Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2


Finding and characterizing the first galaxies that illuminated the early universe at cosmic dawn is pivotal to understand the physical conditions and the processes that led to the formation of the first stars. In the first few months of operations, imaging from the James Webb Space Telescope (JWST) has been used to identify tens of candidates of galaxies at redshift (z) greater than 10, less than 450 million years after the Big Bang. However, none of such candidates has yet been confirmed spectroscopically, leaving open the possibility that they are actually low-redshift interlopers. Here we present spectroscopic confirmation and analysis of four galaxies unambiguously detected at redshift 10.3 ≤ z ≤ 13.2, previously selected from JWST Near Infrared Camera imaging. The spectra reveal that these primeval galaxies are metal poor, have masses on the order of about 107–108 solar masses and young ages. The damping wings that shape the continuum close to the Lyman edge provide constraints on the neutral hydrogen fraction of the intergalactic medium from normal star-forming galaxies. These findings demonstrate the rapid emergence of the first generations of galaxies at cosmic dawn.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spectra of the four z > 10 galaxies targeted for the first deep spectroscopic pointing of the JADES survey.
Fig. 2: UV slope versus magnitude for the four z > 10 galaxies.
Fig. 3: Spectral break fit region and the derived constraints on neutral hydrogen in the IGM for JADES-GS-z11-0.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

BEAGLE is available via a Docker image (distributed through docker hub) upon request at https:/


  1. Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780, 1–64 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bromm, V., Coppi, P. S. & Larson, R. B. The formation of the first stars. I. The primordial star-forming cloud. Astrophys. J. 564, 23–51 (2002).

    Article  ADS  Google Scholar 

  3. Schneider, R., Ferrara, A. & Salvaterra, R. Dust formation in very massive primordial supernovae. Mon. Not. R. Astron. Soc. 351, 1379–1386 (2004).

    Article  ADS  Google Scholar 

  4. Jeon, M., Bromm, V., Pawlik, A. H. & Milosavljević, M. The first galaxies: simulating their feedback-regulated assembly. Mon. Not. R. Astron. Soc. 452, 1152–1170 (2015).

    Article  ADS  Google Scholar 

  5. Vogelsberger, M. et al. High-redshift JWST predictions from IllustrisTNG: dust modelling and galaxy luminosity functions. Mon. Not. R. Astron. Soc. 492, 5167–5201 (2020).

    Article  ADS  Google Scholar 

  6. Hutter, A. et al. Astraeus I: the interplay between galaxy formation and reionization. Mon. Not. R. Astron. Soc. 503, 3698–3723 (2021).

    Article  ADS  Google Scholar 

  7. Wilkins, S. M. et al. First Light And Reionisation Epoch Simulations (FLARES) V: the redshift frontier. Mon. Not. R. Astron. Soc. 519, 3118–3128 (2023).

    Article  ADS  Google Scholar 

  8. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. L. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. Lett. 462, 17 (1996).

    Article  ADS  Google Scholar 

  9. Madau, P. et al. High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z~4. Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996).

    Article  ADS  Google Scholar 

  10. Steidel, C. C. et al. Lyman break galaxies at redshift z ~3: survey description and full data set. Astrophys. J. 592, 728–754 (2003).

    Article  ADS  Google Scholar 

  11. Zavala, J. A. et al. A dusty starburst masquerading as an ultra-high redshift galaxy in JWST CEERS observations. Astrophys. J. Lett. 943, L9 (2023).

    Article  ADS  Google Scholar 

  12. Williams, H. et al. A highly magnified and extremely compact galaxy at redshift 9.51 with strong nebular emission. Preprint at (2022).

  13. Oesch, P. A. et al. A remarkably luminous galaxy at z=11.1 measured with Hubble Space Telescope grism spectroscopy. Astrophys. J. 819, 129 (2016).

    Article  ADS  Google Scholar 

  14. Jiang, L. et al. Evidence for GN-z11 as a luminous galaxy at redshift 10.957. Nat. Astron. 5, 256–261 (2021).

    Article  ADS  Google Scholar 

  15. Donnan, C. T. et al. The evolution of the galaxy UV luminosity function at redshifts z ~8–15 from deep JWST and ground-based near-infrared imaging. Mon. Not. R. Astron. Soc. 518, 6011–6040 (2023).

    Article  ADS  Google Scholar 

  16. Harikane, Y. et al. A search for H-dropout Lyman break galaxies at z 12–16. Astrophys. J. 929, 1 (2022).

    Article  ADS  Google Scholar 

  17. Adams, N. J. et al. Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 field. Mon. Not. R. Astron. Soc. 518, 4755–4766 (2023).

    Article  ADS  Google Scholar 

  18. Finkelstein, S. L. et al. CEERS Key Paper I: An Early Look into the First 500 Myr of Galaxy Formation with JWST. Preprint at (2022).

  19. Finkelstein, S. L. et al. A long time ago in a galaxy far, far away: a candidate z ~12 galaxy in early JWST CEERS imaging. Astrophys. J. Lett. 940, L55 (2022).

    Article  ADS  Google Scholar 

  20. Castellano, M. et al. Early results from GLASS-JWST. III. Galaxy candidates at z 9–15. Astrophys. J. Lett. 938, 15 (2022).

    Article  ADS  Google Scholar 

  21. Whitler, L. et al. On the ages of bright galaxies ~500 Myr after the Big Bang: insights into star formation activity at z15 with JWST. Mon. Not. R. Astron. Soc. 519, 157–171 (2023).

    Article  ADS  Google Scholar 

  22. Atek, H. et al. Revealing galaxy candidates out to z ~ 16 with JWST observations of the lensing cluster SMACS0723. Mon. Not. R. Astron. Soc. 519, 1201–1220 (2023).

    Article  ADS  Google Scholar 

  23. Bouwens, R. J. et al. Evolution of the UV LF from z~15 to z~8 using new JWST NIRCam medium-band observations over the HUDF/XDF. Preprint at (2022).

  24. Bouwens, R. J. et al. UV luminosity density results at z>8 from the first JWST/NIRCam fields: limitations of early data sets and the need for spectroscopy. Preprint at (2022).

  25. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, 80 (2022).

    Article  Google Scholar 

  26. Rieke, M. J., Kelly, D. & Horner, S. Overview of James Webb Space Telescope and NIRCam’s role. Proc. SPIE 5904, 590401 (2005).

  27. Robertson, B. E. et al. Identification and properties of intense star-forming galaxies at redshifts z > 10. Nat. Astron. (2023).

  28. Furtak, L. J. et al. JWST UNCOVER: a triply imaged faint quasar candidate at zphot7.7 Preprint at (2022).

  29. Bouwens, R. J. et al. A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr. Nature 469, 504–507 (2011).

    Article  ADS  Google Scholar 

  30. Ellis, R. S. et al. The abundance of star-forming galaxies in the redshift range 8.5–12: new results from the 2012 Hubble Ultra Deep Field Campaign. Astrophys. J. Lett. 763, 7 (2013).

    Article  ADS  Google Scholar 

  31. Koekemoer, A. M. et al. The 2012 Hubble Ultra Deep Field (UDF12): observational overview. Astrophys. J. Suppl. Ser. 209, 3 (2013).

    Article  ADS  Google Scholar 

  32. Brammer, G. B. et al. A tentative detection of an emission line at 1.6 μm for the z ~12 candidate UDFj-39546284. Astrophys. J. Lett. 765, 2 (2013).

    Article  ADS  Google Scholar 

  33. Senchyna, P. et al. Ultraviolet spectra of extreme nearby star-forming regions—approaching a local reference sample for JWST. Mon. Not. R. Astron. Soc. 472, 2608–2632 (2017).

    Article  ADS  Google Scholar 

  34. Senchyna, P. et al. Extremely metal-poor galaxies with HST/COS: laboratories for models of low-metallicity massive stars and high-redshift galaxies. Mon. Not. R. Astron. Soc. 488, 3492–3506 (2019).

    Article  ADS  Google Scholar 

  35. Nanayakkara, T. et al. Exploring He ii λ1640 emission line properties at z ~2-4. Astron. Astrophys. 624, 89 (2019).

    Article  Google Scholar 

  36. Reddy, N. A. et al. The MOSDEF Survey: significant evolution in the rest-frame optical emission line equivalent widths of star-forming galaxies at z = 1.4–3.8. Astrophys. J. 869, 92 (2018).

    Article  ADS  Google Scholar 

  37. Chevallard, J. & Charlot, S. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE. Mon. Not. R. Astron. Soc. 462, 1415–1443 (2016).

    Article  ADS  Google Scholar 

  38. Hirashita, H., Il’in, V. B., Pagani, L. & Lefèvre, C. Evolution of dust porosity through coagulation and shattering in the interstellar medium. Mon. Not. R. Astron. Soc. 502, 15–31 (2021).

    Article  ADS  Google Scholar 

  39. Chevallard, J. et al. Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions. Mon. Not. R. Astron. Soc. 479, 3264–3273 (2018).

    Article  ADS  Google Scholar 

  40. Cullen, F. et al. The ultraviolet continuum slopes (β) of galaxies at z8−15 from JWST and ground-based near-infrared imaging. Mon. Not. R. Astron. Soc. 520, 14–23 (2023).

    Article  ADS  Google Scholar 

  41. Topping, M. W. et al. Searching for extremely blue UV continuum slopes at z = 7–11 in JWST/NIRCam imaging: implications for stellar metallicity and ionizing photon escape in early galaxies. Astrophys. J. 941, 153 (2022).

    Article  ADS  Google Scholar 

  42. Bouwens, R. J. et al. Very blue UV-continuum slope β of low luminosity z ~7 galaxies from WFC3/IR: evidence for extremely low metallicities? Astrophys. J. Lett. 708, 69–73 (2010).

    Article  ADS  Google Scholar 

  43. Greig, B. et al. IGM damping wing constraints on reionization from covariance reconstruction of two z 7 QSOs. Mon. Not. R. Astron. Soc. 512, 5390–5403 (2022).

    Article  ADS  Google Scholar 

  44. Davies, F. B. et al. Predicting quasar continua near Lyα with principal component analysis. Astrophys. J. 864, 143 (2018).

    Article  ADS  Google Scholar 

  45. Ferruit, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS). Astron. Astrophys. 661, 81 (2022).

    Article  Google Scholar 

  46. Birkmann, S. M. et al. Wavelength calibration of the JWST near-infrared spectrograph (NIRSpec). Proc. SPIE 8150, 81500 (2011).

    Article  Google Scholar 

  47. Böker, T. et al. The spectro-photometric calibration of the JWST NIRSpec instrument. Proc. SPIE 8442, 84423 (2012).

    Article  Google Scholar 

  48. Giardino, G. et al. The impact of cosmic rays on the sensitivity of JWST/NIRSpec. Publ. Astron. Soc. Pac. 131, 094503 (2019).

    Article  ADS  Google Scholar 

  49. Kriek, M. et al. Direct measurements of the stellar continua and Balmer/4000 Å breaks of red z > 2 galaxies: redshifts and improved constraints on stellar populations. Astrophys. J. 645, 44–54 (2006).

    Article  ADS  Google Scholar 

  50. Calzetti, D., Kinney, A. L. & Storchi-Bergmann, T. Dust extinction of the stellar continua in starburst galaxies: the ultraviolet and optical extinction law. Astrophys. J. 429, 582 (1994).

    Article  ADS  Google Scholar 

  51. Chevallard, J. et al. Simulating and interpreting deep observations in the Hubble Ultra Deep Field with the JWST/NIRSpec low-resolution ‘prism’. Mon. Not. R. Astron. Soc. 483, 2621–2640 (2019).

    Article  ADS  Google Scholar 

  52. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  ADS  Google Scholar 

  53. Vidal-García, A., Charlot, S., Bruzual, G. & Hubeny, I. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies. Mon. Not. R. Astron. Soc. 470, 3532–3556 (2017).

    Article  ADS  Google Scholar 

  54. Gutkin, J., Charlot, S. & Bruzual, G. Modelling the nebular emission from primeval to present-day star-forming galaxies. Mon. Not. R. Astron. Soc. 462, 1757–1774 (2016).

    Article  ADS  Google Scholar 

  55. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  56. Charlot, S. & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).

    Article  ADS  Google Scholar 

  57. Carton, D. et al. Inferring gas-phase metallicity gradients of galaxies at the seeing limit: a forward modelling approach. Mon. Not. R. Astron. Soc. 468, 2140–2163 (2017).

    Article  ADS  Google Scholar 

  58. Heckman, T. M. et al. Extreme feedback and the epoch of reionization: clues in the local universe. Astrophys. J. 730, 5 (2011).

    Article  ADS  Google Scholar 

  59. Vidal-García, A. et al. BEAGLE-AGN I: simultaneous constraints on the properties of gas in star-forming and AGN narrow-line regions in galaxies. Preprint at (2022).

  60. Miralda-Escude, J. Reionization of the intergalactic medium and the damping wing of the Gunn–Peterson trough. Astrophys. J. 501, 15–22 (1998).

    Article  ADS  Google Scholar 

  61. Gunn, J. E. & Peterson, B. A. On the density of neutral hydrogen in inter-galactic space. Astrophys. J. 142, 1633–1636 (1965).

    Article  ADS  Google Scholar 

  62. Planck Collaboration Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, 13 (2016).

    Article  Google Scholar 

  63. McQuinn, M., Lidz, A., Zaldarriaga, M., Hernquist, L. & Dutta, S. Probing the neutral fraction of the IGM with GRBs during the epoch of reionization. Mon. Not. R. Astron. Soc. 388, 1101–1110 (2008).

    ADS  Google Scholar 

  64. Endsley, R. et al. A JWST/NIRCam study of key contributors to reionization: the star-forming and ionizing properties of UV-faint z ~ 7–8 galaxies. Preprint at (2022).

Download references


For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission. E.C.-L. acknowledges support of an STFC Webb Fellowship (ST/W001438/1). S. Carniani acknowledges support by European Union’s HE ERC Starting Grant No. 101040227 - WINGS. M.C., F.D.E., T.J.L., R.M., J.W. and L.S. acknowledge support by the Science and Technology Facilities Council (STFC), ERC Advanced Grant 695671 ‘QUENCH’. R.M. is further supported by a research professorship from the Royal Society. J.W. is further supported by the Fondation MERAC. H.Ü. gratefully acknowledges support by the Isaac Newton Trust and by the Kavli Foundation through a Newton-Kavli Junior Fellowship. N.B. and P.J. acknowledge support from the Cosmic Dawn Center (DAWN), funded by the Danish National Research Foundation under grant no.140. R.S. acknowledges support from a STFC Ernest Rutherford Fellowship (ST/S004831/1). A.B., A.C., J.C., I.E.B.W., A.S. and G.C.J. acknowledge funding from the ‘FirstGalaxies’ Advanced Grant from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 789056). B.R., B.D.J., D.J.E., M.R., E.E., C.N.A.W. and F.S. acknowledge support from the JWST/NIRCam Science Team contract to the University of Arizona, NAS5-02015. D.J.E. is further supported as a Simons Investigator. R. Bowler acknowledges support from an STFC Ernest Rutherford Fellowship (grant number ST/T003596/1). R.E.H. acknowledges support from the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1746060. S.A., B.R.d.P. and M.P. acknowledge support from the research project PID2021-127718NB-I00 of the Spanish Ministry of Science and Innovation/State Agency of Research (MICIN/AEI). M.P. is further supported by the Programa Atracción de Talento de la Comunidad de Madrid via grant 2018-T2/TIC-11715. L.W. acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2137419. K.B. is supported in part by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. R.H. was funded by the Johns Hopkins University, Institute for Data Intensive Engineering and Science (IDIES). This research made use of the lux supercomputer at UC Santa Cruz, funded by NSF MRI grant AST 1828315. Acknowledgement for getting assigned a protected node for the DEEP BagPipes runs: “This study made use of the Prospero high performance computing facility at Liverpool John Moores University.”

Author information

Authors and Affiliations



E.C.-L. and S. Carniani led the writing of this paper. M.R., C.N.A.W., E.E., F.S., K.H. and C.C.W. contributed to the design, construction and commissioning of NIRCam. A.B., A.D., C.N.A.W., C.W., D.J.E., H.-W.R., M.R., M.F., P.F., P.J., R.M. and S.A. contributed to the design of the JADES survey. B.R., S.T., B.D.J., C.N.A.W., D.J.E., I.S., M.R., R.E. and Z.C. contributed to the JADES imaging data reduction. R.H. and B.R. contributed to the JADES imaging data visualization. B.D.J., S.T., A.D., D.P.S., L.W., M.W.T. and R.E. contributed the modelling of galaxy photometry. K.H., J.M.H., J.L., L.W., R.E. and R.E.H. contributed the photometric redshift determination and target selection. B.D.J., E.N., K.A.S. and Z.C. contributed to the JADES imaging morphological analysis. B.R., C.N.A.W., C.C.W., K.H. and M.R. contributed to the JADES pre-flight imaging data challenges. S. Carniani, M.C., J.W., P.F., G.G., S.A. and B.R.d.P. contributed to the NIRSpec data reduction and to the development of the NIRSpec pipeline. P.J., N.B. and S.A. contributed to the design and optimization of the MSA configurations. A.C., A.B., C.N.A.W., E.C.-L., H.Ü, R. Bowler and K.B. contributed to the selection, prioritization and visual inspection of the targets. S. Charlot, J.C., E.C.-L., R.M., J.W., R.S., F.D.E., M.V.M., M.C., A.d.G., G.C.J., A.S., I.E.B.W. and L.S. contributed to analysis of the spectroscopic data, including redshift determination and spectral modelling. P.J., P.F., M.S., T.R., G.G., N.L., N.K., M.P., R. Bhatawdekar and B.R.d.P. contributed to the design, construction and commissioning of NIRSpec. F.D.E., T.J.L., M.V.M., M.C., B.R.d.P., R.M., S.A. contributed to the development of the tools for the spectroscopic data analysis, visualization and fitting. C.W. contributed to the design of the spectroscopic observations and MSA configurations. B.R., C.W., D.J.E., D.P.S., M.R., N.L. and R.M. serve as the JADES Steering Committee.

Corresponding authors

Correspondence to Emma Curtis-Lake or Stefano Carniani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Model Balmer break strength.

Balmer break amplitude plotted against age for single stellar populations with metallicities 0.01Z, 0.1Z, 0.2Z, and Z (as indicated), according to the models described in Section 3. The break is defined as the ratio of the flux fλ integrated over the rest-frame 3751–4198Å wavelength range to that in the rest-frame 3145–3563 Å wavelength range. The peak at early ages for all metallicities arises from the onset or red supergiant stars, and that around 6 × 108 yr from bright asymptotic-giant-branch stars.

Extended Data Fig. 2 BEAGLE fits to GS-z10-0, GS-z11-0 and GS-z12-0.

The results of full spectral fitting to JADES-GS-z10-0 (top left), JADES-GS-z11-0 (top right) and JADES-GS-z12-0 (bottom) with BEAGLE. We fit models to spectra extracted over the full shutter aperture to minimise the wavelength-dependent losses due to varying point spread function (PSF). The triangle plot shows the 2D (off-diagonal) and 1D (along the main diagonal) posterior probability distributions on stellar mass (M), metallicity (Z), maximum age of stars (t) and the effective dust attenuation optical depth in the V-band (τˆv) which are all derived from the beagle fits. We also include the model constraints on the star formation rate (Ψ), UV slope (β) and ionizing photon emissivity (ξion), which are derived parameters of the model. The dark, medium and light blue contours show the extents of the 1, 2 and 3σ credible regions of the posterior probability, respectively. The inset panel shows the observed spectrum and 1σ standard errors per pixel in red and light red respectively, and the median and 1σ range in fitted model spectra in blue. We fit with a constant star formation history (more details in the text and Methods section 3).

Extended Data Fig. 3 BEAGLE fit to GS-z13-0.

As for Extended Data Fig. 2, but for BEAGLE fits to JADES-GS-z13-0. The bottom right panel shows the observed photometry and associated as blue diamonds and associated 1σ s.d. error bars while the coral shaded regions show the model photometry in the same bands. Since this galaxy is very close to the edge of the shutter, we use an extraction over 3 pixels to maximize the S/N. Then to account for wavelength-dependent slit losses we simultaneously fit the spectrum and NIRCam photometry.

Extended Data Fig. 4 Alternative balmer break fits to the spectra.

The fitted spectra if we force the observed spectral break to be interpreted as a Balmer break rather than a Lyman break. We see that the fits fail to reproduce the blue slopes red-ward of the spectral break, and in the cases of JADES-GS-z10-0 and JADES-GS-z11-0, flux in the fitted models blue-ward of the break is notably higher than the observed flux. Combined with the limits placed in Methods section 2 (and presented in Table 1), these fits show that the observed spectra are inconsistent with being Balmer breaks. The panels show the observed spectrum and 1σ standard error per pixel in red and light red respectively, and the median and 1σ range in fitted model spectra in blue.

Extended Data Fig. 5 Alternative redshift solution to GS-z13-0.

The left panel shows the measured NIRCam photometry and associated 1σ s.d. error bars for JADES-GS-z13-0 as blue diamonds and lines, respectively. The coral violin shaded regions show the underlying model values. The black line shows the maximum a posteriori probability solution with strong emission lines due to active-galactic-nuclei narrow-line emission. The right panel shows a zoom of the intermediate redshift solution fitted to the photometry.

Extended Data Fig. 6 Higher-redshift damping-wing fit to GS-z13-0.

As for Fig. 3 but showing a fit to the damping wing using a different definition of ‘best fit’ to fix the physical parameters of the galaxy spectrum which pushes the constraints to a higher-redshift solution.

Extended Data Table 1 Emission-line limiting fluxes
Extended Data Table. 2 BEAGLE parameters
Extended Data Table 3 Exploring different parameter constraints with BEAGLE

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtis-Lake, E., Carniani, S., Cameron, A. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat Astron 7, 622–632 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing