Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Late accretion of Ceres-like asteroids and their implantation into the outer main belt

Abstract

Low-albedo asteroids preserve a record of the primordial Solar System planetesimals and the conditions in which the solar nebula was active. However, the origin and evolution of these asteroids are not well constrained. Here we measured visible and near-infrared (about 0.5–4.0 μm) spectra of low-albedo asteroids in the mid-outer main belt. We show that numerous large (diameter >100 km) and dark (geometric albedo <0.09) asteroids exterior to the dwarf planet Ceres’ orbit share the same spectral features, and presumably compositions, as Ceres. We also developed a thermal evolution model that demonstrates that these Ceres-like asteroids have highly porous interiors, accreted relatively late at 1.5–3.5 Myr after the formation of calcium–aluminium-rich inclusions, and experienced maximum interior temperatures of <900 K. Ceres-like asteroids are localized in a confined heliocentric region between about 3.0 au and 3.4 au, but were probably implanted from more distant regions of the Solar System during the giant planet’s dynamical instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Orbital distribution of large dark asteroids.
Fig. 2: Maximum temperature and average density for initially water-rich planetesimals as a function of the accretion time relative to CAIs and the reference mass.
Fig. 3: Evolution of the asteroid interior structure from left to right, as well as final structures obtained.
Fig. 4: Implantation of planetesimals into the asteroid belt during the planets’ growth and dynamical evolution.

Similar content being viewed by others

Data availability

All data are available in the paper or its Supplementary Information.

References

  1. DeMeo, F. E. & Carry, B. Solar System evolution from the compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

    Article  ADS  Google Scholar 

  2. Raymond, S. N. & Nesvorny, D. in Vesta and Ceres: Insights from the Dawn Mission for the Origin of the Solar System (eds Marchi, S. et al.) 227–249 (Cambridge Univ. Press, 2022).

  3. Cuzzi, J. N., Hogan, R. C. & Bottke, W. F. Towards initial mass functions for asteroids and Kuiper belt objects. Icarus 208, 518–538 (2010).

    Article  ADS  Google Scholar 

  4. Gaffey, M. F., Burbine, T. H. & Binzel, R. P. Asteroid spectroscopy: progress and perspective. Meteoritics 28, 161–187 (1993).

    Article  ADS  Google Scholar 

  5. Takir, D. & Emery, J. P. Outer main belt asteroids: Identification and distribution of four 3-µm spectral groups. Icarus 219, 641–654 (2012).

    Article  ADS  Google Scholar 

  6. Rivkin, A. S., Thomas, C. A., Howell, E. S. & Emery, J. P. The Ch‐class asteroids: connecting a visible taxonomic class to a 3‐μm band shape. Astron. J. 150, 198 (2015).

    Article  ADS  Google Scholar 

  7. Usui, F., Hasegawa, S., Ootsubo, T. & Onaka, T. AKARI/IRC Near-infrared Asteroid Spectroscopic Survey: AcuA-spec. Publ. Astron. Soc. Jpn 71, 1 (2019).

    Article  ADS  Google Scholar 

  8. Russell, C. T. et al. Dawn arrives at Ceres: exploration of a small, volatile-rich world. Science 353, 1008–1010 (2016).

    Article  ADS  Google Scholar 

  9. Takir, D. et al. Constraints and nature and the degree of aqueous alteration in CM and carbonaceous chondrites. Meteorit. Planet. Sci. 48, 1618–1637 (2013).

    ADS  Google Scholar 

  10. Takir, D., Emery, J. P. & McSween, H. Y. Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus 257, 185–193 (2015).

    Article  ADS  Google Scholar 

  11. Rivkin, A. S. & Emery, J. P. Detection of ice and organics on an asteroidal surface. Nature 64, 1322–1323 (2010).

    Article  ADS  Google Scholar 

  12. Rivkin, A. S., Howell, E. S. & Emery, J. P. Infrared spectroscopy of large, low-albedo asteroids: are Ceres and Themis archetypes or outliers? J. Geophys. Res. Planets 124, 1393–1409 (2019).

    Article  ADS  Google Scholar 

  13. Rivkin, A. S. et al. The nature of low-albedo small bodies from 3 μm spectroscopy: one group that formed within the ammonia snow line and one that formed beyond It. Planet. Sci. J. 3, 153 (2022).

    Article  Google Scholar 

  14. Takir, D. & Emery, J. P. A large 3-micron spectroscopic survey of mid-outer main belt asteroids. In 53rd Lunar and Planetary Science Conference abstr. 1481 (2022).

  15. Grimm, R. E. & McSween, H. Y. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science 259, 653–655 (1993).

    Article  ADS  Google Scholar 

  16. Neumann, W., Jaumann, R., Castillo-Rogez, J. C., Raymond, C. A. & Russell, C. T. Ceres’ partial differentiation: undifferentiated crust mixing with a water-rich mantle. Astron. Astrophys. 633, A117 (2020).

    Article  ADS  Google Scholar 

  17. Neumann, W. et al. Microporosity and parent body of the rubble-pile NEA (162173) Ryugu. Icarus 358, 114–166 (2021).

    Article  Google Scholar 

  18. Raymond, R. N. & Izidoro, A. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017).

    Article  ADS  Google Scholar 

  19. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  ADS  Google Scholar 

  20. Pirani, S., Johansen, A., Bitsch, B., Mustill, A. J. & Turrini, D. Consequences of planetary migration on the minor bodies of the early Solar System. Astron. Astrophys. 623, A169 (2019).

    Article  ADS  Google Scholar 

  21. Izidoro, A., Morbidelli, A., Raymond, S. N., Hersant, F. & Pierens, A. Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astron. Astrophys. 582, A99 (2015).

    Article  ADS  Google Scholar 

  22. Ribeiro de Sousa, R. et al. Dynamical origin of the dwarf planet Ceres. Icarus 379, 114933 (2022).

    Article  Google Scholar 

  23. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    Article  ADS  Google Scholar 

  24. Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).

    Article  ADS  Google Scholar 

  25. Nesvorný, D., Vokrouhlicky, D. D. & Morbidelli, A. A. Capture of Trojans by jumping Jupiter. Astrophys. J. 768, 45 (2013).

    Article  ADS  Google Scholar 

  26. Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný & Gomes, R. Late orbital instabilities in the outer planets are induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 5 (2009).

    Google Scholar 

  27. Vokrouhlicky, D., Bottke, W. F. & Nesvorny, D. Capture of trans-Neptunian planetesimals in the main asteroid belt. Astron. J. 152, 39 (2016).

    Article  ADS  Google Scholar 

  28. O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the Grand Tack scenario. Icarus 239, 74–84 (2014).

    Article  ADS  Google Scholar 

  29. Raymond, S. & Izidoro, A. The empty primordial asteroid belt. Sci. Adv. 3, e1701138 (2017).

    Article  ADS  Google Scholar 

  30. Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    Article  ADS  Google Scholar 

  31. Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).

    Article  ADS  Google Scholar 

  32. Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2022).

    Article  ADS  Google Scholar 

  33. De Sanctis, M. C. et al. Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature 528, 241–244 (2015).

    Article  ADS  Google Scholar 

  34. King, T. V. V., Clark, R. N., Calvin, W. M., Sherman, D. M. & Brown, R. H. Evidence for ammonium-bearing minerals on Ceres. Science 255, 1551–1553 (1992).

    Article  ADS  Google Scholar 

  35. Miliken, R. E. & Rivkin, A. S. Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nat. Geosci. 2, 258–261 (2009).

    Article  ADS  Google Scholar 

  36. Takir, D., Stockstill-Cahill, K. R., Hibbitts, C. A. & Nakauchi, Y. 3-μm reflectance spectroscopy of carbonaceous chondrites under asteroid-like conditions. Icarus 333, 243–251 (2019).

    Article  ADS  Google Scholar 

  37. Brown, M. E. & Rhoden, R. A. The 3 mm spectrum of Jupiter’s irregular satellite Himalia. Astrophys. J. 793, L44 (2014).

    Article  ADS  Google Scholar 

  38. Poch, O. Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science 367, eaaw7462 (2020).

    Article  ADS  Google Scholar 

  39. Mousis, O. & Alibert, Y. On the composition of ices incorporated in Ceres. Mon. Not. R. Astron. Soc. 353, 188–192 (2005).

    Article  ADS  Google Scholar 

  40. Castillo-Rogez, J. C. et al. Ceres: astrobiological target and possible ocean world. Astrobiology 20, 269–291 (2020).

    Article  ADS  Google Scholar 

  41. McCord, T. B. & Castillo-Rogez, J. B. Ceres’s internal evolution: the view after Dawn. Meteorit. Planet. Sci. 53, 1778–1792 (2018).

    Article  ADS  Google Scholar 

  42. Fu, R. et al. The interior structure of Ceres as revealed by surface topography. Earth Planet. Sci. Lett. 47, 153–164 (2017).

    Article  ADS  Google Scholar 

  43. Neumann, W., Breuer, D. & Spohn, T. Modeling the internal structure of Ceres: coupling of accretion with compaction by creep and implications for the water-rock differentiation. Astron. Astrophys. 584, A117 (2015).

    Article  ADS  Google Scholar 

  44. Vernazza, P. et al. A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea. Nat. Astron. 4, 136–141 (2020).

    Article  ADS  Google Scholar 

  45. Rayner, J. T. et al. SpeX: a medium-resolution 0.8–5.5 micron spectrograph and imager for the NASA Infrared Telescope Facility. Publ. Astron. Soc. Pac. 115, 362–382 (2003).

    Article  ADS  Google Scholar 

  46. Cushing, M. Spectral extraction package for SpeX, a 0.8–5.5 micron cross-dispersed spectrograph. Publ. Astron. Soc. Pac. 166, 362–376 (2004).

    Article  ADS  Google Scholar 

  47. Harris, A. A thermal model for near-Earth asteroids. Icarus 131, 291–30 (1998).

    Article  ADS  Google Scholar 

  48. Lebofsky, L. A. A refined ‘standard’ thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. Icarus 68, 239–251 (1986).

    Article  ADS  Google Scholar 

  49. Bowell, E. et al. in Asteroids II (eds Binzel, R. P. et al.) (Univ. Arizona Press, 1989).

  50. Cloutis, E. A., Gaffey, M. J., Jackowski, T. L. & Reed, K. L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. 91, 11641–11653 (1986).

    Article  ADS  Google Scholar 

  51. O’D. Alexander, C., Howard, K. T., Bowden, R. & Fogel, M. L. The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. Geochim. Cosmochim. Acta 123, 244–260 (2013).

    Article  ADS  Google Scholar 

  52. Henke, H. P., Gail, H., Trieloff, M., Schwarz, W. H. & Kleine, T. Thermal evolution and sintering of chondritic planetesimals. Astron. Astrophys. 537, A45 (2012).

    Article  Google Scholar 

  53. Dygert, N., Hirth, G. & Liang, Y. A flow law for ilmenite in dislocation creep: implications for lunar cumulate mantle overturn. Geophys. Res. Lett. 43, 532–540 (2016).

    Article  ADS  Google Scholar 

  54. Onoda, G. Y. & Liniger, E. G. Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727 (1990).

    Article  ADS  Google Scholar 

  55. Jaeger, H. M. & Nagel, S. Physics of the granular state. Science 255, 1523–1531 (1992).

    Article  ADS  Google Scholar 

  56. Weidling, R., Guttler, C., Blum, J. & Brauer, F. The physics of protoplanetesimal dust agglomerates. III. Compaction in multiple. Astrophys. J. 696, 2036–2043 (2009).

    Article  ADS  Google Scholar 

  57. Kothe, S., Güttler, S. C. & Blum, J. The physics of protoplanetesimal dust agglomerates. V. Multiple impacts of dusty agglomerates at velocities above the fragmentation threshold. Astrophys. J. 725, 1242–1251 (2010).

    Article  ADS  Google Scholar 

  58. Mei, S. & Kohlstedt, D. L. Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. J. Geophys. Res. 105, 21457–21469 (2000).

    Article  ADS  Google Scholar 

  59. Schwenn, M. B. & Goetze, C. Creep of olivine during hot-pressing. Tectonophysics 48, 41–60 (1978).

    Article  ADS  Google Scholar 

  60. Carry, B. Density of asteroids. Planet. Space Sci. 73, 98–118 (2012).

    Article  ADS  Google Scholar 

  61. Fienga, A., Avdellidou, C. & Hanuš, J. Asteroid masses obtained with INPOP planetary ephemerides. Mon. Not. R. Astron. Soc. 492, 589–602 (2020).

    Article  ADS  Google Scholar 

  62. Walsh, K. J. Rubble pile asteroids. Annu. Rev. Astron. Astrophys. 56, 593–624 (2018).

    Article  ADS  Google Scholar 

  63. Bottke, W. et al. The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005).

    Article  ADS  Google Scholar 

  64. Grott, M. et al. Macroporosity and grain density of rubble pile asteroid (162173) Ryugu. J. Geophys. Res. Planets 125, e2020JE006519 (2020).

    Article  ADS  Google Scholar 

  65. Clark, E. B. et al. Spectroscopy of B-type asteroids: subgroups and meteorite analogs. J. Geophys. Res. Planets 115, E06005 (2010).

    Article  ADS  Google Scholar 

  66. Howard, K. T., Benedix, G. K., Bland, P. A. & Cressey, G. Modal mineralogy of CV3 chondrites by X-ray diffraction (PSD-XRD). Geochim. Cosmochim. Acta 74, 5084–5097 (2010).

    Article  ADS  Google Scholar 

  67. Marrocchi, Y., Bekaert, D. & Piani, L. Origin and abundance of water in carbonaceous asteroids. Earth Planet. Sci. Lett. 482, 23–32 (2018).

    Article  ADS  Google Scholar 

  68. Liu, B., Raymond, S. N. & Jacobson, S. A. The dispersal of the gaseous disk triggers early Solar System instability. Nature 604, 643–646 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.T. acknowledges support by NASA’s Solar System Observations grant NNX17AJ24G. S.N.R. thanks the CNRS’ PNP and MITI programmes for their support. W.N. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG), project number 434933764. W.N. and M.T. acknowledge support by Klaus Tschira Foundation. We thank B. Carry for providing the unpublished density values of some large dark asteroids used in this study. We also thank the NASA IRTF staff for their assistance with asteroid observations. Spextool software is written and maintained by M. Cushing at the University of Toledo, B. Vacca at SOFIA and A. Boogert at NASA InfraRed Telescope Facility (IRTF), Institute for Astronomy, University of Hawai’i. NASA IRTF is operated by the University of Hawai’i under contract NNH14CK55B with NASA. D.T. is a visiting astronomer at the Infrared Telescope Facility under contract from the National Aeronautics and Space Administration, which is operated by the University of Hawaii.

Author information

Authors and Affiliations

Authors

Contributions

D.T. measured, analysed and interpreted asteroid data. W.N. developed thermal evolution models for the observed asteroids. S.N.R. helped place asteroid observations in terms of the dynamics of the solar system. D.T., W.N. and S.N.R. wrote the first draft of the paper. J.P.E. and M.T. edited the paper and assisted with the data analysis and interpretation. All authors contributed to the revision of the paper.

Corresponding author

Correspondence to Driss Takir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Andrew Rivkin, Henry Hsieh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–6.

Supplementary Data 1

Spectrum of asteroid Pulcova. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 2

Spectrum of asteroid Palma. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 3

Spectrum of asteroid Nephele. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 4

Spectrum of asteroid Loreley. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 5

Spectrum of asteroid Germania. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 6

Spectrum of asteroid Europa. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 7

Spectrum of asteroid Diotima. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 8

Spectrum of asteroid Carlova. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 9

Spectrum of asteroid Aurora. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Supplementary Data 10

Spectrum of asteroid Aletheia. 1st column: Wavelength (μm). 2nd column: Normalized reflectance. 3rd column: Uncertainty.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takir, D., Neumann, W., Raymond, S.N. et al. Late accretion of Ceres-like asteroids and their implantation into the outer main belt. Nat Astron 7, 524–533 (2023). https://doi.org/10.1038/s41550-023-01898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-01898-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing