Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser desorption mass spectrometry with an Orbitrap analyser for in situ astrobiology


Laser desorption mass spectrometry (LDMS) enables in situ characterization of the organic content and chemical composition of planetary materials without requiring extensive sample processing. Coupled with an Orbitrap analyser capable of ultrahigh mass-resolving powers and accuracies, LDMS techniques facilitate the orthogonal detection of a wide range of biomarkers and classification of host mineralogy. Here an Orbitrap LDMS instrument that has been miniaturized for planetary exploration is shown to meet the performance standards of commercial systems and exceed key figures of merit of heritage spaceflight technologies, including those baselined for near-term mission opportunities. Biogenic compounds at area densities relevant to prospective missions to ocean worlds are identified unambiguously by redundant measurements of molecular ions (with and without salt adducts) and diagnostic fragments. The derivation of collision cross-sections serves to corroborate assignments and inform on molecular structure. Access to trace elements down to parts per million by weight levels provide insights into sample mineralogy and provenance. These analytical capabilities position the miniaturized LDMS described here for a wide range of high-priority mission concepts, such as those focused on life detection objectives (for example, Enceladus Orbilander) and progressive exploration of the lunar surface (for example, via the NASA Artemis Program).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The highly miniaturized LDMS instrument described here leverages an Orbitrap mass analyser to achieve ultrahigh mass resolution and accuracy.
Fig. 2: In both negative and positive mode, the miniaturized Orbitrap LDMS instrument achieves mass-resolving powers (mm > 105, FWHM at m/z 100) comparable to commercial standards.
Fig. 3: A single mass spectrum of an ocean world analogue sample illustrates the capability to detect and identify organic and inorganic components of planetary materials.
Fig. 4: After successful injection into the Orbitrap analyser, the axial motions of the analyte ions are detected via image current in the time domain transient.
Fig. 5: The Orbitrap LDMS instrument can detect trace elements down to ppmw concentrations, as illustrated by the measurement of REEs in NIST SRM610.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data presented in this study are available in the Supplementary Information.


  1. Johnson, S. S., Anslyn, E. V., Graham, H. V., Mahaffy, P. R. & Ellington, A. D. Fingerprinting non-terran biosignatures. Astrobiology 18, 915–922 (2018).

    Article  ADS  Google Scholar 

  2. Marshall, S. M., Murray, A. R. G. & Cronin, L. A probabilistic framework for identifying biosignatures using Pathway Complexity. Philos. Trans. R. Soc. Lond. A 375, 20160342 (2017).

    ADS  Google Scholar 

  3. Chan, M. A. et al. Deciphering biosignatures in planetary contexts. Astrobiology 19, 1075–1102 (2019).

    Article  ADS  Google Scholar 

  4. Neveu, M., Hays, L. E., Voytek, M. A., New, M. H. & Schulte, M. D. The ladder of life detection. Astrobiology 18, 1375–1402 (2018).

    Article  ADS  Google Scholar 

  5. Lukmanov, R. A. et al. On topological analysis of fs-LIMS data. Implications for in situ planetary mass spectrometry. Front. Artif. Intell. (2021).

  6. Johnston, S., Gehrels, G., Valencia, V. & Ruiz, J. Small-volume U–Pb zircon geochronology by laser ablation-multicollector-ICP-MS. Chem. Geol. 259, 218–229 (2009).

    Article  ADS  Google Scholar 

  7. Sagdeev, R. Z. & Zakharov, A. V. Brief history of the Phobos mission. Nature 341, 581–585 (1989).

    Article  ADS  Google Scholar 

  8. Managadze, G. G. et al. Study of the main geochemical characteristics of Phobos’ regolith using laser time-of-flight mass spectrometry. Sol. Syst. Res. 44, 376–384 (2010).

    Article  ADS  Google Scholar 

  9. Goesmann, F. et al. The Mars Organic Molecule Analyzer (MOMA) instrument: characterization of organic material in Martian sediments. Astrobiology 17, 655–685 (2017).

    Article  ADS  Google Scholar 

  10. Grubisic, A. et al. Laser desorption mass spectrometry at Saturn’s moon Titan. Int. J. Mass Spectrom. 470, 116707 (2021).

    Article  Google Scholar 

  11. Chumikov, A. E., Cheptsov, V. S., Managadze, N. G. & Managadze, G. G. LASMA-LR laser-ionization mass spectrometer onboard Luna-25 and Luna-27 missions. Sol. Syst. Res. 55, 550–561 (2021).

    Article  ADS  Google Scholar 

  12. Briois, C. et al. Orbitrap mass analyser for in situ characterisation of planetary environments: performance evaluation of a laboratory prototype. Planet. Space Sci. 131, 33–45 (2016).

    Article  ADS  Google Scholar 

  13. Willhite, L. et al. CORALS: a laser desorption/ablation Orbitrap mass spectrometer for in situ exploration of Europa. In 2021 IEEE Aerospace Conference 50100, 1–13 (2021).

  14. Makarov, A. A. Mass spectrometer US patent 5,886,346 (1999).

  15. Arevalo, R. Jr, Ni, Z. & Danell, R. M. Mass spectrometry and planetary exploration: a brief review and future projection. J. Mass Spectrom. 55, e4454 (2020).

    Article  ADS  Google Scholar 

  16. Makarov, A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72, 1156–1162 (2000).

    Article  Google Scholar 

  17. Arevalo, R. Jr et al. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. Rapid Commun. Mass Spectrom. (2018).

    Article  Google Scholar 

  18. Yu, A. W. et al. The Lunar Orbiter Laser Altimeter (LOLA) laser transmitter. In 2011 IEEE International Geoscience and Remote Sensing Symposium 3378–3379 (2011).

  19. Malloci, G., Mulas, G. & Joblin, C. Electronic absorption spectra of PAHs up to vacuum UV. Astron. Astrophys. 426, 105–117 (2004).

    Article  ADS  Google Scholar 

  20. Cloutis, E. A. et al. Ultraviolet spectral reflectance properties of common planetary minerals. Icarus 197, 321–347 (2008).

    Article  ADS  Google Scholar 

  21. Fahey, M. et al. Ultraviolet laser development for planetary lander missions. In 2020 IEEE Aerospace Conference 1–11 (2020).

  22. Büttner, A. et al. Optical design and characterization of the MOMA laser head flight model for the ExoMars 2020 mission. In Proc. SPIE 11180, International Conference on Space Optics—ICSO 2018, 111805H (12 July 2019);

  23. Jenner, F. E. & O’Neill, H. S. C. Major and trace analysis of basaltic glasses by laser-ablation ICP-MS. Geochem. Geophys. Geosyst. (2012).

  24. Humayun, M., Davis, F. A. & Hirschmann, M. M. Major element analysis of natural silicates by laser ablation ICP-MS. J. Anal. Spectrom. 25, 998–1005 (2010).

    Article  Google Scholar 

  25. Longerich, H. P., Günther, D. & Jackson, S. E. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius J. Anal. Chem. 355, 538–542 (1996).

    Article  Google Scholar 

  26. Alterman, M. A., Gogichayeva, N. V. & Kornilayev, B. A. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based amino acid analysis. Anal. Biochem. 335, 184–191 (2004).

    Article  Google Scholar 

  27. Sarracino, D. & Richert, C. Quantitative MALDI-TOF MS of oligonucleotides and a nuclease assay. Bioorg. Med. Chem. Lett. 6, 2543–2548 (1996).

    Article  Google Scholar 

  28. Chumbley, C. W. et al. Absolute quantitative MALDI imaging mass spectrometry: a case of rifampicin in liver tissues. Anal. Chem. 88, 2392–2398 (2016).

    Article  Google Scholar 

  29. Zubarev, R. A. & Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296 (2013).

    Article  Google Scholar 

  30. Makarov, A., Denisov, E., Lange, O. & Horning, S. Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J. Am. Soc. Mass Spectrom. 17, 977–982 (2006).

  31. Hoegg, E. D. et al. Isotope ratio characteristics and sensitivity for uranium determinations using a liquid sampling–atmospheric pressure glow discharge ion source coupled to an Orbitrap mass analyzer. J. Anal. Spectrom. 31, 2355–2362 (2016).

    Article  Google Scholar 

  32. Hofmann, A. E. et al. Using Orbitrap mass spectrometry to assess the isotopic compositions of individual compounds in mixtures. Int. J. Mass Spectrom. 457, 116410 (2020).

    Article  Google Scholar 

  33. Hardouin, J. Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom. Rev. 26, 672–682 (2007).

    Article  ADS  Google Scholar 

  34. Franchi, M., Ferris, J. P. & Gallori, E. Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environments. Orig. Life Evol. Biosph. 33, 1–16 (2003);

  35. Trumbo, S. K., Brown, M. E. & Hand, K. P. Sodium chloride on the surface of Europa. Sci. Adv. 5, eaaw7123 (2019).

    Article  ADS  Google Scholar 

  36. Postberg, F., Schmidt, J., Hillier, J. et al. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011).

  37. De Sanctis, M. C. et al. Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nat. Astron. 4, 786–793 (2020).

    Article  ADS  Google Scholar 

  38. Hand, K. P. et al. Report of the Europa Lander Science Definition Team (NASA, 2017).

  39. Hendrix, A. R. et al. The NASA Roadmap to Ocean Worlds. Astrobiology 19, 1–27 (2018);

  40. MacKenzie, S. M. et al. The Enceladus Orbilander mission concept: balancing return and resources in the search for life. Planet. Sci. J. 2, 77 (2021).

    Article  Google Scholar 

  41. Waite, J. H. Jr et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009).

    Article  ADS  Google Scholar 

  42. Altwegg, K., Balsiger, H. & Fuselier, S. A. Cometary chemistry and the origin of icy solar system bodies: the view after Rosetta. Annu. Rev. Astron. Astrophys. 57, 113–155 (2019).

    Article  ADS  Google Scholar 

  43. Guzman, M. et al. Collecting amino acids in the Enceladus plume. Int. J. Astrobiol. 18, 47–59 (2018).

    Article  ADS  Google Scholar 

  44. Takayama, M. In-source decay characteristics of peptides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom. 12, 420–427 (2001).

    Article  ADS  Google Scholar 

  45. Katta, V., Chow, D. T. & Rohde, M. F. Applications of in-source fragmentation of protein ions for direct sequence analysis by delayed extraction MALDI-TOF mass spectrometry. Anal. Chem. 70, 4410–4416 (1998).

    Article  Google Scholar 

  46. Sanders, J. D. et al. Determination of collision cross-sections of protein ions in an Orbitrap mass analyzer. Anal. Chem. 90, 5896–5902 (2018).

    Article  Google Scholar 

  47. Makarov, A. & Denisov, E. Dynamics of ions of intact proteins in the Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. 20, 1486–1495 (2009).

    Article  Google Scholar 

  48. Anupriya, Jones, C. A. & Dearden, D. V. Collision cross sections for 20 protonated amino acids: Fourier transform ion cyclotron resonance and ion mobility results. J. Am. Soc. Mass Spectrom. 27, 1366–1375 (2016).

    Article  ADS  Google Scholar 

  49. Chyba, C. & Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125–132 (1992).

    Article  ADS  Google Scholar 

  50. Poppe, A. R. An improved model for interplanetary dust fluxes in the outer Solar System. Icarus 264, 369–386 (2016).

    Article  ADS  Google Scholar 

  51. Taylor, S. R. & McLennan, S. M. in Handbook on the Physics and Chemistry of Rare Earths Vol. 11, 485–578 (eds Gschneidner, K. A. J. & Eyring, l.) (Elsevier, 1988).

  52. Jawin, E. R. et al. Lunar science for landed missions workshop findings report. Earth Space Sci. 6, 2–40 (2019).

    Article  ADS  Google Scholar 

  53. National Academies of Sciences, Engineering, and Medicine. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 20232032 (National Academies Press, 2022).

  54. Artemis III Science Definition Team Report (NASA, 2020).

  55. Steinbrügge, G. et al. Brine migration and impact-induced cryovolcanism on Europa. Geophys. Res. Lett. 47, e2020GL090797 (2020).

    Article  ADS  Google Scholar 

  56. Danell, R. et al. A full featured, flexible, and inexpensive 2D and 3D ion trap control architecture and software package. In Proc. 58th ASMS Conference on Mass Spectrometry and Allied Topics 283889 (2010).

Download references


This study was supported by the University of Maryland Faculty Incentive Program (PI: R.A. Jr), NASA Goddard Space Flight Center Internal Research and Development Program (PIs: A.G. and A.Y.), NASA ROSES ICEE 2 Grant 80NSSC19K0610 (PI: R.A. Jr), ROSES DALI Grant 80NSSC19K0768 (PI: R.A. Jr) and CRESST II Award Number 80GSFC21M0002 (PI: A.S.).

Author information

Authors and Affiliations



The dataset presented in this study was collected and analysed by R.A. Jr, L.W., A.B., Z.N. and S.R. The system-level architecture of the miniaturized instrument and the operational sequence of the experiments conducted were defined by R.A. Jr, A.S., R.D., A.G., C.B., L.T., F.C. and A.M. Requirements for the ion optics and SIMION models of ion transmission were provided by A.S. The mechanical design of the mass analyser assembly and custom series of ion optics were led by C.G. and N.M. The design and build of the prototype UV laser system was led by A.Y. and M.F. All authors contributed to the interpretation of the results and editing of the manuscript.

Corresponding author

Correspondence to Ricardo Arevalo Jr.

Ethics declarations

Competing interests

A.M. is an employee of Thermo Fisher Scientific, the manufacturer of the Orbitrap device leveraged in the miniaturized instrument described here.

Peer review

Peer review information

Nature Astronomy thanks Marek Tulej and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–8 and Table 1.

Source data

Source Data Fig. 2

Raw time domain transients for Fig. 2.

Source Data Fig. 3

Raw time domain transient for Fig. 3.

Source Data Fig. 5

Raw time domain transient for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arevalo, R., Willhite, L., Bardyn, A. et al. Laser desorption mass spectrometry with an Orbitrap analyser for in situ astrobiology. Nat Astron 7, 359–365 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing