Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A roadmap of gravitational wave data analysis

Abstract

As gravitational wave detectors improve, the rate at which sources are observed is steadily increasing. Scientific exploitation of these sources relies on careful analysis of the data, and so gravitational wave data analysis is also a rapidly growing and evolving field. In this Perspective, we provide an introduction to the basic concepts of gravitational wave data analysis with reference to current pipelines. We describe some of the computational advancements and machine learning techniques that have recently been introduced to reduce the computational burden of the analysis. We conclude by discussing some of the challenges that will be encountered in the analysis of data from future detectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differential merger rate as a function of primary mass m1 for the Gravitational Wave Transient Catalogs (GWTCs) 2 and 3.
Fig. 2: Global fit of LISA sources.

References

  1. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  2. Abbott, B. P. et al. GW150914: The Advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 116, 131103 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  3. Accadia, T. et al. Status of the Virgo project. Class. Quantum Gravity 28, 114002 (2011).

    Article  ADS  Google Scholar 

  4. Castelvecchi, D. Japan’s pioneering detector set to join hunt for gravitational waves. Nature 562, 9–10 (2019).

    Article  ADS  Google Scholar 

  5. Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 23, 3 (2020).

    Article  ADS  Google Scholar 

  6. Hild, S. et al. Sensitivity studies for third-generation gravitational wave observatories. Class. Quantum Gravity 28, 094013 (2011).

    Article  ADS  Google Scholar 

  7. Sathyaprakash, B. et al. Scientific objectives of Einstein Telescope. Class. Quantum Gravity 29, 124013 (2012).

    Article  ADS  Google Scholar 

  8. Reitze, D. et al. Cosmic Explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 035 (2019).

    Google Scholar 

  9. Amaro-Seoane et al. Laser interferometer space antenna. Preprint at https://arxiv.org/abs/1702.00786 (2017).

  10. McLaughlin, M. A. The North American Nanohertz Observatory for Gravitational Waves. Class. Quantum Gravity 30, 224008 (2013).

    Article  ADS  Google Scholar 

  11. Manchester, R. N. et al. The parkes pulsar timing array project. Publ. Astron. Soc. Pac. 30 (2013).

  12. Kramer, M. & Champion, D. J. The European Pulsar Timing Array and the Large European Array for Pulsars. Class. Quantum Gravity 30, 224009 (2013).

    Article  ADS  Google Scholar 

  13. Desvignes, G., Caballero, R. N. & Lentati, L. et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array. Mon. Not. R. Astron. Soc. 458, 3341–3380 (2016).

    Article  ADS  Google Scholar 

  14. Joshi, B. C. et al. Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics. J. Astrophys. Astron. 39, 51 (2018).

    Article  ADS  Google Scholar 

  15. Tarafdar, P. et al. The Indian Pulsar Timing Array: First data release.

  16. Verbiest, J. P. W. et al. The international pulsar timing array: First data release. Mon. Not. R. Astron. Soc. 458, 1267–1288 (2016).

    Article  ADS  Google Scholar 

  17. Arzoumanian, Z. et al. The NANOGrav 12.5 yr Data Set: Search for an isotropic stochastic gravitational-wave background. Astrophys. J. Lett. 905, L34 (2020).

    Article  ADS  Google Scholar 

  18. Goncharov, B. et al. On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 917, L19 (2021).

    Article  ADS  Google Scholar 

  19. Chen, S. et al. Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search. Mon. Not. R. Astron. Soc. 508, 4970–4993 (2021).

    Article  ADS  Google Scholar 

  20. Antoniadis, J. et al. The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Mon. Not. R. Astron. Soc. 510, 4873–4887 (2022).

    Article  ADS  Google Scholar 

  21. Hellings, R. W. & Downs, G. S. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett. 265, L39–L42 (1983).

    Article  ADS  Google Scholar 

  22. Klein, A. et al. Science with the space-based interferometer elisa: Supermassive black hole binaries. Phys. Rev. D 93, 024003 (2016).

    Article  ADS  Google Scholar 

  23. Sesana, A. Prospects for multiband gravitational-wave astronomy after gw150914. Phys. Rev. Lett. 116, 231102 (2016).

    Article  ADS  Google Scholar 

  24. Gerosa, D. et al. Multiband gravitational-wave event rates and stellar physics. Phys. Rev. D 99, 103004 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  25. Moore, C. J., Gerosa, D. & Klein, A. Are stellar-mass black-hole binaries too quiet for LISA? Mon. Not. R. Astron. Soc. 488, L94–L98 (2019).

    Article  ADS  Google Scholar 

  26. Babak, S. et al. Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals. Phys. Rev. D 95, 103012 (2017).

    Article  ADS  Google Scholar 

  27. Hils, D., Bender, P. L. & Webbink, R. F. Gravitational radiation from the galaxy. Astrophys. J. 360, 75 (1990).

    Article  ADS  Google Scholar 

  28. Burke, O., Gair, J. R., Simón, J. & Edwards, M. C. Constraining the spin parameter of near-extremal black holes using LISA. Phys. Rev. D 102, 124054 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  29. Speri, L. et al. Measuring accretion-disk effects with gravitational waves from extreme mass ratio inspirals. Preprint at https://arxiv.org/abs/2207.10086arXiv:2207.10086 (2022).

  30. Barack, L. & Cutler, C. Using LISA EMRI sources to test off-Kerr deviations in the geometry of massive black holes. Phys. Rev. D 75, 042003 (2007).

    Article  ADS  Google Scholar 

  31. Barack, L. & Cutler, C. LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D 69, 082005 (2004).

    Article  ADS  Google Scholar 

  32. Gair, J. Making Sense of Data: Introduction to Statistics for Gravitational-wave Astronomy. (Max Planck Institute forGravitational Physics, 2022); https://imprs-gw-lectures.aei.mpg.de/potsdam-2019/

  33. Abbott, R. et al. Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX 13, 100658 (2021).

    Article  Google Scholar 

  34. Owen, B. J. & Sathyaprakash, B. S. Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement. Phys. Rev. D 60, 022002 (1999).

    Article  ADS  Google Scholar 

  35. Moore, C. J., Cole, R. H. & Berry, C. P. L. Gravitational-wave sensitivity curves. Class. Quantum Gravity 32, 015014 (2015).

    Article  ADS  Google Scholar 

  36. Cannon, K. et al. Toward early-warning detection of gravitational waves from compact binary coalescence. Astrophys. J. 748, 136 (2012).

    Article  ADS  Google Scholar 

  37. Privitera, S. et al. Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data. Phys. Rev. D 89, 024003 (2014).

    Article  ADS  Google Scholar 

  38. Messick, C. et al. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys. Rev. D 95, 042001 (2017).

    Article  ADS  Google Scholar 

  39. Sachdev, S. et al. The GstLAL search analysis methods for compact binary mergers in Advanced LIGO’s second and Advanced Virgo’s first observing runs. Preprint at https://arxiv.org/abs/1901.08580 (2019).

  40. Hanna, C. et al. Fast evaluation of multidetector consistency for real-time gravitational wave searches. Phys. Rev. D 101, 022003 (2020).

    Article  ADS  Google Scholar 

  41. Nitz, A. H., Dal Canton, T., Davis, D. & Reyes, S. Rapid detection of gravitational waves from compact binary mergers with PyCBC Live. Phys. Rev. D 98, 024050 (2018).

    Article  ADS  Google Scholar 

  42. Abbott, B. P. et al. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Phys. Rev. D 100, 024004 (2019).

    Article  ADS  Google Scholar 

  43. Abbott, R. et al. All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs. Phys. Rev. D 105, 122001 (2022).

    Article  ADS  Google Scholar 

  44. Klimenko, S. et al. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys. Rev. D 93, 042004 (2016).

    Article  ADS  Google Scholar 

  45. Adams, T. et al. Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era. Class. Quantum Gravity 33, 175012 (2016).

    Article  ADS  Google Scholar 

  46. Luan, J., Hooper, S., Wen, L. & Chen, Y. Towards low-latency real-time detection of gravitational waves from compact binary coalescences in the era of advanced detectors. Phys. Rev. D 85, 102002 (2012).

    Article  ADS  Google Scholar 

  47. Hooper, S. et al. Summed parallel infinite impulse response (SPIIR) filters for low-latency gravitational wave detection. Phys. Rev. D 86, 024012 (2012).

    Article  ADS  Google Scholar 

  48. Sutton, P. J. et al. X-Pipeline: An analysis package for autonomous gravitational-wave burst searches. New J. Phys. 12, 053034 (2010).

    Article  ADS  Google Scholar 

  49. Auclair, P. et al. Cosmology with the Laser Interferometer Space Antenna. Preprint at https://doi.org/10.48550/arXiv.2204.05434 (2022)

  50. Bartolo, N. et al. Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves. J. Cosmol. Astropart. Phys. 12, 026 (2016).

    Article  ADS  Google Scholar 

  51. Zhu, X. J. et al. An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set. Mon. Not. R. Astron. Soc. 444, 3709–3720 (2014).

    Article  ADS  Google Scholar 

  52. Babak, S. et al. European Pulsar Timing Array Limits on continuous gravitational waves from individual supermassive black hole binaries. Mon. Not. R. Astron. Soc. 455, 1665–1679 (2016).

    Article  ADS  Google Scholar 

  53. Aggarwal, K. et al. The NANOGrav 11-year data set: Limits on gravitational waves from individual supermassive black hole binaries. Astrophys. J. 880, 2 (2019).

    Article  Google Scholar 

  54. Finn, L. S. Detection, measurement and gravitational radiation. Phys. Rev. D 46, 5236–5249 (1992).

    Article  ADS  Google Scholar 

  55. Whittle, P. The analysis of multiple stationary time series. Journal of the Royal Statistical Society. Series B (Methodological) 15, 125–139 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  56. Abbott, B. P. et al. A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Class. Quantum Gravity 37, 055002 (2020).

    Article  ADS  Google Scholar 

  57. Littenberg, T. B. & Cornish, N. J. Bayesian inference for spectral estimation of gravitational wave detector noise. Phys. Rev. D 91, 084034 (2015).

    Article  ADS  Google Scholar 

  58. Cornish, N. J. & Littenberg, T. B. BayesWave: Bayesian inference for gravitational wave bursts and instrument glitches. Class. Quantum Gravity 32, 135012 (2015).

    Article  ADS  Google Scholar 

  59. Vallisneri, M. Use and abuse of the fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects. Phys. Rev. D 77 (2008).

  60. Borhanian, S. GWBENCH: a novel Fisher information package for gravitational-wave benchmarking. Class. Quantum Gravity 38, 175014 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  61. Harms, J. et al. Gwfish: A simulation software to evaluate parameter-estimation capabilities of gravitational-wave detector networks. Preprint at https://arxiv.org/pdf/2205.02499.pdf (2022).

  62. Savalle, E., Gair, J., Speri, L. & Babak, S. Assessing the impact of instrumental calibration uncertainty on LISA science. Phys. Rev. D 106, 02200 (2022).

  63. Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis 2nd ed. edn (Chapman and Hall/CRC, 2004).

  64. Abbott, R. et al. The population of merging compact binaries inferred using gravitational waves through GWTC-3. Preprint at https://arxiv.org/abs/2111.03634 (2021).

  65. Abbott, R. et al. Population properties of compact objects from the second LIGO-Virgo Gravitational-Wave Transient Catalog. Astrophys. J. Lett. 913, L7 (2021).

    Article  ADS  Google Scholar 

  66. Abbott, R. et al. Constraints on the cosmic expansion history from GWTC-3. Preprint at https://arxiv.org/abs/2111.03604 (2021).

  67. Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017). [astro-ph.CO].

    Article  ADS  Google Scholar 

  68. Ashton, G. & Talbot, C. Bilby-MCMC: an MCMC sampler for gravitational-wave inference. Mon. Not. R. Astron. Soc. 507, 2037–2051 (2021).

    Article  ADS  Google Scholar 

  69. Meyer, R., Edwards, M. C., Maturana-Russel, P. & Christensen, N. Computational techniques for parameter estimation of gravitational wave signals. WIREs Comput Stat. 14, e1532 (2022).

  70. Smith, R. J. E., Ashton, G., Vajpeyi, A. & Talbot, C. Massively parallel Bayesian inference for transient gravitational-wave astronomy. Mon. Not. R. Astron. Soc. 498, 4492–4502 (2020).

    Article  ADS  Google Scholar 

  71. Ashton, G. et al. BILBY: A User-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).

    Article  ADS  Google Scholar 

  72. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  73. Skilling, J. Nested sampling for general bayesian computation. Bayesian Analysis 1, 833–859 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  74. Maggiore, M. & Oxford University Press. Gravitational Waves. Vol. 1, Vol. 1, (Oxford University Press, 2019).

  75. Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publ. Astron. Soc. Aust. 36, e010 (2019).

    Article  ADS  Google Scholar 

  76. Abbott, R. et al. Tests of general relativity with GWTC-3. Preprint at https://arxiv.org/abs/2112.06861 (2021).

  77. Vallisneri, M. & Yunes, N. Stealth bias in gravitational-wave parameter estimation. Phys. Rev. D 87, 102002 (2013).

    Article  ADS  Google Scholar 

  78. Moore, C. J., Finch, E., Buscicchio, R. & Gerosa, D. Testing general relativity with gravitational-wave catalogs: the insidious nature of waveform systematics. iScience 24, 102577 (2021).

  79. Speri, L. & Gair, J. R. Assessing the impact of transient orbital resonances. Phys. Rev. D 103, 124032 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  80. Shaik, F. H. et al. Impact of subdominant modes on the interpretation of gravitational-wave signals from heavy binary black hole systems. Phys. Rev. D 101, 124054 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  81. Field, S. E., Galley, C. R., Hesthaven, J. S., Kaye, J. & Tiglio, M. Fast prediction and evaluation of gravitational waveforms using surrogate models. Phys. Rev. X 4, 031006 (2014).

    Google Scholar 

  82. Field, S. E. et al. Reduced basis catalogs for gravitational wave templates. Phys. Rev. Lett. 106, 221102 (2011).

    Article  ADS  Google Scholar 

  83. Katz, M. L., Chua, A. J. K., Speri, L., Warburton, N. & Hughes, S. A. Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis. Phys. Rev. D 104, 064047 (2021).

    Article  ADS  Google Scholar 

  84. Chua, A. J. K., Katz, M. L., Warburton, N. & Hughes, S. A. Rapid generation of fully relativistic extreme-mass-ratio-inspiral waveform templates for LISA data analysis. Phys. Rev. Lett. 126, 051102 (2021).

    Article  ADS  Google Scholar 

  85. Katz, M. L., Marsat, S., Chua, A. J. K., Babak, S. & Larson, S. L. GPU-accelerated massive black hole binary parameter estimation with LISA. Phys. Rev. D 102, 023033 (2020).

    Article  ADS  Google Scholar 

  86. Chua, A. J. K., Galley, C. R. & Vallisneri, M. Reduced-order modeling with artificial neurons for gravitational-wave inference. Phys. Rev. Lett. 122, 211101 (2019).

    Article  ADS  Google Scholar 

  87. Canizares, P. et al. Accelerated gravitational wave parameter estimation with reduced order modeling. Phys. Rev. Lett. 114 (2015).

  88. Zackay, B., Dai, L. & Venumadhav, T. Relative binning and fast likelihood evaluation for gravitational wave parameter estimation. Preprint at https://arxiv.org/abs/1806.08792 (2018).

  89. Cornish, N. J. Heterodyned likelihood for rapid gravitational wave parameter inference. Phys. Rev. D 104, 104054 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  90. Green, S. R., Simpson, C. & Gair, J. Gravitational-wave parameter estimation with autoregressive neural network flows. Phys. Rev. D 102 (2020).

  91. Dax, M. et al. Real-time gravitational wave science with neural posterior estimation. Phys. Rev. Lett. 127, 241103 (2021).

  92. Green, S. R. & Gair, J. Complete parameter inference for gw150914 using deep learning. Preprint at https://arxiv.org/abs/2008.03312 (2020).

  93. Chua, A. J. K. & Vallisneri, M. Learning Bayesian posteriors with neural networks for gravitational-wave inference. Phys. Rev. Lett. 124, 041102 (2020).

    Article  ADS  Google Scholar 

  94. Samajdar, A., Janquart, J., Van Den Broeck, C. & Dietrich, T. Biases in parameter estimation from overlapping gravitational-wave signals in the third-generation detector era. Phys. Rev. D 104, 044003 (2021).

    Article  ADS  Google Scholar 

  95. Meacher, D., Cannon, K., Hanna, C., Regimbau, T. & Sathyaprakash, B. S. Second Einstein Telescope mock data and science challenge: Low frequency binary neutron star data analysis. Phys. Rev. D 93, 024018 (2016).

    Article  ADS  Google Scholar 

  96. Wu, S. & Nitz, A. H. A mock data study for 3G ground-based detectors: the performance loss of matched filtering due to correlated confusion noise. Preprint at https://arxiv.org/abs/2209.03135 (2022).

  97. Pizzati, E., Sachdev, S., Gupta, A. & Sathyaprakash, B. Toward inference of overlapping gravitational-wave signals. Phys. Rev. D 105, 104016 (2022).

    Article  ADS  Google Scholar 

  98. Antonelli, A., Burke, O. & Gair, J. R. Noisy neighbours: inference biases from overlapping gravitational-wave signals. Mon. Not. R. Astron. Soc. 507, 5069–5086 (2021).

    Article  ADS  Google Scholar 

  99. Kashyap, R., Dhani, A. & Sathyaprakash, B. Systematic errors due to quasi-universal relations in binary neutron stars and their correction for unbiased model selection. Preprint at https://arxiv.org/abs/2209.02757 (2022).

  100. Pizzati, E., Sachdev, S., Gupta, A. & Sathyaprakash, B. Toward inference of overlapping gravitational-wave signals. Phys. Rev. D 105, 104016 (2022).

    Article  ADS  Google Scholar 

  101. Smith, R. et al. Bayesian inference for gravitational waves from binary neutron star mergers in third generation observatories. Phys. Rev. Lett. 127, 081102 (2021).

    Article  ADS  Google Scholar 

  102. Babak, S. et al. The Mock LISA Data Challenges: From Challenge 3 to Challenge 4. Class. Quantum Gravity 27, 084009 (2010).

    Article  ADS  Google Scholar 

  103. Babak, S. et al. Report on the second Mock LISA Data Challenge. Class. Quantum Gravity 25, 114037 (2008).

    Article  ADS  Google Scholar 

  104. Arnaud, K. A. et al. A how-to for the Mock LISA Data Challenges. AIP Conf. Proc. 873, 625–632 (2006).

    Article  ADS  Google Scholar 

  105. Baghi, Q. The LISA Data Challenges. Preprint at https://arxiv.org/pdf/2204.12142.pdf (2022).

  106. Klein, A. et al. Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys. Rev. D 93, 024003 (2016).

    Article  ADS  Google Scholar 

  107. Pieroni, M. & Barausse, E. Foreground cleaning and template-free stochastic background extraction for LISA. J. Cosmol. Astropart. Phys. 07, 021 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  108. Korol, V., Hallakoun, N., Toonen, S. & Karnesis, N. Observationally driven Galactic double white dwarf population for LISA. Mon. Not. R. Astron. Soc. 511, 5936–5947 (2022).

    Article  ADS  Google Scholar 

  109. Cornish, N. J. & Larson, S. L. LISA data analysis: Source identification and subtraction. Phys. Rev. D 67, 103001 (2003).

    Article  ADS  Google Scholar 

  110. Karnesis, N., Babak, S., Pieroni, M., Cornish, N. & Littenberg, T. Characterization of the stochastic signal originating from compact binary populations as measured by LISA. Phys. Rev. D 104, 043019 (2021).

    Article  ADS  Google Scholar 

  111. Korol, V., Belokurov, V., Moore, C. J. & Toonen, S. Weighing Milky Way satellites with LISA. Mon. Not. R. Astron. Soc. 502, L55–L60 (2021). [astro-ph.GA].

    Article  ADS  Google Scholar 

  112. Korol, V. et al. Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA. Mon. Not. R. Astron. Soc. 470, 1894–1910 (2017).

    Article  ADS  Google Scholar 

  113. Georgousi, M., Karnesis, N., Korol, V., Pieroni, M. & Stergioulas, N. Gravitational waves from double white dwarfs as probes of the Milky Way. Preprint at https://arxiv.org/abs/2204.07349 (2022).

  114. Amaro-Seoane, P. et al. Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals. Class. Quantum Gravity 24, R113–R169 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  115. Chua, A. J. K. & Cutler, C. J. Non-local parameter degeneracy in the intrinsic space of gravitational-wave signals from extreme-mass-ratio inspirals. Preprint at https://arxiv.org/abs/2109.14254 (2021).

  116. Babak, S., Gair, J. R. & Porter, E. K. An algorithm for detection of extreme mass ratio inspirals in LISA data. Class. Quantum Gravity 26, 135004 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Cornish, N. J. & Crowder, J. LISA data analysis using MCMC methods. Phys. Rev. D 72, 043005 (2005).

    Article  ADS  Google Scholar 

  118. Littenberg, T., Cornish, N., Lackeos, K. & Robson, T. Global analysis of the gravitational wave signal from galactic binaries. Phys. Rev. D 101, 123021 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  119. Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  120. Stroeer, A. & Veitch, J. A Bayesian approach to the study of white dwarf binaries in LISA data: The application of a reversible jump Markov chain Monte Carlo method. Phys. Rev. D 80, 064032 (2009).

    Article  ADS  Google Scholar 

  121. Teukolsky, S. & Vallisneri, M. The Architecture of the LISA Science Analysis (Caltech, 2019); https://resolver.caltech.edu/CaltechAUTHORS:20191002-102632020

  122. Baghi, Q. et al. Detection and characterization of instrumental transients in LISA Pathfinder and their projection to LISA. Phys. Rev. D 105, 042002 (2022).

    Article  ADS  Google Scholar 

  123. Chatziioannou, K., Cornish, N., Wijngaarden, M. & Littenberg, T. B. Modeling compact binary signals and instrumental glitches in gravitational wave data. Phys. Rev. D 103, 044013 (2021).

    Article  ADS  Google Scholar 

  124. Gair, J. R., Hewitson, M., Petiteau, A. & Mueller, G. Space-based gravitational wave observatories. In Handbook of Gravitational Wave Astronomy (eds Bambi, C. et al.) (Springer, 2021)..

  125. Armano, M. et al. Preprint at https://arxiv.org/abs/1903.08924 (2019).

  126. Armano, M. et al. Beyond the required LISA free-fall performance: New LISA Pathfinder results down to 20 μHz. Phys. Rev. Lett. 120, 061101 (2018).

    Article  ADS  Google Scholar 

  127. Baghi, Q. et al. Detection and characterization of instrumental transients in LISA Pathfinder and their projection to LISA. Phys. Rev. D 105, 042002 (2022).

    Article  ADS  Google Scholar 

  128. Edwards, M. C. et al. Identifying and addressing nonstationary LISA noise. Phys. Rev. D 102, 084062 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  129. Dey, K. et al. Effect of data gaps on the detectability and parameter estimation of massive black hole binaries with LISA. Phys. Rev. D 104, 044035 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenzo Speri, Nikolaos Karnesis, Arianna I. Renzini or Jonathan R. Gair.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speri, L., Karnesis, N., Renzini, A.I. et al. A roadmap of gravitational wave data analysis. Nat Astron 6, 1356–1363 (2022). https://doi.org/10.1038/s41550-022-01849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01849-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing