Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane


Young lunar mare basalts are recent volcanic products distributed mainly in the Procellarum-KREEP-Terrane. However, these young basalts were never investigated in situ until 2013 by Chang’e-3, and then sampled by Chang’e-5 in 2020. Using the returned Chang’e-5 samples as ground truth, and examining Moon Mineralogy Mapper data globally, we found the young basalts containing less abundant olivine (<10%) than previously suggested. The Chang’e-3 and Chang’e-5 basalts belong to a type of underrepresented basalt. We reassessed the model ages of the young basalts using the new chronology function calibrated by the Chang’e-5 samples and found the young basalts have a trend of increasing TiO2 abundance with time. The young basalts with an age of around 2.0 Ga (billion years ago) are widespread in the Procellarum-KREEP-Terrane, including the Chang’e-5 unit. This indicates mare volcanism was still active at that time and an additional heat source or mechanism may be needed compared to older basalts. Young mare samples from Chang’e-5 and other potential sites are needed to constrain the late lunar thermal and volcanic history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ investigation locations of the CE-3 and CE-5 missions.
Fig. 2: Mineral abundance and composition of the CE-5 sample.
Fig. 3: Continuum-removed reflectance obtained by CE-3 and CE-5 on the lunar surface.
Fig. 4: Mineralogy of Em4 and the young mare basalts.
Fig. 5: Model ages of the young mare basalts determined through CSFD measurements using the new lunar chronology function.
Fig. 6: Age and composition of mare basalts in the PKT.

Similar content being viewed by others

Data availability

CE-3 VIS-NIR Spectrometer data and CE-5 LMS data are available from China’s Lunar and Planetary Data Release System ( and also the Supplementary Tables 1 and 2 of this paper. CE-5 sample CE5C0400 (YJFM00403) was obtained by application from CNSA, according to the Notice of CNSA on the Distribution of Procedures for Requesting Lunar Samples ( The NASA Reflectance Experiment Lab (RELAB) data are from the PDS Geoscience Node Spectral Library ( Thermally corrected M3 data are from S. Li. Experiments were conducted in the State Key Laboratory of Geological Processes and Mineral Resources and the State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, and State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University.


  1. Staid, M. I. & Pieters, C. M. Mineralogy of the last lunar basalts: results from Clementine. J. Geophys. Res. Planets 106, 27887–27900 (2001).

    Article  ADS  Google Scholar 

  2. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. Planets 105, 4197–4216 (2000).

    Article  ADS  Google Scholar 

  3. Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G. Ages and stratigraphy of lunar mare basalts: a synthesis. Spec. Pap. Geol. Soc. Am. 477, 1–51 (2011).

    Google Scholar 

  4. Pieters, C. M. et al. Late high-titanium basalts of the Western Maria: geology of the Flamsteed region of Oceanus Procellarum. J. Geophys. Res. Solid Earth 85, 3913–3938 (1980).

    Article  Google Scholar 

  5. Staid, M. I. et al. The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan-1. J. Geophys. Res. Planets (2011).

  6. Zhang, X. et al. Mineralogical variation of the late stage mare basalts. J. Geophys. Res. Planets 121, 2063–2080 (2016).

    Article  ADS  Google Scholar 

  7. Varatharajan, I., Srivastava, N. & Murty, S. V. S. Mineralogy of young lunar mare basalts: assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1. Icarus 236, 56–71 (2014).

    Article  ADS  Google Scholar 

  8. Lucey, P. G. Mineral maps of the Moon. Geophys. Res. Lett. (2004).

  9. Tartèse, R. et al. Constraining the evolutionary history of the Moon and the inner Solar System: a case for new returned lunar samples. Space Sci. Rev. 215, 54 (2019).

    Article  ADS  Google Scholar 

  10. Zhao, J. et al. Geologic characteristics of the Chang’E-3 exploration region. Sci. China Phys. Mech. Astron 57, 569–576 (2014).

    Article  ADS  Google Scholar 

  11. Zhou, C. et al. Scientific objectives and payloads of the lunar sample return mission—Chang’E-5. Adv. Space Res. 69, 823–836 (2022).

    Article  ADS  Google Scholar 

  12. Qian, Y. et al. Geology and scientific significance of the Rümker Region in Northern Oceanus Procellarum: China’s Chang’E-5 landing region. J. Geophys. Res. Planets 123, 1407–1430 (2018).

    Article  ADS  Google Scholar 

  13. Che, X. et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 374, 887–890 (2021).

    Article  ADS  Google Scholar 

  14. Li, Q.-L. et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    Article  ADS  Google Scholar 

  15. Li, C. et al. The Chang’e 3 mission overview. Space Sci. Rev. 190, 85–101 (2015).

    Article  ADS  Google Scholar 

  16. Sun, L. & Lucey, P. G. Unmixing mineral abundance and Mg# with radiative transfer theory: modeling and applications. J. Geophys. Res. Planets 126, e2020JE006691 (2021).

    Article  ADS  Google Scholar 

  17. Pieters, C. M. et al. The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 96, 500–505 (2009).

    Google Scholar 

  18. Yue, Z. et al. Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples. Nat. Astron 6, 541–545 (2022).

    Article  ADS  Google Scholar 

  19. van der Bogert, C. H. & Hiesinger, H. Which samples are needed for improved calibration of the lunar cratering chronology? In Proc. 51st Lunar and Planetary Science Conference Abstract 2088 (Lunar and Planetary Institute, 2020).

  20. Tian, H.-C. et al. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature 600, 59–63 (2021).

    Article  ADS  Google Scholar 

  21. Li, C. et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl Sci. Rev. 9, nwab188 (2022).

    Article  MathSciNet  Google Scholar 

  22. He, Q. et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: the case of the Chang’e-5 mare basalts. Icarus 383, 115082 (2022).

    Article  Google Scholar 

  23. Adams, J. B. in Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals (ed. Karr, C. B.) 91–116 (Academic Press, 1975).

  24. Klima, R. L., Dyar, M. D. & Pieters, C. M. Near-infrared spectra of clinopyroxenes: effects of calcium content and crystal structure. Meteorit. Planet. Sci. 46, 379–395 (2011).

    Article  ADS  Google Scholar 

  25. Morimoto, N. Nomenclature of pyroxenes. Mineral. Petrol. 39, 55–76 (1988).

    Article  ADS  Google Scholar 

  26. Liu, B. et al. Data processing and preliminary results of the Chang’e-3 VIS/NIR imaging spectrometer in-situ analysis. Res. Astron. Astrophys. 14, 1578–1594 (2014).

    Article  ADS  Google Scholar 

  27. Ling, Z. et al. Correlated compositional and mineralogical investigations at the Chang′e-3 landing site. Nat. Commun. 6, 8880 (2015).

    Article  ADS  Google Scholar 

  28. Li, S. & Milliken, R. E. An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and Diviner temperatures. J. Geophys. Res. Planets 121, 2081–2107 (2016).

    Article  ADS  Google Scholar 

  29. Qian, Y., Xiao, L., Head, J. W. & Wilson, L. The long sinuous Rille system in Northern Oceanus Procellarum and its relation to the Chang’e-5 returned samples. Geophys. Res. Lett. 48, e2021GL092663 (2021).

    Article  ADS  Google Scholar 

  30. Wang, Y. & Wu, B. Active machine learning approach for crater detection from planetary imagery and digital elevation models. IEEE Trans. Geosci. Remote Sensing 57, 5777–5789 (2019).

  31. Stadermann, A. C. et al. The age of lunar mare basalts south of the Aristarchus Plateau and effects of secondary craters formed by the Aristarchus event. Icarus 309, 45–60 (2018).

    Article  ADS  Google Scholar 

  32. Wieczorek, M. A. et al. The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60, 221–364 (2006).

    Article  Google Scholar 

  33. Stadermann, A. C., Jolliff, B. L., Krawczynski, M. J., Hamilton, C. W. & Barnes, J. J. Analysis and experimental investigation of Apollo sample 12032,366-18, a chemically evolved basalt from the Moon. Meteorit. Planet. Sci. 57, 794–816 (2022).

    Article  ADS  Google Scholar 

  34. Lemelin, M. et al. The compositions of the lunar crust and upper mantle: Spectral analysis of the inner rings of lunar impact basins. Planet. Space Sci. 165, 230–243 (2019).

    Article  ADS  Google Scholar 

  35. Schade, U., Wäsch, R. & Moroz, L. Near-infrared reflectance spectroscopy of Ca-rich clinopyroxenes and prospects for remote spectral characterization of planetary surfaces. Icarus 168, 80–92 (2004).

    Article  ADS  Google Scholar 

  36. Kato, S. et al. Magma source transition of lunar mare volcanism at 2.3 Ga. Meteorit. Planet. Sci. 52, 1899–1915 (2017).

    Article  ADS  Google Scholar 

  37. Qian, Y. et al. Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett. 555, 116702 (2021).

    Article  Google Scholar 

  38. Qian, Y. et al. China’s Chang’e-5 landing site: geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 561, 116855 (2021).

    Article  Google Scholar 

  39. Qian, Y. et al. Copernican-aged (<200 Ma) impact ejecta at the Chang’e-5 landing site: statistical evidence from crater morphology, morphometry, and degradation mode. Geophys. Res. Lett. 48, e2021GL095341 (2021).

    Article  ADS  Google Scholar 

  40. Wu, Y., Wang, Z., Cai, W. & Lu, Y. The absolute reflectance and new calibration site of the Moon. Astron. J. 155, 213 (2018).

    Article  ADS  Google Scholar 

  41. Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, 2012).

  42. Ajith Kumar, P. & Kumar, S. Estimation of optical maturity parameter for lunar soil characterization using Moon Mineralogy Mapper (M3). Adv. Space Res. 53, 1694–1719 (2014).

    Article  ADS  Google Scholar 

  43. Cloutis, E. A. & Gaffey, M. J. Pyroxene spectroscopy revisited: spectral-compositional correlations and relationship to geothermometry. J. Geophys. Res. Planets 96, 22809–22826 (1991).

    Article  ADS  Google Scholar 

  44. Chen, Y. et al. The thickness and volume of young basalts within Mare Imbrium. J. Geophys. Res. Planets 123, 630–645 (2018).

    Article  ADS  Google Scholar 

  45. Michael, G. G. Planetary surface dating from crater size–frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).

    Article  ADS  Google Scholar 

  46. Neukum, G. Meteorite Bombardment and Dating of Planetary Surfaces (Univ. Munich, 1983).

Download references


We thank the China National Space Administration for organizing and implementing the CE-3 and CE-5 missions and providing access to the sample and data. We thank S. Li for sharing with us the thermally corrected M3 data and Y. Wu for discussing the CE-3 VNIS data. This research is funded by the National Key R&D Programme of China (grant no. 2020YFE0202100), the Pre-Research Project on Civil Aerospace Technologies (grant nos. D020101, D020205) and the National Natural Science Foundation of China (grant nos. 41830214, 42172337). Y.Q. is funded by the China Scholarship Council grant no. 201906410015. J.M. and B.Y. were supported by the Hong Kong Research Grants Council Research Impact Fund Project no. R5043-19.

Author information

Authors and Affiliations



Y.Q., L.X., Z.W., Z.S. and Q.H. designed this research. Z.W., Q.H., X.W., K.Z., Z.H. and Z.S. applied the CE-5 samples from CNSA. Y.Q., L.S., J.M., B.Y. and S.Z. conducted spectral analysis. Z.S., K.C. and M.D. collected and analysed Raman data. Q.H., Y.L. and F.P. collected and analysed electron probe data. Z.W., Y.L. and W.S. collected and analysed TIMA data. Y.W. and B.W. detected impact craters. Y.Q., Z.S., Q.H., L.X., Z.W., J.W.H., L.S., Y.W., B.W., X.W., B.L., K.C., Y.L., M.D., W.S., F.P., J.M., B.Y., Jiawei Z., S.Z., J.H., Jiannan Z., J.W., K.Z. and Z.H. wrote the manuscript. Y.Q., Z.S., Q.H. and Y.L. produced figures. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Long Xiao or Zaicong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Joshua Snape, Katherine Joy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Boundary of the young mare basalts.

(a) Geological units of the young mare basalts (white lines). The pink polygon indicates the crater counting areas. The basemap is a LROC WAC image (NASA/GSFC/ASU). (b) Clementine UVVIS false color map of the young mare basalts. (c) LROC WAC image of northern Oceanus Procellarum (NASA/GSFC/ASU). (d) Kaguya MI color composite of northern Oceanus Procellarum. The yellow triangle represents the CE-5 landing site. The white lines denote the geological boundaries.

Extended Data Fig. 2 Mineralogy of Em4 and the young mare basalts.

(a-c) Band II center position, low-Ca pyroxene abundance, and plagioclase abundance of Em4. (d-f) Band II center position, low-Ca pyroxene abundance, and plagioclase abundance of the young mare basalts. CE-5 landed on the Em4 unit. The basemap is a LROC WAC image (NASA/GSFC/ASU).

Extended Data Fig. 3 Mineralogy of Em4 and young mare basalts.

(a, b) Mineralogy of the Em4 unit. (c, d) Mineralogy of the young mare basalts. The olivine abundance is mostly smaller than 10% and high-Ca pyroxene is richer than low-Ca pyroxene.

Extended Data Fig. 4 Compositions of the Apollo and Chang’e mare basalts.

CE-3, CE-5, and A-12 12032, 366-18 represent a type of underrepresented young mare basalt in the Apollo collections. A-11 represent Apollo 11 and so on. This figure is modified from Che et al.13.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Tables 1 and 2.

Supplementary Data 1

Young mare basalt geological boundaries.

Supplementary Data 2

Chang’e-5 sample EMPA, Raman and TIMA results.

Supplementary Data 3

Chang’e-3, Chang’e-5 and RELAB spectra.

Supplementary Data 4

M3 spectra.

Supplementary Data 5

Young mare basalt CSFD data.

Supplementary Data 6

Mare basalt age, composition and mineralogy data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., She, Z., He, Q. et al. Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. Nat Astron 7, 287–297 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing