Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An Ice Age JWST inventory of dense molecular cloud ices

Abstract

Icy grain mantles are the main reservoir of the volatile elements that link chemical processes in dark, interstellar clouds with the formation of planets and the composition of their atmospheres. The initial ice composition is set in the cold, dense parts of molecular clouds, before the onset of star formation. With the exquisite sensitivity of the James Webb Space Telescope, this critical stage of ice evolution is now accessible for detailed study. Here we show initial results of the Early Release Science programme Ice Age that reveal the rich composition of these dense cloud ices. Weak ice features, including 13CO2, OCN, 13CO, OCS and complex organic molecule functional groups, are now detected along two pre-stellar lines of sight. The 12CO2 ice profile indicates modest growth of the icy grains. Column densities of the major and minor ice species indicate that ices contribute between 2% and 19% of the bulk budgets of the key C, O, N and S elements. Our results suggest that the formation of simple and complex molecules could begin early in a water-ice-rich environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NIRSpec FS (NIRCam WFSS) and MIRI LRS spectra of NIR38 and J110621.
Fig. 2: Data quality comparison for NIR38 and J110621.
Fig. 3: Detections of COM functional groups.
Fig. 4: Derived ice column density for different species towards NIR38 (AV ≈ 60 mag) and J110621 (AV ≈ 95 mag).

Similar content being viewed by others

Data availability

Our raw data are publicly available at the STScI MAST JWST archive. Text files of our enhanced one-dimensional spectra are provided as part of our Early Release Science enabling product deliverables on Zenodo at the following URL: https://doi.org/10.5281/zenodo.7501239.

Code availability

The ENIIGMA global fitting tool47 is publicly available on GitHub at https://github.com/willastro/ENIIGMA-fitting-tool.

References

  1. Dulieu, F. et al. Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms. Astron. Astrophys. 512, A30 (2010).

    Article  Google Scholar 

  2. Ioppolo, S., Cuppen, H., Romanzin, C., van Dishoeck, E. & Linnartz, H. Laboratory evidence for efficient water formation in interstellar ices. Astrophys. J. 686, 1474 (2008).

    Article  ADS  Google Scholar 

  3. Qasim, D. et al. An experimental study of the surface formation of methane in interstellar molecular clouds. Nat. Astron. 4, 781–785 (2020).

    Article  ADS  Google Scholar 

  4. Lamberts, T. et al. Methane formation in cold regions from carbon atoms and molecular hydrogen. Astrophys. J. 928, 48 (2022).

    Article  ADS  Google Scholar 

  5. Hiraoka, K. et al. Ammonia formation from the reactions of H atoms with N atoms trapped in a solid N2 matrix at 10–30 K. Astrophys. J. 443, 363–370 (1995).

    Article  ADS  Google Scholar 

  6. Fedoseev, G., Ioppolo, S. & Linnartz, H. Deuterium enrichment of ammonia produced by surface N + H/D addition reactions at low temperature. Mon. Not. R. Astron. Soc. 446, 449–458 (2015).

    Article  ADS  Google Scholar 

  7. Caselli, P., Walmsley, C., Tafalla, M., Dore, L. & Myers, P. CO depletion in the starless cloud core L1544. Astrophys. J. 523, L165 (1999).

    Article  ADS  Google Scholar 

  8. Pontoppidan, K. M. Spatial mapping of ices in the Ophiuchus-F core—a direct measurement of CO depletion and the formation of CO2. Astron. Astrophys. 453, L47–L50 (2006).

    Article  ADS  Google Scholar 

  9. Watanabe, N. & Kouchi, A. Measurements of conversion rates of CO to CO2 in ultraviolet-induced reaction of D2O(H2O)/CO amorphous ice. Astrophys. J. 567, 651 (2002).

    Article  ADS  Google Scholar 

  10. Chuang, K.-J., Fedoseev, G., Ioppolo, S., van Dishoeck, E. & Linnartz, H. H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices—an extended view on complex organic molecule formation. Mon. Not. R. Astron. Soc. 455, 1702–1712 (2016).

    Article  ADS  Google Scholar 

  11. Altwegg, K. et al. Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov–Gerasimenko. Sci. Adv. 2, e1600285 (2016).

    Article  ADS  Google Scholar 

  12. Ioppolo, S. et al. A non-energetic mechanism for glycine formation in the interstellar medium. Nat. Astron. 5, 197–205 (2021).

    Article  ADS  Google Scholar 

  13. Gibb, E. L. et al. Interstellar ice: the Infrared Space Observatory legacy. Astrophys. J. Suppl. Ser. 151, 35 (2004).

    Article  ADS  Google Scholar 

  14. Boogert, A. et al. The c2d Spitzer Spectroscopic Survey of ices around low-mass young stellar objects. I. H2O and the 5–8 μm bands. Astrophys. J. 678, 985 (2008).

    Article  ADS  Google Scholar 

  15. Aikawa, Y. et al. Akari observations of ice absorption bands towards edge-on young stellar objects. Astron. Astrophys. 538, A57 (2012).

    Article  Google Scholar 

  16. Boogert, A., Gerakines, P. A. & Whittet, D. C. Observations of the icy universe. Annu. Rev. Astron. Astrophys. 53, 541–581 (2015).

    Article  ADS  Google Scholar 

  17. Noble, J., Fraser, H., Pontoppidan, K. & Craigon, A. Two-dimensional ice mapping of molecular cores. Mon. Not. R. Astron. Soc. 467, 4753–4762 (2017).

    Article  ADS  Google Scholar 

  18. Belloche, A. et al. The end of star formation in Chamaeleon I? A LABOCA census of starless and protostellar cores. Astron. Astrophys. 527, A145 (2011).

    Article  Google Scholar 

  19. Dzib, S. A., Loinard, L., Ortiz-León, G. N., Rodríguez, L. F. & Galli, P. A. Distances and kinematics of Gould Belt star-forming regions with Gaia DR2 results. Astrophys. J. 867, 151 (2018).

    Article  ADS  Google Scholar 

  20. Jin, M. et al. Ice Age: chemodynamical modeling of Cha-MMS1 to predict new solid-phase species for detection with JWST. Astrophys. J. 935, 133 (2022).

    Article  ADS  Google Scholar 

  21. Jakobsen, P. et al. The near-infrared spectrograph (NIRSpec) on the James Webb Space Telescope—I. overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).

    Article  Google Scholar 

  22. Greene, T. P. et al. λ = 2.4 to 5 μm spectroscopy with the James Webb Space Telescope NIRCam instrument. J. Astron. Telesc. Instrum. Syst. 3, 035001 (2017).

    Article  ADS  Google Scholar 

  23. Rieke, G. H. et al. The mid-infrared instrument for the James Webb Space Telescope, I: introduction. Publ. Astron. Soc. Pac. 127, 584 (2015).

    Article  ADS  Google Scholar 

  24. Dartois, E., Noble, J. A., Ysard, N., Demyk, K. & Chabot, M. Influence of grain growth on CO2 ice spectroscopic profiles: modelling for dense cores and disks. Astron. Astrophys. 666, A153 (2022).

  25. Mumma, M. J. & Charnley, S. B. The chemical composition of comets-emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).

    Article  ADS  Google Scholar 

  26. Ferrante, R. F., Moore, M. H., Spiliotis, M. M. & Hudson, R. L. Formation of interstellar OCS: radiation chemistry and IR spectra of precursor ices. Astrophys. J. 684, 1210 (2008).

    Article  ADS  Google Scholar 

  27. Laas, J. C. & Caselli, P. Modeling sulfur depletion in interstellar clouds. Astron. Astrophys. 624, A108 (2019).

    Article  ADS  Google Scholar 

  28. Köhler, M., Jones, A. & Ysard, N. A hidden reservoir of Fe/FeS in interstellar silicates? Astron. Astrophys. 565, L9 (2014).

    Article  ADS  Google Scholar 

  29. Calmonte, U. et al. Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko. Mon. Not. R. Astron. Soc. 462, S253–S273 (2016).

    Article  Google Scholar 

  30. Dartois, E. & d’Hendecourt, L. Search for NH3 ice in cold dust envelopes around YSOs. Astron. Astrophys. 365, 144–156 (2001).

    Article  ADS  Google Scholar 

  31. van Scheltinga, J. T., Ligterink, N., Boogert, A., van Dishoeck, E. & Linnartz, H. Infrared spectra of complex organic molecules in astronomically relevant ice matrices—I. acetaldehyde, ethanol, and dimethyl ether. Astron. Astrophys. 611, A35 (2018).

    Article  Google Scholar 

  32. Yang, Y.-L. et al. CORINOS I: JWST/MIRI spectroscopy and imaging of a class 0 protostar IRAS 15398-3359. Astrophys. J. Lett. 941, L13 (2022).

  33. Rachid, M. G. et al. Infrared spectra of complex organic molecules in astronomically relevant ice mixtures. II. Acetone. Astron. Astrophys. 639, A4 (2020).

    Article  Google Scholar 

  34. Goumans, T., Uppal, M. A. & Brown, W. A. Formation of CO2 on a carbonaceous surface: a quantum chemical study. Mon. Not. R. Astron. Soc. 384, 1158–1164 (2008).

    Article  ADS  Google Scholar 

  35. Garrod, R. T. & Pauly, T. On the formation of CO2 and other interstellar ices. Astrophys. J. 735, 15 (2011).

    Article  ADS  Google Scholar 

  36. Qasim, D. et al. Formation of interstellar methanol ice prior to the heavy CO freeze-out stage. Astron. Astrophys. 612, A83 (2018).

  37. Molpeceres, G. et al. Carbon atom reactivity with amorphous solid water: H2O-catalyzed formation of H2CO. J. Phys. Chem. Lett. 12, 10854–10860 (2021).

    Article  Google Scholar 

  38. Brooke, T., Sellgren, K. & Smith, R. A study of absorption features in the 3 micron spectra of molecular cloud sources with H2O ice bands. Astrophys. J. 459, 209 (1996).

    Article  ADS  Google Scholar 

  39. Silsbee, K., Ivlev, A. V., Sipilä, O., Caselli, P. & Zhao, B. Rapid elimination of small dust grains in molecular clouds. Astron. Astrophys. 641, A39 (2020).

    Article  ADS  Google Scholar 

  40. Ormel, C., Min, M., Tielens, A., Dominik, C. & Paszun, D. Dust coagulation and fragmentation in molecular clouds—II. The opacity of the dust aggregate size distribution. Astron. Astrophys. 532, A43 (2011).

    Article  ADS  Google Scholar 

  41. Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609 (1986).

    Article  ADS  Google Scholar 

  42. Sun, F. et al. First peek with JWST/NIRCam wide-field slitless spectroscopy: serendipitous discovery of a strong [O III]/Hα emitter at z = 6.11. Astrophys. J. Lett. 936, L8 (2022).

    Article  ADS  Google Scholar 

  43. Carnall, A. SpectRes: a fast spectral resampling tool in Python. Preprint at https://arxiv.org/abs/1705.05165 (2017).

  44. Boogert, A. et al. Ice and dust in the quiescent medium of isolated dense cores. Astrophys. J. 729, 92 (2011).

  45. Dorschner, J., Begemann, B., Henning, T., Jaeger, C. & Mutschke, H. Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astron. Astrophys. 300, 503 (1995).

    ADS  Google Scholar 

  46. Dominik, C., Min, M. & Tazaki, R. Optool: command-line driven tool for creating complex dust opacities. Astrophysics Source Code Library ascl:2104.010 (2021).

  47. Rocha, W. R., Perotti, G., Kristensen, L. E. & Jørgensen, J. K. Fitting infrared ice spectra with genetic modelling algorithms-presenting the eniigma fitting tool. Astron. Astrophys. 654, A158 (2021).

  48. Rocha, W. et al. LIDA—the Leiden ice database for astrochemistry. Astron. Astrophys. 668, A63 (2022).

  49. Pontoppidan, K. M. et al. The c2d Spitzer Spectroscopic Survey of ices around low-mass young stellar objects. II. CO2. Astrophys. J. 678, 1005 (2008).

    Article  ADS  Google Scholar 

  50. Cuppen, H., Penteado, E. & Isokoski, K. et al. CO ice mixed with CH3OH: the answer to the non-detection of the 2152 cm−1 band? Mon. Not. R. Astron. Soc. 417, 2809–2816 (2011).

    Article  ADS  Google Scholar 

  51. Perotti, G. et al. Linking ice and gas in the Serpens low-mass star-forming region. Astron. Astrophys. 643, A48 (2020).

    Article  Google Scholar 

  52. Öberg, K. I. et al. The c2d Spitzer Spectroscopic Survey of ices around low-mass young stellar objects. III. CH4. Astrophys. J. 678, 1032 (2008).

    Article  ADS  Google Scholar 

  53. Pontoppidan, K. et al. A μm VLT spectroscopic survey of embedded young low mass stars I—structure of the CO ice. Astron. Astrophys. 408, 981–1007 (2003).

    Article  ADS  Google Scholar 

  54. Öberg, K. I. et al. Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices. Astron. Astrophys. 462, 1187–1198 (2007).

    Article  ADS  Google Scholar 

  55. Knez, C. et al. Spitzer mid-infrared spectroscopy of ices toward extincted background stars. Astrophys. J. 635, L145 (2005).

    Article  ADS  Google Scholar 

  56. Chu, L. E., Hodapp, K. & Boogert, A. Observations of the onset of complex organic molecule formation in interstellar ices. Astrophys. J. 904, 86 (2020).

    Article  ADS  Google Scholar 

  57. Hudgins, D., Sandford, S., Allamandola, L. & Tielens, A. Mid-and far-infrared spectroscopy of ices-optical constants and integrated absorbances. Astrophys. J. Suppl. Ser. 86, 713–870 (1993).

    Article  ADS  Google Scholar 

  58. Shimonishi, T., Dartois, E., Onaka, T. & Boulanger, F. VLT/ISAAC infrared spectroscopy of embedded high-mass YSOs in the large magellanic cloud: methanol and the 3.47 μm band. Astron. Astrophys. 585, A107 (2016).

    Article  ADS  Google Scholar 

  59. Gerakines, P., Schutte, W., Greenberg, J. & van Dishoeck, E. F. The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures. Astron. Astrophys. 296, 810 (1995).

    ADS  Google Scholar 

  60. Ehrenfreund, P., Boogert, A., Gerakines, P., Tielens, A. & van Dishoeck, E. Infrared spectroscopy of interstellar apolar ice analogs. Astron. Astrophys. 328, 649–669 (1997).

    ADS  Google Scholar 

  61. Ehrenfreund, P. et al. Laboratory studies of thermally processed H2O–CH3OH–CO2 ice mixtures and their astrophysical implications. Astron. Astrophys. 350, 240–253 (1999).

    ADS  Google Scholar 

  62. van Broekhuizen, F., Keane, J. & Schutte, W. A quantitative analysis of OCN formation in interstellar ice analogs. Astron. Astrophys. 415, 425–436 (2004).

    Article  ADS  Google Scholar 

  63. Pendleton, Y., Tielens, A., Tokunaga, A. & Bernstein, M. The interstellar 4.62 micron band. Astrophys. J. 513, 294 (1999).

    Article  ADS  Google Scholar 

  64. van Broekhuizen, F., Pontoppidan, K., Fraser, H. & van Dishoeck, E. A 3–5 μm VLT spectroscopic survey of embedded young low mass stars II—solid OCN. Astron. Astrophys. 441, 249–260 (2005).

    Article  ADS  Google Scholar 

  65. Noble, J. A. et al. The thermal reactivity of HCN and NH3 in interstellar ice analogues. Mon. Not. R. Astron. Soc. 428, 3262–3273 (2013).

    Article  ADS  Google Scholar 

  66. van Broekhuizen, F., Groot, I., Fraser, H., van Dishoeck, E. & Schlemmer, S. Infrared spectroscopy of solid CO–CO2 mixtures and layers. Astron. Astrophys. 451, 723–731 (2006).

    Article  ADS  Google Scholar 

  67. Palumbo, M., Tielens, A. & Tokunaga, A. T. Solid carbonyl sulphide (OCS) in W33A. Astrophys. J. 449, 674 (1995).

    Article  ADS  Google Scholar 

  68. Palumbo, M., Geballe, T. & Tielens, A. G. Solid carbonyl sulfide (OCS) in dense molecular clouds. Astrophys. J. 479, 839 (1997).

    Article  ADS  Google Scholar 

  69. Yarnall, Y. Y. & Hudson, R. L. A new method for measuring infrared band strengths in H2O ices: first results for OCS, H2S, and SO2. Astrophys. J. Lett. 931, L4 (2022).

    Article  ADS  Google Scholar 

  70. Rachid, M. G., Rocha, W. & Linnartz, H. Infrared spectra of complex organic molecules in astronomically relevant ice mixtures—V. methyl cyanide (acetonitrile). Astron. Astrophys. 665, A89 (2022).

    Article  ADS  Google Scholar 

  71. Gerakines, P. A., Yarnall, Y. Y. & Hudson, R. L. Direct measurements of infrared intensities of HCN and H2O + HCN ices for laboratory and observational astrochemistry. Mon. Not. R. Astron. Soc. 509, 3515–3522 (2022).

    Article  ADS  Google Scholar 

  72. de Oliveira, C. A. et al. Herschel view of the large-scale structure in the Chamaeleon dark clouds. Astron. Astrophys. 568, A98 (2014).

    Article  Google Scholar 

  73. André, P. et al. From filamentary clouds to prestellar cores to the stellar IMF: initial highlights from the Herschel Gould Belt Survey. Astron. Astrophys. 518, L102 (2010).

    Article  ADS  Google Scholar 

  74. Lacy, J. H., Sneden, C., Kim, H. & Jaffe, D. T. H2, CO, and dust absorption through cold molecular clouds. Astrophys. J. 838, 66 (2017).

    Article  ADS  Google Scholar 

  75. Przybilla, N., Nieva, M.-F. & Butler, K. A cosmic abundance standard: chemical homogeneity of the solar neighborhood and the ISM dust-phase composition. Astrophys. J. 688, L103 (2008).

    Article  ADS  Google Scholar 

  76. Bouilloud, M. et al. Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Mon. Not. R. Astron. Soc. 451, 2145–2160 (2015).

    Article  ADS  Google Scholar 

  77. Schutte, W. & Khanna, R. Origin of the 6.85 μm band near young stellar objects: the ammonium ion (NH4+) revisited. Astron. Astrophys. 398, 1049–1062 (2003).

    Article  ADS  Google Scholar 

  78. Boogert, A., Schutte, W., Helmich, F., Tielens, A. & Wooden, D. Infrared observations and laboratory simulations of interstellar CH4 and SO2. Astron. Astrophys. 317, 929–941 (1997).

    ADS  Google Scholar 

  79. Taban, I. M. et al. Stringent upper limits to the solid NH3 abundance towards W33A from near-IR spectroscopy with the Very Large Telescope. Astron. Astrophys. 399, 169 (2003).

    Article  ADS  Google Scholar 

  80. Hudson, R. L. & Moore, M. H. Laboratory studies of the formation of methanol and other organic molecules by water+carbon monoxide radiolysis: relevance to comets, icy satellites, and interstellar ices. Icarus 140, 451 (1999).

    Article  ADS  Google Scholar 

  81. Rocha, W. R. M. et al. Infrared complex refractive index of astrophysical ices exposed to cosmic rays simulated in the laboratory. Mon. Not. R. Astron. Soc. 464, 754 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The Ice Age Early Release Science team thanks the support team at STScI (W. Januszewski, B. Sargent, N. Pirzkal and M. Engesser) for their technical suggestions and improvements to the programme since 2017. M.K.M. acknowledges financial support from the Dutch Research Council (NWO; grant VI.Veni.192.241). M.G.R. acknowleges support from the Netherlands Research School for Astronomy (NOVA). S.I., H.L. and E.F.v.D. acknowledge support from the Danish National Research Foundation through the Center of Excellence ‘InterCat’ (grant agreement number DNRF150). E.F.v.D. acknowledges support from ERC grant 101019751 MOLDISK. The research of L.E.K. is supported by a research grant (19127) from VILLUM FONDEN. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (D.C.L.). F.S. acknowledges funding from JWST/NIRCam contract to the University of Arizona, NAS5-02105. A.C.A.B. acknowledges support from the Space Telescope Science Institute for programme JWST-ERS-01309.019. J.E. acknowledges support from the Space Telescope Science Institute for programme JWST-ERS-01309.019. L.E.U.C.’s research was supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Oak Ridge Associated Universities under contract with NASA. D.H. is supported by Center for Informatics and Computation in Astronomy (CICA) grant and grant number 110J0353I9 from the Ministry of Education of Taiwan. D.H. acknowledges support from the National Technology and Science Council of Taiwan through grant number 111B3005191. M.N.D. acknowledges the Swiss National Science Foundation (SNSF) Ambizione grant number 180079, the Center for Space and Habitability (CSH) Fellowship, and the IAU Gruber Foundation Fellowship. I.J.-S. acknowledges financial support from grant number PID2019-105552RB-C41 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/10.13039/501100011033. This work was supported by a grant from the Simons Foundation (686302, K.I.Ö.) and an award from the Simons Foundation (321183FY19, K.I.Ö.). J.K.J. acknowledges support from the Independent Research Fund Denmark (grant number 0135-00123B). Z.L.S. acknowledges financial support from the Royal Astronomical Society through the E. A. Milne Travelling Fellowship. J.A.N. and E.D. acknowledge support from French Programme National ‘Physique et Chimie du Milieu Interstellaire’ (PCMI) of the CNRS/INSU with the INC/INP, co-funded by the CEA and the CNES.

Author information

Authors and Affiliations

Authors

Contributions

M.K.M. originated the proposal, designed the observations, co-managed the team, determined the feature optical depths and wrote much of the main text. W.R.M.R. performed global and local fitting to determine the column densities, including the error analysis, and wrote part of the Methods section. K.M.P. contributed to the observational design, reduced and optimized the NIRSpec data, wrote part of the Methods section and commented on the draft. N.C. reduced and optimized the MIRI LRS data to allow for the global fitting and wrote part of the Methods section. L.E.U.C. performed the local fitting of the methanol + hydrates band, wrote part of the Methods section and commented on the draft. E.D. wrote part of the discussion and made suggestions for the analysis. T.L. wrote portions of the results section and reorganized the draft. J.A.N. contributed to the original proposal, wrote portions of results section and made suggestions for the analysis. Y.J.P. managed the Overleaf file, wrote part of the results section and made suggestions for the local fitting. G.P. locally fit the OCN feature, wrote part of the Methods section and commented on the draft. D.Q. managed the Overleaf file and suggested parts of the results and discussion sections. M.G.R. did the local fitting of the 13CO2, 13CO and OCS features, determined the upper limits and wrote part of the Methods section. Z.L.S. and F.S. reduced the NIRCam data, with contributions to the reduction scripts from H.D., and wrote part of the Methods section. T.L.B. benchmarked the NIRSpec spectra to validate them. A.C.A.B. helped to design the original programme, co-managed the team, organized the NIRCam analysis and commented on the draft. W.A.B., P.C., S.B.C., H.M.C., M.N.D., E.E., J.E., H.F., R.T.G., D.H., S.I., I.J.-S., M.J., J.K.J., L.E.K., D.C.L., M.R.S.M., B.A.M., G.J.M., K.I.Ö., M.E.P., T.S., J.A.S., E.F.v.D. and H.L. commented on the draft. Z.L.S., F.S., E.E., J.E., H.F. and T.S. also contributed to the observational design and analysis of the NIRCam data. H.L. helped motivate the original proposal, co-managed the team and organized the laboratory data used for the analysis. All authors participated in discussion of the observations, analysis and interpretation of the results.

Corresponding author

Correspondence to M. K. McClure.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global fit of the combined spectrum for NIR38.

Combined NIRSpec and MIRI/LRS spectrum of the NIR38 source (black), with the ENIIGMA fitting tool model (green). Each component in the fit is colour-coded. Panel a shows the entire range between 2.5 and 13 μm and the residuals of the fit. Panels b-f show a zoom-in of selected ranges corresponding to the major ice components. Small insets show the fit of 12CO2 (Panel b), 13CO2 (Panel c), 13CO (panel d) and CH4 (panel e).

Extended Data Fig. 2 Global fit of the combined spectrum for J110621.

Combined NIRSpec and MIRI/LRS spectrum of the J110621 source (black), with the ENIIGMA fitting tool model (green). Each component in the fit is colour-coded. Panel a shows the entire range between 2.5 and 13 μm and the residuals of the fit. Panels b-f show a zoom-in of selected ranges corresponding to the major ice components. Small insets show the fit of 13CO2 (Panel c), 13CO (panel d) and CH4 (panel e).

Extended Data Fig. 3 Confidence interval analysis for the global fits to NIR38 and J110621.

Corner plot showing the confidence interval analysis of the coefficients in the linear combination. The grey-scale contours show the differences in the χ2 maps (Δ) which depends on the degree of freedom (ν) and the statistical significance (α). The yellow and red line contours indicate 2 and 3σ confidence intervals. The left and right plots are for NIR38 (AV = 60 mag) and J110621 (AV = 95 mag), respectively. Note that the ice species assigned to w1-w6 is automatically determined and differs between the left and right panels.

Extended Data Fig. 4 Observed absorption profile of the 13CO2 asymmetric stretching, around 4.39 μm, in NIR38 (left panel) and J110621 (right panel).

To demonstrate the ice chemical environment that best reproduces the observed feature peak, the coloured curves show the scaled profiles of 13CO2 in laboratory spectra of the following ice mixtures at 10 K: pure CO2 (blue), H2O:CO2 (orange), CO2:CO (green), and CO2:CH3OH (red). In all the ice mixtures, CO2 is diluted in a ratio of ~ 1:10, with 12CO2/13CO2 ~ 90.

Extended Data Fig. 5 Observed absorption profile of the 13CO stretching, around 4.78 μm, towards NIR38 (left panel) and J110621 (right panel).

The laboratory spectra of pure 13CO ice at 10 K are also shown in blue.

Extended Data Fig. 6 Silicate subtraction during optical depth calculation for NIR38 and J110621.

MIRI/LRS spectrum of the two background stars before (black) and after (blue) silicate subtraction. The grey dashed line is the synthetic silicate spectrum used to remove the silicate absorption toward the background stars.

Extended Data Fig. 7 Observed absorption profile of the OCN feature around 4.62 μm, towards NIR38 (left panel) and J110621 (right panel).

A Gaussian fit using the parameters found in the literature62 is also shown.

Extended Data Fig. 8 Observed absorption profile of the C=O stretching of OCS, around 4.9 μm, towards NIR38 (left panel) and J110621 (right panel).

The coloured curves show the profile of the OCS in laboratory ice spectra of pure OCS(blue), H2O:OCS (orange), and CH3OH:OCS (green), all at 17.5 K.

Extended Data Fig. 9 Optical depths of the AV = 60 mag (NIR38, left) and AV = 95 mag (J110621, right) background sources in the 3.2–3.8 μm (3125 - 2631 cm−1) region.

Top: The red line shows the optical depths of CH3OH laboratory data at 15K scaled for the C–H stretching band around the 3.53 μm feature. Bottom: The blue Gaussian represents the likely NH3 H2O component centred at 3.47 μm and the red line again displays the CH3OH laboratory data but both are simultaneously scaled so the sum (in green) fits the data from 3.40-3.65 μm.

Extended Data Fig. 10 Map of the column density distribution in the region inferred from the Herschel far-infrared maps from 70 to 500 μm.

The cyan plus-signs indicate the locations of the Class I protostar Ced 110-IRS4, the Class 0 protostar ChamI-MMS and the clump Cha1-C2 going from the north-east (top-left) to south-west (bottom-right). The yellow box and cross indicate the location of the background stars NIR38 (AV ≈ 60 mag) and J110621 (AV ≈ 95 mag), respectively. The contours indicate increasing H2 column densities in steps of 5 × 1021 cm−2, starting at a value of 5 × 1021 cm−2 for the lowest contour (yellow line).

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClure, M.K., Rocha, W.R.M., Pontoppidan, K.M. et al. An Ice Age JWST inventory of dense molecular cloud ices. Nat Astron 7, 431–443 (2023). https://doi.org/10.1038/s41550-022-01875-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01875-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing