Gáspár, A., H. Rieke, G., Ballering, N. & Ygouf, M. Hiding dust around ϵ Eridani. Astron. J. 165, 115 (2023).

    Article  ADS  Google Scholar 

  35. Su, K. Y. L. et al. The inner debris structure in the Fomalhaut planetary system. Astrophys. J. 818, 45 (2016).

    Article  ADS  Google Scholar 

  36. Gauchet, L. et al. Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars β Pic, AU Mic, 49 Cet, η Tel, Fomalhaut, g Lup, HD 181327 and HR 8799. Astron. Astrophys. 595, A31 (2016).

    Article  Google Scholar 

  37. Maire, A. L. et al. Search for cool giant exoplanets around young and nearby stars. VLT/NaCo near-infrared phase-coronagraphic and differential imaging. Astron. Astrophys. 566, A126 (2014).

    Article  Google Scholar 

  38. Kenworthy, M. A. et al. Coronagraphic observations of Fomalhaut at Solar System scales. Astrophys. J. 764, 7 (2013).

    Article  ADS  Google Scholar 

  39. Gáspár, A., Psaltis, D., Özel, F., Rieke, G. H. & Cooney, A. Modeling collisional cascades in debris disks: the numerical method. Astrophys. J. 749, 14 (2012).

    Article  ADS  Google Scholar 

  40. Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).

    Article  ADS  Google Scholar 

  41. Janson, M. et al. Infrared non-detection of Fomalhaut b: implications for the planet interpretation. Astrophys. J. 747, 116 (2012).

    Article  ADS  Google Scholar 

  42. Kennedy, G. M. & Wyatt, M. C. Collisional evolution of irregular satellite swarms: detectable dust around Solar System and extrasolar planets. Mon. Not. R. Astron. Soc. 412, 2137–2153 (2011).

    Article  ADS  Google Scholar 

  43. Kenyon, S. J. & Bromley, B. C. Collisional cascade calculations for irregular satellite swarms in Fomalhaut b. Astrophys. J. 811, 60 (2015).

    Article  ADS  Google Scholar 

  44. Kenyon, S. J., Currie, T. & Bromley, B. C. Fomalhaut b as a cloud of dust: testing aspects of planet formation theory. Astrophys. J. 786, 70 (2014).

    Article  ADS  Google Scholar 

  45. MacGregor, M. A. et al. Millimeter emission structure in the first ALMA image of the AU Mic debris disk. Astrophys. J. Lett. 762, L21 (2013).

    Article  ADS  Google Scholar 

  46. Ricci, L. et al. ALMA observations of the debris disk around the young solar analog HD 107146. Astrophys. J. 798, 124 (2015).

    Article  ADS  Google Scholar 

  47. Faramaz, V. et al. A detailed characterization of HR 8799’s debris disk with ALMA in band 7. Astron. J. 161, 271 (2021).

    Article  ADS  Google Scholar 

  48. Draine, B. T. & Lee, H. M. Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984).

    Article  ADS  Google Scholar 

  49. Wright et al. (in the press).

  50. Rieke, M. J. et al. Performance of NIRCam on JWST in flight. Publ. Astron. Soc. Pac. 135, 028001 (2023).

    Article  ADS  Google Scholar 

  51. Ressler, M. E. et al. Performance of the JWST/MIRI Si:As detectors. Proc. SPIE 7021, 70210O (2008).

  52. Bouchet, P. et al. The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, the MIRI imager. Publ. Astron. Soc. Pac. 127, 612 (2015).

    Article  ADS  Google Scholar 

  53. Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. Proc. SPIE 9143, 91433X (2014).

Download references

Acknowledgements

We acknowledge the assistance of our programme coordinators, C. Mannfolk and B. Porterfield, especially in ensuring a quick repeat of the initially failed PSF reference observations. We thank M. Perrin and M. Lallo for updating us on the primary mirror alignment while we waited for the repeat of the PSF observations. Financial support for this work was provided by grants 80NSSC22K1293 and HST-GO-15905.001-A to the University of Arizona and also grant 80NM0018D0004 to the Jet Propulsion Laboratory, California Institute of Technology. This work is based in part on observations made with the NASA/ESA/CSA JW and HST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST.

Author information

Authors and Affiliations

Authors

Contributions

The observations were designed by A.G. and G.H.R. and the data were reduced and processed by A.G. and S.G.W., while all coauthors contributed to the data analysis and writing of the manuscript.

Corresponding author

Correspondence to András Gáspár.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Brenda Matthews and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Tables 1–3 and Figs. 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gáspár, A., Wolff, S.G., Rieke, G.H. et al. Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nat Astron 7, 790–798 (2023). https://doi.org/10.1038/s41550-023-01962-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01962-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing