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Stress testing ΛCDM with high-redshift 
galaxy candidates

Michael Boylan-Kolchin     

Early data from the James Webb Space Telescope ( JWST) have revealed 
a bevy of high-redshift galaxy candidates with unexpectedly high stellar 
masses. An immediate concern is the consistency of these candidates with 
galaxy formation in the standard ΛCDM cosmological model, wherein the 
stellar mass (M⋆) of a galaxy is limited by the available baryonic reservoir 
of its host dark matter halo. The mass function of dark matter haloes 
therefore imposes an absolute upper limit on the number density n (>M⋆, z) 
and stellar mass density ρ⋆ (>M⋆, z) of galaxies more massive than M⋆ at 
any epoch z. Here I show that the most massive galaxy candidates in JWST 
observations at z ≈ 7–10 lie at the very edge of these limits, indicating an 
important unresolved issue with the properties of galaxies derived from 
the observations, how galaxies form at early times in ΛCDM or within this 
standard cosmology itself.

Λ cold dark matter model (ΛCDM)-like cosmological models share 
a similar basic assumption: baryons and dark matter are well mixed 
at very early times, and as baryons collapse into dark matter haloes, 
the maximum amount of baryonic material within a halo will be 
equal to Mb = fb Mhalo, where fb ≡ Ωb/Ωm is the cosmic baryon fraction. 
This, in turn, bounds the total stellar content of a dark matter halo: 
M⋆(Mhalo) ≤ Mb(Mhalo). I show how this simple relation can be used as a 
stringent test of either cosmological models with minimal assumptions 
about galaxy formation, or the reliability of photometric selection and 
physical characterization of high-redshift galaxy candidates. My analy-
sis is in many ways similar to that of Behroozi and Silk1, who connected 
cumulative number densities of dark matter haloes to high-redshift 
galaxy stellar mass functions (see also Steinhardt et al.2), although I 
also consider the maximal cumulative stellar mass density allowed 
in ΛCDM. The question of the consistency of stellar mass functions 
and the underlying cosmological dark matter halo mass functions has 
become considerably more urgent with the release of the first data 
from the James Webb Space Telescope ( JWST), and with it, a swarm of 
high-redshift galaxy candidates3–11.

Assumptions
I adopt the base ΛCDM model of the Planck Collaboration12, which 
assumes no spatial curvature and initial conditions that are Gaussian 
and adiabatic, as the standard cosmological model. I use best-fit values 
for cosmological parameters based on the plik TT,TE,EE + lowE + lensing 

likelihood applied to the full mission data. The relevant parame-
ters and values for this work are the present-day Hubble constant, 
H0 = 67.32 km s−1 Mpc−1; the z = 0 density parameter for matter, 
Ωm = 0.3158 (which includes baryons, dark matter and non-relativistic 
neutrinos); the slope of the primordial power spectrum of density  
fluctuations, ns = 0.96605; the root mean square (r.m.s.) amplitude 
of the linear matter power spectrum at z = 0 as measured in spheres 
of radius 8 h−1 Mpc, σ8 = 0.8120; and the cosmic baryon fraction, 
fb ≡ Ωb/Ωm = 0.156 (ref. 12).

With these values, the linear matter power spectrum is specified at 
all times relevant for structure formation. The non-linear density field, 
home to the dark matter haloes that host galaxies, must be computed 
numerically. However, a long line of research starting with Press and 
Schechter13 has been devoted to connecting the abundance of dark 
matter haloes as a function of redshift and mass to the underlying linear 
matter power spectrum. In what follows, I use the Sheth and Tormen14 
dark matter halo mass function dn(M, z)/dM—the number of dark 
matter haloes of mass M per unit mass per unit co-moving volume at 
redshift z—to compute the co-moving number density of haloes above 
a given halo mass threshold,

n(> Mhalo, z) = ∫
∞

Mhalo

dMdn(M, z)
dM

(1)

and the co-moving mass density in haloes more massive than Mhalo,
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density increasing by three orders of magnitude from z = 20 to z = 5. 
This rapid rise indicates that the mass reservoir available for the most 
massive galaxies increases quickly with redshift at fixed halo number 
density. The two most massive high-redshift galaxy candidates from the 
Labbé et al.8 (hereafter L23) sample, at z ≈ 7.5 (M⋆ ≈ 1011 M⊙) and z ≈ 9.1 
(M⋆ ≈ 1010.5 M⊙), are shown as blue stars. These objects are unexpectedly 
massive, with stellar content reflective of haloes that have cumulative 
co-moving number densities no higher than ≈10−5.2 Mpc−3 (if ϵ = 1.0); 
for ϵ = 0.32 (0.10), the implied number density is ≈10−7 (10−9.3) Mpc−3. 
By comparison, the candidates were found in a survey of 38 arcmin2, 
a volume of V ≈ 105 Mpc3 at each of the redshift bins—7 < z < 8.5 and 
8.5 < z < 10—considered by L23.

The right panel of Fig. 1 recasts the issue in terms of the scarcity 
of systems as measured by cumulative mass density. In extended 
Press–Schechter models, the peak height ν(Mhalo, z) = δc/σ(Mhalo, z) of 
an object—where δc ≈ 1.7 is the linear collapse threshold and σ2(Mhalo, z) is 
the variance of the linear density field at redshift z smoothed on a scale 
containing an average mass of Mhalo—is a measure of the fraction of mass 
in the Universe contained in virialized objects more massive than Mhalo 
at redshift z. Typical haloes at z have ν = 1, which corresponds to 24% of 
the mass in the Universe residing in haloes at least that massive; larger 
values of ν indicate increasingly massive and therefore rare peaks in the 
density field at that epoch. The co-moving baryon density for each peak 
height in the figure is given in the legend; multiplying this number by the 
volume of a survey gives the total amount of baryons contained above 
the mass corresponding to that peak height and redshift. The L23 galax-
ies have peak heights of at least ν = 4.5 (assuming ϵ = 1.0), meaning that, 
at most, a fraction 6.2 × 10−5 of the baryons in the Universe are contained 
in haloes massive enough to host these galaxies. For reference, ν = 4.5 
at z = 0 corresponds to Mhalo ≈ 5 × 1015 M⊙. Adopting more reasonable 
efficiencies of ϵ = 0.32 or 0.10 results in rarer peaks with ν ≈ 5.4 or 6.4.

Figure 2 shows the cumulative stellar mass density reported by L23 
at z ≈ 9 (left) and z ≈ 7.5 (right). The data, which come from individual 

ρm(> Mhalo, z) = ∫
∞

Mhalo

dMMdn(M, z)
dM

. (2)

These translate directly to upper limits on the statistics of galaxies 
through the straightforward assumption that the largest stellar content 
a halo can have, given its cosmic allotment of baryons, is 
M⋆,max = fb Mhalo. More generally, we may write M⋆ = ϵfbMhalo, with ϵ ≤ 1.0 
being the efficiency of converting baryons into stars.

The cumulative co-moving number density of dark matter haloes 
more massive than Mhalo thus sets an upper limit on the co-moving 
number density of galaxies more massive than M⋆,

ngal(> M⋆) ≤ nhalo(> M⋆/fb). (3)

Similarly, the cumulative co-moving density of collapsed mass sets an 
upper limit on the density of collapsed baryons, ρb(>Mhalo) = fb ρm(>Mhalo), 
which in turn strictly bounds the co-moving mass density of stars con-
tained in haloes more massive than Mhalo,

ρ⋆(> Mhalo) ≤ fb ρm(> Mhalo), (4)

and the density of stars contained in galaxies above a given M⋆,

ρ⋆(> M⋆) ≤ fb ρm(> M⋆/fb). (5)

Results
The left panel of Fig. 1 shows the relationship between the maximal 
inferred stellar mass for a given Mhalo, M⋆ = fbMhalo (that is, assuming the 
maximal ϵ = 1.0) and redshift z for fixed cumulative co-moving halo 
number densities ranging from 10−10 Mpc−3 (light grey) to 10−2 Mpc−3 
(yellow). The curves evolve rapidly with redshift, with the maximal stel-
lar mass corresponding to a fixed cumulative co-moving halo number 
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Fig. 1 | Limits on the abundance of galaxies as a function of redshift. Curves 
show the relationship between M⋆ and z at fixed cumulative halo abundance (left) 
and fixed ρb (>Mhalo), or equivalently fixed peak height ν (right). The most extreme 
L23 galaxy candidates are shown as blue stars, with uncertainties indicating 68% 
intervals (symmetric about the median) of the posterior probability distribution. 
The existence of a galaxy with M⋆ at redshift z requires that such galaxies have a 
cumulative co-moving number density that is, at most, the number density shown 
in the left panel, as those galaxies must reside in host halo of mass Mhalo = M⋆/(fbϵ). 

The cumulative co-moving number density corresponding to an observed M⋆ will 
probably be (much) smaller than is indicated here, as the curves are placed on the 
plot by assuming the physically maximal ϵ = 1.0. For smaller values of ϵ, the curves 
in each panel move down relative to the points by a factor of ϵ (as indicated by the 
black downward-facing arrows). The right panel demonstrates that even for the 
most conservative assumption of ϵ = 1.0, the data points correspond to very rare 
peaks in the density field, implying a limited baryonic reservoir that is in tension 
with the measured stellar masses of the galaxies.
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massive objects, lie at the extreme of ΛCDM expectations, even in the 
most optimistic scenario: at both redshifts, the measurements lie at the 
theoretical limit of ρ⋆(>M⋆) = fbρm(>M⋆/fb), implying physically implau-
sible values of ϵ(z ≈ 9) = 0.99 and ϵ(z ≈ 7.5) = 0.84. When considering the 
1σ error (which incorporates uncertainties from Poisson fluctuations 
and sample variance added in quadrature), the data become margin-
ally consistent with the available baryon reservoirs for an efficiency of 
ϵ(z ≈ 9) ≥ 0.57, which is probably an unrealistically high value. Assuming 
a more plausible value of ϵ = 0.10 or 0.32 yields a strong discrepancy 
with ΛCDM expectations at both redshifts, even when considering 
observational uncertainties.

Discussion
The first glimpse of high-redshift galaxy formation with JWST has 
revealed surprisingly massive galaxy candidates at early cosmic times. 
These systems provide a way to test a bedrock property of the ΛCDM 
model (or alternately, assumptions in derivations of stellar masses or 
the viability of high-redshift galaxy candidates): the stellar content 
of haloes should not exceed the available baryonic material in those 
haloes. This requirement does not rely on assumptions such as abun-
dance matching, but rather is simply a statement about the distribu-
tion of virialized mass in the Universe as a function of redshift and the 
baryonic reservoirs associated with those virialized haloes: galaxies 
of mass M⋆ can only form if haloes of mass M⋆/(ϵfb) have formed. It is 
also more stringent than the requirement that the observed galaxy 
ultraviolet luminosity function not exceed the theoretical maximum 
coming from a nearly instantaneous (10 Myr) conversion of a halo’s full 
baryonic reservoir into stars15, as it is an integral constraint as opposed 
to a differential one. The massive, high-redshift galaxy candidates cata-
logued in L23 lie near or at the stellar mass density constraint in ΛCDM.

There are several sources of observational uncertainty that enter 
these results. The flux calibration of NIRCam is continually being 
updated; L23 use calibrations that take into account updated detec-
tor offsets that are not yet part of the official JWST reduction pipeline 

(see, for example, Boyer et al.16 for examples of this effect and Nar-
diello et al.17 for related discussions of empirical point spread function 
modelling for JWST). With NIRCam photometry, a Balmer or 4,000 Å 
break at z ≈ 5 can be mistaken for a Lyman α break at z ≳ 12 (ref. 18); the 
L23 sample was selected to contain both Lyman and Balmer breaks, 
however, and is at low enough redshift (relative to z ≈ 15 sources) that 
NIRCam filters can typically exclude z ≈ 5 photometric solutions. The 
resulting photometric redshift estimates have single, narrow (σz ≈ 0.25) 
peaks. The masses of the galaxies are computed using the median 
of four methods for fitting the photometry (see L23 for details) and 
assume a Salpeter19 initial mass function. Different assumptions about 
the photometry (in particular, properties of nebular emission lines 
or the presence of an accreting supermassive black hole) or initial 
mass function could affect the derived stellar masses. The mass of the 
candidate at z ≈ 7.5 was also corrected for the possibility of amplifica-
tion by mild gravitational lensing; this effect is estimated by L23 to be 
0.15 dex, and the reported mass (and stellar mass density) of this object 
are therefore reduced by this amount to compensate. The error bars in 
Fig. 2 include errors in the volume estimates coming from both sample 
variance and Poisson noise, with the latter always being dominant in 
the regime considered here1,20.

The discrepancy between the observed high-redshift galaxy can-
didates and ΛCDM expectations is robust to uncertainties in cosmologi-
cal parameters in the base ΛCDM model: the precision on each of the 
relevant parameters is at the ≲1% level12. Intriguingly, extensions to the 
base ΛCDM with enhanced values of σ8, ns and the physical matter 
density Ωmh2—such as some early dark energy (EDE) models whose aim 
is to resolve the Hubble tension—predict earlier structure formation 
and a higher abundance of haloes at fixed mass at high redshift21, which 
would enhance the baryonic reservoirs available for forming early 
massive galaxies. Taking the best-fit EDE parameters from Smith et al.22, 
the cumulative co-moving baryonic density contained in galaxies more 
massive than M⋆=fbMhalo for the most massive L23 galaxy candidate at 
z ≈ 9.1 is a factor of 3.1 larger in EDE than in base ΛCDM, which is 
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Fig. 2 | Stellar mass density limits. The co-moving stellar mass density 
contained within galaxies more massive than M⋆ at z ≈ 9.1 (left) and z ≈ 7.5 
(right) for three values of the assumed conversion efficiency ϵ of a halo’s 
cosmic allotment of baryons into stars. Only if all available baryons in all haloes 
with enough baryons to form the galaxies reported by L23 have indeed been 
converted into stars by that point—an unrealistic limit—is it possible to produce 
the stellar mass density in the highest M⋆ bin at z ≈ 9 measured by L23 in a 

typical volume of a ΛCDM Universe with the Planck 2020 cosmology. Results 
are similar at z ≈ 7.5. For more realistic values of ϵ, the required baryon reservoir 
is substantially larger than the theoretical maximum in this cosmology. When 
considering 1 σ shot noise and sample variance errors added in quadrature 
(which comprise the uncertainties on the L23 data points in each panel), the 
measurements are consistent with the base ΛCDM model if ϵ > 0.57, which would 
still imply incredibly efficient star formation in the high-redshift Universe.
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non-negligible; the L23 data points would then lie at ϵ = 0.74 instead of 
ϵ = 0.99. However, this EDE cosmology is in stronger tension with values 
of S8 = σ8√Ωm/0.3  measured at low redshift and predict that the 
Universe is ≈13 billion years old (as opposed to 13.8 billion years in the 
base ΛCDM model), which is in moderate tension with the measured 
ages of ultra-faint galaxies and globular clusters23.

At the redshifts studied here, z ≈ 7–10, the Sheth–Tormen mass 
function overestimates the abundance of massive haloes by 20–50% 
relative to numerical simulations24–27, meaning their true abundance 
at high redshift is probably lower than the Sheth–Tormen prediction 
and the constraints derived here are conservative. However, the lack of 
detailed comparisons between theory and simulations at high redshifts 
and high masses points to the importance of continued theoretical 
work in understanding the universality and applicability of halo mass 
function parameterizations in regimes relevant for JWST observations 
(and other forthcoming observatories).

The tension discussed in this paper is straightforward: the masses 
measured by L23 are only consistent with expectations from the stand-
ard cosmological model at the reported redshifts if star formation in 
the earliest phases of galaxy formation is incredibly efficient (ϵ ≥ 0.57). 
In the low-redshift Universe, such efficiencies are never seen, with 
ϵ ≲ 0.2 for all galaxies. The theoretical expectation is that efficiencies 
do indeed increase at high redshift28, although ϵ ≳ 0.57 is still highly 
extreme and probably implausibly high. If the explanation of the L23 
galaxies is indeed a very high star formation efficiency, it implies that 
the star formation histories of such systems must rise steeply with 
time, following the behaviour of the baryon reservoirs inside virialized 
structures in ΛCDM. The results presented here could also be explained 
if the stellar initial mass function differs substantially from the assumed 
Salpeter form, the black hole accretion contributes significantly to the 
galaxies' emitted light or the volumes currently surveyed turn out to 
be highly atypical.

If none of these explanations holds up and these massive galaxies 
are spectroscopically confirmed, they will pose a serious challenge for 
ΛCDM structure formation with parameters given by Planck Collabo-
ration12 because they signify the existence of a larger reservoir of col-
lapsed baryons than is possible in this model. Forthcoming wider field 
JWST surveys, along with JWST spectroscopy of massive galaxy candi-
dates, should be able to quickly confirm or refute the existence of this 
tension. Furthermore, the compatibility of any additional high-redshift 
galaxies or galaxy candidates discovered in JWST observations with 
ΛCDM expectations can be assessed in a straightforward way via Fig. 
1. If analysis of JWST data continues to reveal the presence of strikingly 
massive galaxies at very early cosmic epochs, more exciting surprises 
lie ahead for the fields of galaxy formation and cosmology.

Data availability
Data from L23, including stellar mass estimates and photo-
metric redshifts, are available at https://github.com/ivolabbe/
red-massive-candidates; this paper uses data from sample_revi-
sion3_2207.12446.ecsv, commit 59fbbfa (from 2 January 2023).

Code availability
All calculations that go into the figures in this paper are publicly avail-
able at https://github.com/mrbk/JWST_MstarDensity.
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