Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insight into multi-step geological evolution of C-type asteroids from Ryugu particles


C-type asteroids are the source of the carbonaceous chondrite meteorites and represent remnants of primitive planetesimals that formed at the outer margins of the early Solar System and may have delivered volatiles to the inner Solar System, in particular the early Earth. However, the nature of carbonaceous chondrites is not well understood owing to terrestrial alteration. Here, we present the petrology and mineral chemistry of surface materials collected by the Japan Aerospace Exploration Agency (JAXA) Hayabusa2 spacecraft from the C-type asteroid Ryugu. The Ryugu particles we studied are similar to CI (Ivuna-type) chondrites but with some important differences, such as the presence of Na–Mg phosphates and Na-rich phases and the lack of ferrihydrite and gypsum. Ryugu particles experienced several steps of aqueous alteration, metasomatism and brecciation under variable conditions. These materials represent mixed lithologies and formed at different locations within their parent asteroid. The evidence presented here demonstrates that the C-type asteroid Ryugu experienced a complex geologic evolution shortly after its formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Images of polished sections of Ryugu particles.
Fig. 2: Backscattered electron images of polished sections of Ryugu particles.
Fig. 3: Chemical compositions of Ryugu particles and C chondrites determined by EPMA.
Fig. 4: Na-rich phyllosilicate clast in particle C0014.
Fig. 5: Geologic history of the asteroid Ryugu inferred from petrology and the mineral compositions and bulk compositions of the Ryugu particles we studied.

Similar content being viewed by others

Data availability

Correspondence and requests for materials should be addressed to A.Y. All analytical data related to this manuscript will be put on the JAXA Data ARchives and Transmission System (DARTS) after a 1-year proprietary period. Source data are provided with this paper.


  1. Yada, T. et al. Preliminary analysis of the Hyabusa2 samples returned from C-type asteroid Ryugu. Nat. Astron. 6, 214–220 (2021).

    Article  ADS  Google Scholar 

  2. Kitazato, K. et al. Surface composition of asteroid 162173 Ryugu as observed by the Hayabusa2 NIRS3 instrument. Science 364, 272–275 (2019).

    Article  ADS  Google Scholar 

  3. Ikeda, Y. An overview of the research consortium, Antarctic carbonaceous chondrites with CI affinities, Yamato-86720, Yamato-82162, and Belgica-7904. Proc. NIPR Symp. Antarct. Meteor. 5, 49–73 (1992).

    Google Scholar 

  4. King, A. J. et al. The Yamato-type (CY) carbonaceous chondrite group: analogues for the surface of asteroid Ryugu. Geochemistry 79, 125531 (2019).

    Article  Google Scholar 

  5. Ito, M. et al. A unique and pristine record of outer Solar System materials from C-type asteroid Ryugu. Nat. Astron. (2022).

    Article  Google Scholar 

  6. Yokoyama, T. et al. Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science (2022).

    Article  Google Scholar 

  7. Nakamura, E. et al. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective. Proc. Jpn. Acad. Ser. B 98, 227–282 (2022).

    Article  ADS  Google Scholar 

  8. Greenwood, R. C. et al. Oxygen isotope analysis of Ryugu particles: fresh evidence for hydration of Earth by CI chondrites. Nat. Astron 7, 29–38 (2022). 2022.

    Article  ADS  Google Scholar 

  9. Morlok, A. et al. Brecciation and chemical heterogeneity of CI chondrites. Geochim. Cosmochim. Acta 70, 5371–5394 (2006).

    Article  ADS  Google Scholar 

  10. Alfing, J., Patzek, M. & Bischoff, A. Modal abundances of coarse-grained (>5 μm) components within CI- chondrites and their individual clasts – mixing of various lithologies on the CI parent body(ies). Geochemistry 79, 125532 (2019).

    Article  Google Scholar 

  11. Tomeoka, K. & Buseck, P. R. Matrix mineralogy of the Orgueil CI carbonaceous chondrite. Geochim. Cosmochim. Acta 52, 1627–1640 (1988).

    Article  ADS  Google Scholar 

  12. Marty, B. et al. Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016).

    Article  ADS  Google Scholar 

  13. Walsh, K., Morbidelli, A., O’Brien, D. P. & Mandell, A. M. Populating the asteroid belt from two parent source regions due to the migration of giant planets – ‘The Grand Tack’. Meteor. Planet. Sci. 47, 1941–1947 (2012).

    Article  ADS  Google Scholar 

  14. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  Google Scholar 

  15. Barrat, J. A. et al. Geochemistry of CI chondrites: major and trace elements, and Cu and Zn Isotopes. Geochim. Cosmochim. Acta 83, 72–92 (2012).

    Article  ADS  Google Scholar 

  16. Liu, M.-C. et al. Incorporation of 16O-rich anhydrous silicates in the protolith of highly hydrated asteroid Ryugu. Nat. Astron. 6, 1172–1177 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  17. Tomioka, N. et al. Calibrating the shock regime experienced by hydrated asteroid Ryugu. Nat. Astron. (in press).

  18. McCain, K. A. et al. Early fluid activity on the Ryugu asteroid: perspectives from oxygen, carbon, and 53Mn-53Cr isotope systems. Nat. Astron. (2023).

    Article  Google Scholar 

  19. Zolotov, M. Y. Aqueous fluid composition in CI chondritic materials: chemical equilibrium assessments in closed systems. Icarus 220, 713–729 (2012).

    Article  ADS  Google Scholar 

  20. Kerridge, J. F., McKay, A. L. & Boynton, W. V. Magnetite in CI carbonaceous meteorites: origin by aqueous activity on a planetesimal surface. Science 205, 395–397 (1979).

    Article  ADS  Google Scholar 

  21. Tatsumi, E. et al. Collisional history of Ryugu’s parent body from bright surface boulders. Nat. Astron. (2021).

    Article  Google Scholar 

  22. Komatsu, M. et al. LIME silicates in amoeboid olivine aggregates in carbonaceous chondrites: indicator of nebular and asteroidal processes. Meteorit. Planet. Sci. 50, 1271–1294 (2015).

    Article  ADS  Google Scholar 

  23. Paul, R. L. & Lipshutz, M. E. Consortium study of labile trace elements in some Antarctic carbonaceous chondrites: Antarctic and non-Antarctic meteorite comparisons. Proc. NIPR Symp. Antarct. Meteor. 3, 80–95 (1990).

    Google Scholar 

  24. Weisberg, M. K., McCoy, T. J. & Krot, A. N. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 19–52 (Univ. of Arizona Press, 2006).

  25. Rubin, A. E., Trigo-Rodriguez, J. M., Huber, H. & Wasson, J. T. Progressive aqueous alteration of CM carbonaceous chondrite. Geochimica. Cosmochimica. Acta 71, 2361–2382 (2007).

    Article  ADS  Google Scholar 

  26. Kimura, M. et al. The most primitive CM chondrites, Asuka 12085, 12169, and 12236, of subtypes 3.0–2.8: their characteristic features and classification. Polar Sci. 26, 100565 (2020).

    Article  Google Scholar 

  27. Noguchi, T. et al. Mineralogy of fine-grained matrix, fine-grained rim, chondrule rim, and altered mesostasis of a chondrule in Asuka 12169, one of the least altered CM chondrites. Polar Sci. 29, 100727 (2022).

    Article  Google Scholar 

  28. Rubin, A. E. & Li, Y. Formation and destruction of magnetite in CO3 chondrites and other chondrite groups. Geochemistry 79, 125528 (2019).

    Article  Google Scholar 

  29. Bullock, E. S., Gounelle, M., Lauretta, D. S., Grady, M. M. & Russell, S. S. Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: clues to the extent of aqueous alteration on the CI1 parent body. Geochim. Cosmochim. Acta 69, 2687–2700 (2005).

    Article  ADS  Google Scholar 

  30. Podolak, M. & Zucker, S. A note on the snow line in protostellar accretion disk. Meteor. Planet. Sci. 39, 1859–1868 (2010).

    Article  ADS  Google Scholar 

  31. Akai, J. T-T-T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proc. NIPR Symp. Antarct. Meteor. 5, 120–135 (1992).

    Google Scholar 

  32. Berger, E. L. et al. Heterogeneous histories of Ni-bearing pyrrhotite and pentlandite grains in the CI chondrites Orgueil and Alais. Meteorit. Planet. Sci. 51, 1813–1829 (2016).

    Article  ADS  Google Scholar 

  33. Berger, E. L., Keller, L. P. & Lauretta, D. S. An experimental study of the formation of cubanite (CuFe2S3) in primitive meteorites. Meteorit. Planet. Sci. 51, 1813–1829 (2015).

    Article  ADS  Google Scholar 

  34. Brearley, A. J. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 587–624 (Univ. of Arizona Press, 2006).

  35. Wasson, J. T. Meteorites: Classification and Properties (Springer-Verlag, 1974).

  36. McSween, H. Y. et al. Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteor. Planet. Sci. 53, 1793–1804 (2018).

    Article  ADS  Google Scholar 

  37. Ito, M. et al. The universal sample holders of microanalytical instruments of FIB, TEM, NanoSIMS, and STXM-NEXAFS for the coordinated analysis of extraterrestrial materials. Earth, Planets Space 72, 133 (2020).

    Article  ADS  Google Scholar 

  38. Uesugi, M. et al. Development of a sample holder for synchrotron radiation-based computed tomography and diffraction analysis of extraterrestrial materials. Rev. Sci. Instrum. 91, 035107 (2020).

    Article  ADS  Google Scholar 

  39. Jochum, K. et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397–429 (2011).

    Article  Google Scholar 

  40. Yang, S. et al. Siderophile and chalcophile element abundances in shergottites: implications for Martian core formation. Meteorit. Planet. Sci. 50, 691–714 (2015).

    Article  ADS  Google Scholar 

  41. Walker, R. J. et al. Modeling fractional crystallization of group IVB iron meteorites. Geochim. Cosmochim. Acta 72, 2198–2216 (2008).

    Article  ADS  Google Scholar 

  42. Bland, P. A., Gressey, G. & Menzies, O. N. Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. Meteor. Planet. Sci. 39, 3–16 (2004).

    Article  ADS  Google Scholar 

  43. Endreβ, M. & Bischoff, A. Carbonate in CI chondrites: clues to parent body evolution. Geochimica. Cosmochimica. Acta 60, 489–507 (1996).

    Article  ADS  Google Scholar 

Download references


We thank all the scientists and engineers of the Hayabusa2 project whose dedication and skill brought these precious particles back to Earth. This research was supported in part by the JSPS KAKENHI (grant nos. JP19H01959 to A.Y., JP20H01965 to N.T., JP18K18795 and JP18H04468 to M.I., JP18K03729 to M.K., JP18H05479 (Innovative Areas ‘MFS Materials Science’) to M.U., JP21K03652 to N.I., JP17H06459 to T.Okada, JP17H06459 to T.U., JP18K03830 to T.Y., JP19K03958 to M.A., and JP17H06459 and JP19H01951 to S.W.), and by the NIPR Research Project (grant no. KP307 to A.Y.).

Author information

Authors and Affiliations



A.Y. led the project and wrote the initial draft. A.Y., N.T., M.K., N.I. K.A.M, M.-C.L., N.M., R.G.C. and M.I. performed optical and scanning electron microscopy–energy-dispersive spectroscopy and EPMA analysis. FIB-TEM work was done by N.T. A.Y. and N.S. performed LA–ICP–MS analysis. M.U. performed SXRD analysis at SPring-8. A.Y., N.T., M.I., M.U., T.Ohigashi., N.I., N.S., A.N., H.Y.,Y.Kodama and K.Y. conducted sample handling, preparation and mounting processes of Ryugu grains. M.I., N.T., M.U., T.Ohigashi., K.U., K.H., Y.Karouji, I.S. and I.O. developed universal sample holders for several instruments. A.N., K.Y., A.M., M.N., T.Y., T.Okada., M.A. and T.U lead the JAXA curation activities for initial characterization of allocated Ryugu particles. S.N., T.Okada., T.S., S.T., F.T., M.Y., S.W. and Y.T. administered the project and acted as principal investigators. All authors contributed to the data interpretation and commented on and finalized the paper.

Corresponding author

Correspondence to Akira Yamaguchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Cyrena Goodrich and Munir Humayun for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Tables 1–6.

Source data

Source Data Fig. 3

Si+Al, Na+K and Mg+Fe (mol%) for the Ryugu particles we studied and Y 980115 and Orgueil.

Source Data Fig. 4

Source data for the X-ray diffraction pattern (angles and X-ray intensity).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, A., Tomioka, N., Ito, M. et al. Insight into multi-step geological evolution of C-type asteroids from Ryugu particles. Nat Astron 7, 398–405 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing