Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by the Chang’e-5 sample


Although ferric iron indisputably exists on the highly reducing surface of the Moon, its formation mechanism and evolution are still under debate. Here we show that micrometeorite impact-induced charge disproportionation of iron could have produced the large amounts of ferric iron (average Fe3+/∑Fe > 0.4) in agglutinate melts returned by China’s Chang’e-5 mission. The charge disproportionation reaction synchronously generated nanophase metallic iron (npFe0), and quantitative analyses of iron valence indicate that it is a dominant pathway for formation of npFe0 within the lunar agglutinate glass. The discovery of the charge disproportionation reaction in the agglutinates suggests that much more Fe3+ could be present on the Moon than previously thought, and that its abundance is progressively increasing with micrometeoroid impacts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microscopic characteristics of npFe0 occurring in CE5 agglutinate glass.
Fig. 2: Chemical oxidation states of iron in npFe0 and agglutinate glass.
Fig. 3: Estimation of Fe3+/∑Fe ratio in the Chang’e-5 agglutinate glass.

Data availability

The experiment data that support the findings of this study are available via the figshare repository at (ref. 43).


  1. McCanta, M. C., Dyar, M. D., Lanzirotti, A., Newville, M. & Breitenfeld, L. B. In-situ mapping of ferric iron variations in lunar glasses using X-ray absorption spectroscopy. Am. Mineral. 104, 453–458 (2019).

    Article  ADS  Google Scholar 

  2. Grossman, L., Beckett, J. R., Fedkin, A. V., Simon, S. B. & Ciesla, F. J. Redox conditions in the solar nebula: observational, experimental, and theoretical constraints. Rev. Mineral. Geochem. 68, 93–140 (2008).

    Article  Google Scholar 

  3. Ronald Frost, B. Introduction to oxygen fugacity and its petrologic importance. Rev. Mineral. Geochem. 25, 1–9 (1991).

    Google Scholar 

  4. Taylor, G. J. et al. in Lunar Sourcebook. A User’s Guide to the Moon (eds Heiken, G. H. et al.) 183–284 (Cambridge University Press, 1991).

  5. Housley, R. M., Blander, M., Abdel-Gawad, M., Grant, R. W. & Muir, A. H. Jr. Mössbauer spectroscopy of Apollo 11 samples. Geochim. Cosmochim. Acta Supp. 1, 2251–2268 (1970).

  6. McCanta, M. C. et al. In situ measurement of ferric iron in lunar glass beads using Fe-XAS. Icarus 285, 95–102 (2017).

    Article  ADS  Google Scholar 

  7. Burgess, K. D. & Stroud, R. M. Coordinated nanoscale compositional and oxidation state measurements of lunar space-weathered material. J. Geophys. Res. Planets 123, 2022–2037 (2018).

    Article  ADS  Google Scholar 

  8. Thompson, M. S., Zega, T. J., Becerra, P., Keane, J. T. & Byrne, S. The oxidation state of nanophase Fe particles in lunar soil: implications for space weathering. Meteorit. Planet. Sci. 51, 1082–1095 (2016).

    Article  ADS  Google Scholar 

  9. Li, S. et al. Widespread hematite at high latitudes of the Moon. Sci. Adv. 6, eaba1940 (2020).

    Article  ADS  Google Scholar 

  10. Dyar, M. D. & Consolmagno, G. J. Ferric iron in lunar glasses and the interpretation of lunar spectra. Proc. Lunar Planet. Sci. 13, 193–194 (1982).

    ADS  Google Scholar 

  11. Schürmann, K. & Hafner, S. S. On the amount of ferric iron in plagioclases from lunar igneous rocks. Proc. Lunar Planet. Sci. 3, 615–621 (1972).

  12. Niebuhr, H. H., Zeira, S. & Hafner, S. S. Ferric iron in plagioclase crystals from anorthosite 15415. Proc. Lunar Planet. Sci. 4, 971–982 (1973).

  13. Cocks, F. Lunar ice: adsorbed water on subsurface polar dust. Icarus 160, 386–397 (2002).

    Article  ADS  Google Scholar 

  14. Stopar, J. D., Jolliff, B. L., Speyerer, E. J., Asphaug, E. I. & Robinson, M. S. Potential impact-induced water–solid reactions on the Moon. Planet. Space Sci. 162, 157–169 (2018).

    Article  ADS  Google Scholar 

  15. Hicks, L. J. et al. Fe‐redox changes in Itokawa space‐weathered rims. Meteorit. Planet. Sci. 55, 2599–2618 (2020).

    Article  ADS  Google Scholar 

  16. Terada, K. et al. Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions. Nat. Astron. 1, 0026 (2017).

  17. Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. J. Geophys. Res. Planets 121, 1865–1884 (2016).

    Article  ADS  Google Scholar 

  18. Pieters, C. M. et al. Space weathering on airless bodies: resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1101–1107 (2000).

    Article  ADS  Google Scholar 

  19. Gu, L. et al. Space weathering of the Chang’e‐5 lunar sample from a mid‐high latitude region on the Moon. Geophys. Res. Lett. 9, e2022GL097875 (2022).

  20. Hapke, B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res. Planets 106, 10039–10073 (2001).

    Article  ADS  Google Scholar 

  21. Li, C. et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Nat. Sci. Rev. 9, nwab188 (2022).

    Article  MathSciNet  Google Scholar 

  22. Badyukov, D. D. Micrometeoroids: the flux on the Moon and a source of volatiles. Sol. Syst. Res. 54, 263–274 (2020).

    Article  ADS  Google Scholar 

  23. Basu, A. Nanophase Fe0 in lunar soils. J. Earth Syst. Sci. 114, 375–380 (2005).

    Article  ADS  Google Scholar 

  24. Basu, A., Wentworth, S. J. & Mckay, D. S. Heterogeneous agglutinitic glass and the fusion of the finest fraction (F3) model. Meteorit. Planet. Sci. 37, 1835–1842 (2002).

    Article  ADS  Google Scholar 

  25. Keller, L. P. & Clemett, S. J. Formation of nanophase iron in the lunar regolith. Proc. Lunar Planet. Sci. 32, 2097 (2001).

  26. James, C. L., Letsinger, S. L., Basu, A., Wentworth, S. J. & McKay, D. S. Size distribution of Fe0 globules in lunar agglutinitic glass. Proc. Lunar Planet. Sci. 33, 1827 (2002).

  27. Enju, S. et al. Condensation of cometary silicate dust using an induction thermal plasma system. II. Mg–Fe–Si–O–S system and the effects of sulfur and redox conditions. Astron. Astrophys. 661, A121 (2022).

    Article  Google Scholar 

  28. Garvie, L. A. J., Craven, A. J. & Brydson, R. Use of electron-energy loss near-edge fine structure in the study of minerals. Am. Mineral. 79, 411–425 (1994).

    Google Scholar 

  29. Garvie, L. A. J. & Buseck, P. R. Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature 396, 667–670 (1998).

    Article  ADS  Google Scholar 

  30. van Aken, P. A., Liebscher, B. & Styrsa, V. J. Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 25, 323–327 (1998).

    Article  ADS  Google Scholar 

  31. van Aken, P. A. & Liebscher, B. Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23 electron energy-loss near-edge spectra. Phys. Chem. Miner. 29, 188–200 (2002).

    Article  ADS  Google Scholar 

  32. McKay, D. S. et al. in Lunar Sourcebook. A User’s Guide to the Moon (eds Heiken, G. H. et al.) 285–356 (Cambridge University Press, 1991).

  33. Cooper, R. F., Fanselow, J. B., Weber, J. K. R., Merkley, D. R. & Poker, D. B. Dynamics of oxidation of a Fe2+-bearing aluminosilicate (basaltic) melt. Science 274, 1173–1176 (1996).

    Article  ADS  Google Scholar 

  34. Cooper, R. F., Fanselow, J. B. & Poker, D. B. The mechanism of oxidation of a basaltic glass: chemical diffusion of network-modifying cations. Geochim. Cosmochim. Acta 60, 3253–3265 (1996).

    Article  ADS  Google Scholar 

  35. Nanda, K. K., Sahu, S. N. & Behera, S. N. Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 13208 (2002).

    Article  ADS  Google Scholar 

  36. Judge, W. D., Allanore, A., Sadoway, D. R. & Azimi, G. E-logpO2 diagrams for ironmaking by molten oxide electrolysis. Electrochim. Acta 247, 1088–1094 (2017).

    Article  Google Scholar 

  37. Hu, J. & Sharp, T. G. Formation, preservation and extinction of high-pressure minerals in meteorites: temperature effects in shock metamorphism and shock classification. Prog. Earth Planet. Sci. 9, 6 (2022).

    Article  ADS  Google Scholar 

  38. Bindi, L., Shim, S.-H., Sharp, T. G. & Xie, X. Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. Sci. Adv. 6, eaay7893 (2020).

    Article  ADS  Google Scholar 

  39. Yakovlev, O. I., Dikov, Y. P. & Gerasimov, M. V. Effect of the disproportionation reaction of ferrous iron in impact-evaporation processes. Geochem. Int. 47, 134–142 (2009).

    Article  Google Scholar 

  40. Dikov, Y. P., Gerasimov, M. V., Yakovlev, O. I. & Ivanov, A. V. Valence state of iron in a condensate from the Luna 16 regolith. Petrology 17, 429–438 (2009).

    Article  Google Scholar 

  41. Cross, W., Iddings, J. P., Pirsson, L. V. & Washington, H. S. A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. J. Geol. 10, 555–690 (1902).

    Article  ADS  Google Scholar 

  42. Hanwell, M. D. et al. Tomviz: open source platform connecting image processing pipelines to GPU accelerated 3D visualization. Microsc. Microanal. 25, 408–409 (2019).

    Article  Google Scholar 

  43. Xian, H. Raw data for ‘Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by Chang’E-5 samples’. figshare (2022).

  44. Ground Research and Application System of China’s Lunar and Planetary Exploration Program. Chang’e 3 Topographic Camera Dataset (China National Space Administration, 2013);

Download references


We thank all the team members of China’s Chang’e Lunar Exploration Project for their hard work in returning lunar samples and CNSA for providing the lunar sample CE5C0400YJFM00408. We thank M. Chen for the helpful discussion on the early version of the scientific story. This study was supported by the Special Lunar Project of Chinese Academy of Sciences (ZDBS-SSW-JSC007-11) to Y.-G.X., the Director’s Fund of Guangzhou Institute of Geochemistry, CAS (2022SZJJZD-03) to J.Z., H.X, Y.Y. and X.L and the Youth Innovation Promotion Association CAS (2021353) to H.X. This is contribution No. IS-3264 from GIGCAS.

Author information

Authors and Affiliations



H.H. and Y.-G.X. supervised the project. H.X. and J.Z. designed the project. H.X. wrote the draft manuscript. H.X., Y.Y. and S.L. performed TEM-EELS data collection. H.X., Q.Z., H.Y. and A.T. performed SEM data collection. X.L., J. Xi, J. Xing and X.W. participated in data interpretation and editing of the manuscript.

Corresponding authors

Correspondence to Hongping He or Yi-Gang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks John Bridges and Thomas Zega for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Melt splashes on the surface of a CE5 agglutinate particle.

The brushed melts on the glass suggest repeated micrometeoroid impacts experienced by the agglutinate paticle.

Extended Data Fig. 2 Microscopic chemical compositions of the CE5 agglutinate glass.

HAADF-STEM image (a), elemental EDS maps (bh), and selected area EDS spectra (i) of the same area shown in Fig. 1c,d of the main text.

Extended Data Fig. 3 Peak position and shape comparation of intensity normalized Fe L2,3 EELS spectra of metallic Fe0, olivine, and hematite.

The Fe0 and Fe2+ have a typical Fe L3 peak positions at 708.1–708.9 eV while the Fe3+ has a typical Fe L3 peak position at 709.9 eV. The normalized intensity of the peak tail of Fe0 at 730 eV is 2 times higher than those of Fe2+ and Fe3+. The full width at half maximum (FWHM) of Fe0 L3 peak (3.9 eV) is larger than those of Fe2+ and Fe3+ L3 peaks (~3.4 eV). The green arrow indicates the high-tail feature of Fe L-edge for metallic Fe0, while the orange arrow indicates the relative low-tail features of Fe L-edges for both olivine and hematite.

Extended Data Fig. 4 Iron valence distribution of the analyzed zone No. 2 from the CE5 agglutinate glass.

HAADF-STEM image (a), EELS Fe valent map (b), Fe3+/Fe ratios map (c), and the frequency and cumulative distributions (d) of the Fe3+/∑Fe ratios of a randomly chosen zone in the CE5 agglutinate.

Extended Data Fig. 5 Iron valence distribution of the analyzed zone No. 3 from the CE5 agglutinate glass.

HAADF-STEM image (a), EELS Fe valent map (b), Fe3+/∑Fe ratios map (c), and the frequency and cumulative distributions (d) of the Fe3+/∑Fe ratios of another randomly chosen zone in the CE5 agglutinate.

Extended Data Fig. 6 The relationship between the particle size and melting temperature (Tm) of iron nanospheres.

The bulk melting temperature (Tmb =1536ºC) is indicated by the blue dashed line.The black dotted line and arrow indicate estimated melting temperature (1524ºC) for the largest npFe0 in the studied agglutinate glass.

Extended Data Fig. 7 Schematic illustration of the micrometeorite impact-induced ferrous charge disproportionation reaction.

The topographic base was adapted with permission from Ground Research and Application System of China’s Lunar and Planetary Exploration Program (

Supplementary information

Supplementary Information

Supplementary Table 1.

Supplementary Video

3D-view movie of Fe valence state dispersion in agglutinate glass.

Supplementary Data 1

Abundance calculation details of various valent iron species in agglutinate glass.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xian, H., Zhu, J., Yang, Y. et al. Ubiquitous and progressively increasing ferric iron content on the lunar surfaces revealed by the Chang’e-5 sample. Nat Astron 7, 280–286 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing