Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues


In the search for biosignatures on Mars, there is an abundance of data from orbiters and rovers to characterize global and regional habitability, but much less information is available at the scales and resolutions of microbial habitats and biosignatures. Understanding whether the distribution of terrestrial biosignatures is characterized by recognizable and predictable patterns could yield signposts to optimize search efforts for life on other terrestrial planets. We advance an adaptable framework that couples statistical ecology with deep learning to recognize and predict biosignature patterns at nested spatial scales in a polyextreme terrestrial environment. Drone flight imagery connected simulated HiRISE data to ground surveys, spectroscopy and biosignature mapping to reveal predictable distributions linked to environmental factors. Artificial intelligence–machine learning models successfully identified geologic features with high probabilities for containing biosignatures at spatial scales relevant to rover-based astrobiology exploration. Targeted approaches augmented by deep learning delivered 56.9–87.5% probabilities of biosignature detection versus <10% for random searches and reduced the physical search space by 85–97%. Libraries of biosignature distributions, detection probabilities, predictive models and search roadmaps for many terrestrial environments will standardize analogue science research, enabling agnostic comparisons at all scales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Orbit-to-ground scales of investigation.
Fig. 2: Biosignatures exhibit significant spatial heterogeneity and occur in non-random clustered distributions at hierarchical scales.
Fig. 3: Macro- and microhabitat composition and biosignature detection probabilities.
Fig. 4: Nested spatial scale biosignature probability and habitat maps.
Fig. 5: Habitat and biosignature probability maps from CNN models and spatial GAMs.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Sequence data from this study have been deposited to the DDBJ database under BioProject PRJDB14848 with accession numbers DRR425262 to DRR425263.

Code availability

Code and data to reproduce the results of the CNN models can be found at


  1. Des Marais, D. J. The biogeochemistry of hypersaline microbial mats. Adv. Microb. Ecol. 14, 251–274 (1995).

    Article  Google Scholar 

  2. Belnap, J., Welter, J., Grimm, N., Barger, N. & Ludwig, J. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86, 298–307 (2005).

    Article  Google Scholar 

  3. Houghton, J. et al. Spatial variability in photosynthetic and heterotrophic activity drives locale δ13Corg fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology 12, 557–574 (2014).

    Article  Google Scholar 

  4. Allwood, A., Walter, M., Burch, I. & Kamber, B. 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res. 158, 198–227 (2007).

    Article  ADS  Google Scholar 

  5. Al-Najjar, M. et al. Spatial patterns and links between microbial community composition and function in cyanobacterial mats. Front. Microbiol. 5, 406 (2014).

    Article  Google Scholar 

  6. Warren-Rhodes, K., Dungan, J., Piatek, J. & McKay, C. Ecology and spatial pattern of cyanobacterial island patches in the Atacama Desert. J. Geophys. Res. Biogeosciences 112, G04S15 (2007).

    Article  Google Scholar 

  7. Allwood, A., Walter, M., Kamber, B., Marshall, C. & Burch, I. Stromatolite reef from the early Archaean era of Australia. Nature 441, 714–718 (2006).

    Article  ADS  Google Scholar 

  8. Meslier, V. et al. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ. Microbiol. 20, 1765–1781 (2018).

    Article  Google Scholar 

  9. Finstad, K. et al. Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics. Front. Microbiol. 8, 1435 (2017).

    Article  Google Scholar 

  10. Wilhelm, M. et al. Constraints on the metabolic activity of microorganisms in Atacama surface soils inferred from refractory biomarkers: Implications for Martian habitability and biomarker detection. Astrobiology 18, 955–966 (2018).

  11. Dillon, J. et al. Spatial and temporal variability in a stratified microbial mat community. FEMS Microbiol. Ecol. 68, 46–58 (2009).

    Article  Google Scholar 

  12. Rillig, M. & Antonovics, J. Microbial biospherics: the experimental study of ecosystem function and evolution. Proc. Natl Acad. Sci. USA 116, 11093–11098 (2019).

    Article  ADS  Google Scholar 

  13. Sephton, M. & Carter, J. The chances of detecting life on Mars. Planet. Space Sci. 112, 15–22 (2015).

    Article  ADS  Google Scholar 

  14. Naveh, Z., & Lieberman, A. S. Landscape Ecology: Theory and Application (Springer, 2013).

  15. Mony, C., Vandenkoornhuyse, P., Bohannan, B. J. M., Peay, K. & Leibold, M. A. A landscape of opportunities for microbial ecology research. Front. Microbiol. 11, 2964 (2020).

    Article  Google Scholar 

  16. Summons, R. et al. Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).

    Article  ADS  Google Scholar 

  17. Farmer, J. & Des Marais, D. J. Exploring for a record of ancient Martian life. J. Geophys. Res. 104, 26,977–26,995 (1999).

    Article  ADS  Google Scholar 

  18. Stoker et al. We should search for extant life on Mars in this decade. Bull. AAS 53 (2021);

  19. Jakowsky, B. et al. Mars, the nearest habitable world—a comprehensive program for future Mars exploration. Bull. AAS 53 (2021);

  20. Hinman, N. et al. Surface morphologies in a Mars analog Ca sulfate salar, High Andes, Northern Chile. Front. Astron. Space Sci. 8, 797591 (2022).

    Article  Google Scholar 

  21. Cabrol, N. et al. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2, 19 (2014).

    Article  Google Scholar 

  22. Phillips, M.S. et al. Planetary mapping using Deep Learning: a method to evaluate feature identification confidence applied to habitats in Mars-analogue terrain. Astrobiology 23 (2023).

  23. Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 934 (2015).

    Article  Google Scholar 

  24. Lynch, K. et al. Near-infrared spectroscopy of lacustrine sediments in the Great Salt Lake Desert: an analog study for Martian paleolake basins. J. Geophys. Res. Planets 120, 599–623 (2015).

    Article  ADS  Google Scholar 

  25. El-Maarry, M., Pommerol, A. & Thomas, N. Analysis of polygonal cracking patterns in chloride-bearing terrains of Mars: indicators of ancient playa settings. J. Geophys. Res. 113, 2263–2278 (2013).

    Article  Google Scholar 

  26. Onstott, T. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).

    Article  ADS  Google Scholar 

  27. Davila, A. & Schulze-Makuch, D. The last possible outposts for life on Mars. Astrobiology 16, 159–168 (2016).

    Article  ADS  Google Scholar 

  28. Osterloo, M. M. et al. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010).

    Article  ADS  Google Scholar 

  29. Flauhaut, J., Martinot, M., Bishop, J.L., Davies, G.R. & Potts, N.J. Remote sensing and in situ mineralogic survey of the Chilean salars: an analog to Mars evaporate deposits? Icarus 282, 152–173 (2017).

  30. Bosak, T., Moore, K., Gong, J. & Grotzinger, J. Searching for biosignatures in sedimentary rocks from early Earth and Mars. Nat. Rev. Earth Environ. 2, 490–506 (2021).

    Article  ADS  Google Scholar 

  31. Balci, N. et al. Biotic and abiotic imprints on Mg-rich stromatolites: lessons from Lake Salda, SW Turkey. Geomicrobiol. J. 37, 401–425 (2020).

    Article  Google Scholar 

  32. Williams, A., Buck, B., Soukup, D. & Merkler, D. Geomorphic controls on biological soil crust distribution: a conceptual model from the Mojave Desert (USA). Geomorphology 195, 99–109 (2013).

    Article  ADS  Google Scholar 

  33. Warren, J. Evaporites: a Geological Compendium 2nd edn (Springer, 2016).

  34. Wierzchos, J. et al. Microbial colonization of Ca sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9, 44–60 (2010).

    Article  Google Scholar 

  35. Robinson, C. K. et al. Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol. 17, 299–315 (2013).

    Article  Google Scholar 

  36. Jørgesen, B. & Des Marais, D. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol. Oceanogr. 33, 99–113 (1988).

    Article  ADS  Google Scholar 

  37. Szynkiewicz, A., Moore, C., Glamoclija, M., Bustos, D. & Pratt, L. Origin of coarsely crystalline gypsum domes in a saline playa environment at the White Sands National Monument, New Mexico. J. Geophys. Res. 115, F02021 (2010).

    Article  ADS  Google Scholar 

  38. Walker, J., Spear, J. & Pace, N. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434, 1011–1013 (2005).

    Article  ADS  Google Scholar 

  39. Rasuk, M. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494 (2014).

    Article  Google Scholar 

  40. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Preprint at arXiv (2014).

  41. Chan, M. et al. Exploring, mapping and data management integration of habitable environments in astrobiology. Frontiers in Microbiology 10, 147 (2019).

  42. Farmer, J. in From Habitability to Life on Mars 1–12 (Elsevier, 2018).

  43. Hays, L. et al. Biosignature preservation and detection in Mars analog environments. Astrobiology 17, 363–400 (2017).

    Article  ADS  Google Scholar 

  44. Fairen, A. et al. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10, 821 (2010).

    Article  ADS  Google Scholar 

  45. Green, J. et al. Call for a framework for reporting evidence for life beyond Earth. Nature 598, 575–579 (2021).

    Article  ADS  Google Scholar 

  46. He, K., Xiangyu, Z., Shaoqing, R. & Jian, S. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In 2015 IEEE International Conference on Computer Vision (ICCV) 1026–1034 (IEEE, 2015).

  47. Adams, J. B. & Filice, A. L. Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J. Geophys. Res. 72, 5705–5715 (1967).

  48. National Academies of Sciences, Engineering & Medicine. Origins, Worlds and Life: a Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (National Academies Press, 2022).

  49. Rodríguez Albornoz, C. Geology and Controls on Microbiota of the Salar de Pajonales (7.209.000–7.226.500 N.–510.000–530.000 E), Antofagasta, Northern Chile. Master’s thesis, Univ. Católica del Norte Antofagasta (2018).

  50. Naranjo, J., Villa, V. & Venegas, C. Geology of the Salar de Pajonales Area and Cerro Moño. Antofagasta and Atacama Regions (Geological Maps of Chile Basic Geology Series No. 153 (1: 100.000), National Geological Service, Geology and Mining Subsection, 2013).

  51. Schween, J., Hoffmeister, D. & Löhnert, U. Filling the observational gap in the Atacama Desert with a new network of climate stations. Glob. Planet. Chang. 184, 103034 (2020).

  52. Gutiérrez, F. & Cooper, A. Surface morphology of gypsum karst. Treatise Geomorphol. 6, 425–437 (2013).

    Article  Google Scholar 

  53. Bishop, J. L. et al. Spectral properties of Ca-sulfates: gypsum, bassanite and anhydrite. Am. Mineral. 99, 2105–2115 (2014).

    Article  ADS  Google Scholar 

  54. Green, A., Berman, M., Switzer, P. & Craig, M. D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26, 65–74 (1988).

    Article  ADS  Google Scholar 

  55. Davis, W., Pater, I. & McKay, C. P. Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile. Planet. Space Sci. 58, 616–622 (2010).

    Article  ADS  Google Scholar 

  56. McKay, C. P. et al. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observation including the El Niño of 1997–1998. Astrobiology 3, 393–406 (2003).

    Article  ADS  Google Scholar 

  57. Warren-Rhodes, K., Rhodes, K., Liu, S., Zhou, P. & McKay, C. Nanoclimate environment of cyanobacterial communities in China’s hot and cold hyperarid deserts. J. Geophys. Res. 112, G01016 (2007).

    Article  ADS  Google Scholar 

  58. Warren-Rhodes, K. et al. Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat and light. J. Geophys. Res. 118, 1451–1460 (2013).

    Article  Google Scholar 

  59. Lange, O., Kilian, E. & Ziegler, H. Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue–green algae as phycobionts. Oecologia 71, 104–110 (1986).

    Article  ADS  Google Scholar 

  60. Lange, O. L., Meyer, A. & Büdel, B. Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with a Microcoleus sociatus isolated from a desert soil crust. Funct. Ecol. 8, 52–57 (1994).

    Article  Google Scholar 

  61. Palmer, R. & Friedmann, E. I. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb. Ecol. 18, 111–118 (1990).

    Article  Google Scholar 

  62. Potts, M. & Friedmann, E. Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch. Microbiol. 130, 267–271 (1981).

    Article  Google Scholar 

  63. Tracy, C. et al. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ. Microbiol. 12, 592–607 (2010).

    Article  Google Scholar 

  64. Azúa-Bustos, A. et al. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb. Ecol. 51, 568–581 (2011).

    Article  Google Scholar 

  65. Rull, F. et al. ExoMars Raman Laser Spectrometer for ExoMars. Proc. SPIE 8152, 81520J (2011).

  66. Kontoyannis, C. G., Orkoula, M. & Koutsoukos, P. Quantitative analysis of sulphated calcium carbonates using Raman spectrometry and X-ray powder diffraction. Analyst 122, 33–38 (1997).

  67. Lopez-Reyes, G. et al. Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer Instrument. Eur. J. Mineral. 25, 721–733 (2013).

  68. Hunt, G. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42, 501–513 (1977).

    Article  ADS  Google Scholar 

  69. Bishop, J. L. in Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces (eds Bishop, J. L. et al.) 68–101 (Cambridge Univ. Press, 2019).

  70. Morris, R. V. et al. Evidence for pigmentary hematite on Mars based on optical, magnetic and Mössbauer studies of superparamagnetic (nanocrystalline) hematite. J. Geophys. Res. 94, 2760–2778 (1989).

    Article  ADS  Google Scholar 

  71. Bishop, J. L., Pieters, C. M. & Burns, R. G. Reflectance and Mössbauer spectroscopy of ferrihydrite–montmorillonite assemblages as Mars soil analog materials. Geochim. Cosmochim. Acta 57, 4583–4595 (1993).

    Article  ADS  Google Scholar 

  72. Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).

    Article  Google Scholar 

  73. Underwood, A. J., Chapman, M. G. & Connell, S. D. Observations in ecology: you can’t make progress on processes without understanding the patterns. J. Exp. Mar. Biol. Ecol. 250, 97–115 (2000).

    Article  Google Scholar 

  74. Turner, M. G. Landscape ecology: the effect of pattern on process. Annu. Rev. Ecol. Syst. 20, 171–197 (1989).

    Article  Google Scholar 

  75. Turner, M. G., Gardner, R. H. & O’Neill, R. V. Landscape Ecology in Theory and Practice (Springer, 2001).

  76. Wiens, J. A., Chr, N., Van Horne, B. & Ims, R. A. Ecological mechanisms and landscape ecology. Oikos 66, 369–380 (1993).

    Article  Google Scholar 

  77. Urban, D., O’Neill, R. & Shugart, H. Landscape ecology. BioScience 37, 119–127 (1987).

    Article  Google Scholar 

  78. Underwood, A. J. et al. Experiments in Ecology: their Logical Design and Interpretation using Analysis of Variance (Cambridge Univ. Press, 1997).

  79. Quinn, G. P., & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).

  80. Neyman, J. & Pearson, E. S. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. A 231, 289–337 (1933).

    Article  ADS  MATH  Google Scholar 

  81. Zar, J. H. Biostatistical Analysis 5th edn (Prentice-Hall/Pearson, 2010).

  82. Ripley, B. D. Journal of the Royal Statistical Society Series B (Methodological) 39, 172-212 (1977).

  83. Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777–790 (2003).

    Article  Google Scholar 

  84. Krebs, C. Ecological Methodology 2nd edn (Addison-Wesley, 1999).

  85. Warren-Rhodes, K., Dungan, J., Piatek, J. & McKay, C. Ecology and spatial pattern of cyanobacterial community island patches in the Atacama Desert. J. Geophys. Res. 112, G04S15 (2007).

    Article  Google Scholar 

  86. Belnap, J., Phillips, S., Witwicki, D. & Miller, M. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J. Arid Environ. 72, 1257–1264 (2008).

    Article  ADS  Google Scholar 

  87. Warren-Rhodes, K. et al. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389–398 (2006).

    Article  Google Scholar 

  88. Yingst, R. et al. Is a linear or a walkabout protocol more efficient when using a rover to choose biologically relevant samples in a small region of interest? Astrobiology 20, 327–347 (2020).

    Article  ADS  Google Scholar 

  89. Shen, J., Wyness, A., Claire, M. & Zerkle, A. Spatial variability of microbial communities and salt distributions across a latitudinal gradient in the Atacama Desert. Microb. Ecol. 82, 442–458 (2021).

    Article  Google Scholar 

  90. Barrett, J. et al. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85, 3105–3118 (2004).

    Article  Google Scholar 

  91. Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 19964–19969 (2009).

    Article  ADS  Google Scholar 

  92. Chiodini, R. et al. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. PloS ONE 10, e0134382 (2015).

    Article  Google Scholar 

  93. Rivas, L. A. et al. A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Anal. Chem. 80, 7970–7979 (2008).

    Article  Google Scholar 

  94. Sanchez-Garcia, L. et al. Microbial biomarker transition in high-altitude sinter mounds from El Tatio (Chile) through different stages of hydrothermal activity. Front. Microbiol. 9, 3350 (2019).

    Article  Google Scholar 

  95. Parro, V. et al. SOLID3, a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11, 15–28 (2011).

    Article  ADS  Google Scholar 

  96. Parro, V. et al. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11, 969–996 (2011).

    Article  ADS  Google Scholar 

  97. Blanco, Y., Moreno-Paz, M., Aguirre, J. & Parro, V. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) Ch. 159 (Springer, 2017).

  98. Moreno-Paz, M. et al. Detecting nonvolatile life and nonlife-derived organics in a carbonaceous chrondrite analogue with a new multiplex immunoassay and its relevance for planetary exploration. Astrobiology 18, 1041–1056 (2018).

    Article  ADS  Google Scholar 

  99. Ekwealor, J. & Fisher, K. Life under quartz: hypolithic mosses in the Mojave Desert. PLoS ONE 15, e0235928 (2020).

    Article  Google Scholar 

  100. Williams, A., Buck, B. & Beyene, M. Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. 76, 1685–1695 (2012).

    Article  Google Scholar 

  101. Archer, S. et al. Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol. 40, 997–1006 (2017).

    Article  Google Scholar 

  102. Noffke, N., Gerdes, G., Klenke, T. & Krumbein, W. Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J. Sediment. Res. 71, 649–656 (2001).

    Article  ADS  Google Scholar 

  103. Fierer, N. & Jackson, R. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    Article  ADS  Google Scholar 

  104. Caruso, T. et al. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J. 5, 1406–1413 (2011).

    Article  Google Scholar 

  105. Valverde et al. Prokaryotic community structure and metabolisms in shallow subsurface of Atacama Desert playas and alluvial fans after heavy rains: repairing and preparing for next dry period. Front. Microbiol. 10, 1641 (2019).

    Article  Google Scholar 

  106. Sun, H. Endolithic microbial life in extreme cold climate: snow is required, but perhaps less is more. Biology 2, 693–701 (2013).

  107. Maier, S. et al. Photoautotrophic organisms control microbial abundance, diversity and physiology in different types of biological soil crusts. ISME J. 12, 1032–1046 (2018).

    Article  Google Scholar 

  108. Roldan, M., Ascaso, C. & Weirzchos, J. Fluorescent fingerprint of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. Appl. Environ. Microbiol. 80, 2998–3006 (2014).

    Article  ADS  Google Scholar 

  109. Cockell, C. et al. 0.25 Ga salt deposits preserve geological signatures of habitable conditions and ancient lipids. Astrobiology 20, 864–877 (2019).

    Article  ADS  Google Scholar 

  110. Ripley, B. D. Spatial Statistics (Wiley, 1981).

  111. Gelfand, A. E., Diggle, P., Guttorp, P., & Fuentes, M. (eds) Handbook of Spatial Statistics (CRC Press, 2010).

  112. Dixon, P. M. in Encyclopedia of Environmetrics, 1796-1803 (Wiley, 2006).

  113. Baddeley, A., Rubak, E. & Turner, R. Spatial point patterns: methodology and applications with R. J. Stat. Softw. 75, 2 (2016).

  114. Wood, S. Generalized Additive Models: an Introduction with R Ch 3–5 (Chapman and Hall/CRC, 2006).

  115. Simon, R. & Wood, N. GAMS in practice: mgcv. In Generalized Additive Models: an Introduction with R 2nd ed (eds Blitzstein, J., Faraway, J., Tanner, M. & Zidek, J.) Ch 7 (Chapman and Hall/CRC, 2017).

  116. Fang, X. & Chan, K.-S. Generalized Additive Models with Spatio-temporal Data (Univ. Iowa);

  117. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

    Article  Google Scholar 

  118. Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

    Article  Google Scholar 

  119. Shelhamer, E., Long J. & Darrell, T. Fully convolutional networks for semantic segmentation. Preprint at arXiv (2016).

  120. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Preprint at arXiv (2016).

  121. Bishop, J. L. & Murad, E. in Volcano–Ice Interactions on Earth and Mars (eds Smellie, J. L. & Chapman, M. G.) 357–370 (Special Publication No. 202, Geological Society, 2002).

  122. Buzgar, N., Buzatu, A. & Sanislav, I. V. The Raman study of certain sulfates. An. Stiintificie Univ. Al. I. Cuza IASI Geol. 55, 5–23 (2009).

  123. Jehlicka, J., Edwards, H. & Oren, A. Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 80, 3286–3295 (2013).

Download references


This study was supported by the NASA Astrobiology Institute (NAI) via grant NNA15BB01A. We acknowledge XRD data and its respective analysis generated from the MAINI’s scientific equipment and Centro de Biotecnología at Universidad Católica del Norte. G.C.-D. and C.D. thank BHP Minerals Americas Project 32002137 (2016–2020). We thank K. Phillips ( for graphic design. V.P. thanks the Ministry of Science and Innovation (Spain) (grant RTI2018-094368-B-I00), State Agency of Research (MCIN/AEI/10.13039/501100011033) and ERDF ‘A way of making Europe’ for funding and M. García-Villadangos for technical support.

Author information

Authors and Affiliations




K.W.-R., M.P., N. Hutchinson, N.A.C. and K.L.R. designed and implemented the experiment. K.W.-R., M.P., C.T.-C., K.L.R., N.A.C., N. Hinman., V.P., P. Sobron, P. Sarazzin, C.J., C.R. and C.D. conducted field operations and sampling. J.M., M.P., C.M., P. Sobron, P. Sarazzin and D.W. collected in situ visible, multi- and hyperspectral data from instruments and instrumented drones. M.P., F.K., D.A., L.N.B., K.L. and K.W.-R. developed deep learning and statistical models. K.W.-R., M.P., K.L.R., V.P., N. Hinman and J.L.B. processed samples and conducted geochemical and mineralogical analyses. K.W.-R., M.P., K.L.R., C.T.-C., N.H., C.D., G.C.-D., M.H.H. and V.P. performed geological and biological analyses. K.W.-R., K.L.R., D.W., G.C.-D., D.A. and C.T.-C. installed, collected and analysed microclimate data. All authors wrote the manuscript. N.A.C. conceived the NAI project study. K.W.-R., K.L.R. and N.H. designed the ecological study. All authors reviewed and edited a manuscript draft.

Corresponding author

Correspondence to Kimberley Warren-Rhodes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jesus Martinez-Frias and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Geomorphic units and habitats at Dome Field study location from orbital (left) to cm (right) views.

a, Large-scale polygonal network pattern (pink boxes). a1, Orbital view reveals large-sized polygons (mean diameters in study location = 10 m). a2, Large-scale polygon exteriors are composed of ridges and polygon interiors are composed of aeolian cover; a3, Ground view of ridge (mean height in study location = 33.5 ± 8.6 cm). Note the flat ridge tops covered in eroded float due to wind erosion and scouring by sand. The sides of ridges are typically composed of crystals and the bottoms by alabaster. a4, Arrangement of crystals along one ridge. View of Type II crystals with visible biosignature bands, as seen in a5 (~0.55 cm below ‘eggshell seal’23 surface duricrust); a5, In the close-up view of crystals, microbal laminae become visible. Pink-orange layer: desiccation and radiation-resistance bacteria such as Salinibacter spp., Halorubrum sp., Pyrococcus sp., Chloroflexota, Thermi (carotenoids, pink arrow); Green colonized layer: Cyanobacteria (chlorophyll pigments, green arrow); b, domes (red boxes). b1, Distribution of domes (red arrows) in orbital view; b2, Dome heights range from ~10 cm to ~3 m, diameters range from ~1 to 7.5 m. b3, Ground view of domes, with eroded crystals in left foreground and intact tightly embedded crystals of the dome structure; alabaster lines the bottom of the dome; b4, Type I jagged sharp crystals tightly embedded in dome; b5, Type II crystal topped with alabaster in a dome. Note brown thin (~0.5 cm) surface duricrust and white powdery alabster efflorescence material with green and pink biosignature layers. c, Patterned ground (green boxes); Orbital view of patterned ground geomorphic/macro-habitat unit; c1. Bare salar surface is visible as speckled tan features. c2-c3, Fractal nature of micro-structure network inhabited by biological soil crust (BSC) communities is apparent from aerial and ground views. Micro-structure network with BSC is the patterned darker material (1–3 cm height) covering the lighter-toned bare salar surface micro-habitat. c4, Micro-structure with pinnacles covering the bare open salar surface, which is visible in the bottom right of photo; c5, A flipped micro-structure reveals BSC photosynthetic communities with orange/pink and green biosignatures.

Extended Data Fig. 2 Microbial Landscape Ecology Methods: Nested Spatial Scale and Habitat Sampling Designs.

a) ES-1 nested scale sampling design. b) ES-2 habitat study surveys and sampling design. c) ES-3 fine-scale microhabitat and biosignature mapping sampling design.

Extended Data Fig. 3 Rules for the probability a sample contains endolithic biosignatures in microhabitats of a dome macrohabitat.

Visual representation of the main results of Supplementary Table 1. For example, in the first decision choice, if the microhabitat is alabaster, then the probability of endolithic biosignatures is 100% (%Col is: 27 colonized samples/27 total alabaster samples ×100). In the figure, if the microhabitat is not alabaster, this leads to the next decision choice of whether the microhabitat is a Type II (T2) crystal or not, and so forth.

Extended Data Fig. 4 Thin section photomicrographs (a,c) and binary images of pore networks (b,d) of Alabaster (a,b) and a porous selenite crystal (c,d), respectively.

a, b, Alabaster contains a well connected intercrystalline pore network (f = ~9.4%) without preferred orientation. c, d, the selenite crystal has a higher total porosity (f = ~11.9%) and larger pores, but pores are parallel to each other (elongated slot pores) and are less well connected in a horizontal direction (growth direction of crystal is up in photomicrograph) Each image is 900 ×900 mm (1750 px 1750 px).

Extended Data Table 1 Relevant ecological survey (black, this study) spatial (red, this study) and comparable rover sampling scales
Extended Data Table 2 Detailed statistical ecology analyses and results
Extended Data Table 3 Microclimate Data at Salar de Pajonales, liquid water availability in alabaster (519 sensor) and Type I crystals (517 sensor, east; 520 sensor, north) in dry and hydrated states; C: colonized; UC: uncolonized; T: temperature (oC); %RH: Percent Relative Humidity
Extended Data Table 4 Comparison of evaluation metrics of neural network semantic segmentation results on orthophoto mosaics at 6.9 cm/pixel and 23.9 cm/pixel ground sampling distances (GSD)

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Discussion and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren-Rhodes, K., Cabrol, N.A., Phillips, M. et al. Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues. Nat Astron 7, 406–422 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing