Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mature lunar soils from Fe-rich and young mare basalts in the Chang’e-5 regolith samples

Abstract

Space weathering on airless bodies produces metallic iron (Fe0) particles in the rims of mineral grains, which affect visible and near-infrared spectra and complicate the identification of surface materials. The Chang’e-5 mission provides an opportunity to couple information gained from its returned samples with in situ observations and orbital monitoring to gain insight on the details of space weathering on extremely Fe-rich basalts. By putting together all these data, we could extract a soil maturity index (Is/FeO) at the Chang’e-5 landing site of ~66 ± 3.2, indicative of a formation age for the Xu Guangqi crater, whose ejecta dominate the site, of 240–300 Myr ago. In addition, abundant large Fe0 particles were found in the sample, indicating that both the inherited Fe0 particles from late-stage mare basalts and the dense clustering of oversaturated Fe0 in extremely FeO-rich (>17 wt%) basalts contribute to observed Fe0 abundances. We suggest that space weathering of Fe-richer basalt generates Fe0 particles with a larger grain size and faster production rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The context images of CE-5 landing site based on Lunar Reconnaissance Orbiter Camera Narrow Angle Cameras and CE-5 landing camera.
Fig. 2: The images and spectra from the hyperspectral mode of CE5-LMS.
Fig. 3: The MI images at the CE-5 landing site.
Fig. 4: Mosaic images from the multiband scanning mode of CE5-LMS.
Fig. 5: The modelled mpFe abundances versus Is/FeO values (calculated from npFe abundances) of the CE-5 soils compared with literature data of Apollo and Luna soils.

Similar content being viewed by others

Data availability

Large data necessary to generate the results used for this study are available online (https://doi.org/10.6084/m9.figshare.19807858). All original CE-5 data can be found in the Lunar and Planetary Data Release System (http://moon.bao.ac.cn). Source data are provided with this paper.

References

  1. Pieters, C. M. et al. Space weathering on airless bodies: resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1101–1107 (2000).

    Article  ADS  Google Scholar 

  2. Pieters, C. M. & Noble, S. K. Space weathering on airless bodies. J. Geophys. Res. Planets 121, 1865–1884 (2016).

    Article  ADS  Google Scholar 

  3. McCord, T. B. et al. Moon: near-infrared spectral reflectance, a first good look. J. Geophys. Res. Solid Earth 86, 10883–10892 (1981).

    Article  Google Scholar 

  4. Papike, J., Simon, S. & Laul, J. The lunar regolith: chemistry, mineralogy, and petrology. Rev. Geophys. 20, 761–826 (1982).

    Article  ADS  Google Scholar 

  5. Cassidy, W. & Hapke, B. Effects of darkening processes on surfaces of airless bodies. Icarus 25, 371–383 (1975).

    Article  ADS  Google Scholar 

  6. Noble, S. K., Pieters, C. M. & Keller, L. P. An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629–642 (2007).

    Article  ADS  Google Scholar 

  7. Morris, R. The surface exposure/maturity/of lunar soils—some concepts and Is/FeO compilation. Proc. Lunar Planet. Sci. Conf. 9, 2287–2297 (1978).

    ADS  Google Scholar 

  8. Lucey, P. G., Blewett, D. T., Taylor, G. J. & Hawke, B. R. Imaging of lunar surface maturity. J. Geophys. Res. Planets 105, 20377–20386 (2000).

    Article  ADS  Google Scholar 

  9. Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. Solid Earth 86, 3039–3054 (1981).

    Article  Google Scholar 

  10. Hapke, B. & Sato, H. The porosity of the upper lunar regolith. Icarus 273, 75–83 (2016).

    Article  ADS  Google Scholar 

  11. Lue, C. Solar Wind Proton Interactions with Lunar Magnetic Anomalies and Regolith Dissertation, Umeå Univ. (2015).

  12. Gou, S. et al. In situ spectral measurements of space weathering by Chang’e-4 rover. Earth Planet. Sci. Lett. 535, 116117 (2020).

    Article  Google Scholar 

  13. Wang, Z. et al. Submicroscopic metallic iron in lunar soils estimated from the in situ spectra of the Chang’e‐3 mission. Geophys. Res. Lett. 44, 3485–3492 (2017).

    Article  ADS  Google Scholar 

  14. Wang, J. et al. Localization of the Chang’e-5 lander using radio-tracking and image-based methods. Remote Sens. 13, 590 (2021).

    Article  ADS  Google Scholar 

  15. Li, C. et al. Characteristics of the lunar samples returned by the Chang’e-5 mission. Natl Sci. Rev. 9, nwab188 (2022).

    Article  MathSciNet  Google Scholar 

  16. Pieters, C. M. et al. The Moon mineralogy mapper (M³) on Chandrayaan-1. Curr. Sci. 96, 500–505 (2009).

    Google Scholar 

  17. Morris, R. Origins and size distribution of metallic iron particles in the lunar regolith. Proc. Lunar Planet. Sci. Conf. 11, 1697–1712 (1980).

    ADS  Google Scholar 

  18. Hapke, B. Space weathering from Mercury to the asteroid belt. J. Geophys. Res. Planets 106, 10039–10073 (2001).

    Article  ADS  Google Scholar 

  19. Lucey, P. G. & Riner, M. A. The optical effects of small iron particles that darken but do not redden: evidence of intense space weathering on Mercury. Icarus 212, 451–462 (2011).

    Article  ADS  Google Scholar 

  20. Trang, D. & Lucey, P. G. Improved space weathering maps of the lunar surface through radiative transfer modeling of Kaguya multiband imager data. Icarus 321, 307–323 (2019).

    Article  ADS  Google Scholar 

  21. Noble, S. K. Turning Rock Into Regolith: The Physical And Optical Consequences of Space Weathering in the Inner Solar System Dissertation, Brown Univ. (2004).

  22. Xu, R. et al. Lunar mineralogical spectrometer on Chang’E-5 mission. Space Sci. Rev. 218, 41 (2022).

  23. Taylor, L. A. et al. Mineralogical and chemical characterization of lunar highland soils: insights into the space weathering of soils on airless bodies. J. Geophys. Res. Planets 115, 2009JE003427 (2010).

  24. Taylor, L. A., Pieters, C. M., Keller, L. P., Morris, R. V. & McKay, D. S. Lunar mare soils: space weathering and the major effects of surface‐correlated nanophase Fe. J. Geophys. Res. Planets 106, 27985–27999 (2001).

    Article  ADS  Google Scholar 

  25. Pieters, C. M., Fischer, E. M., Rode, O. & Basu, A. Optical effects of space weathering: the role of the finest fraction. J. Geophys. Res. Planets 98, 20817–20824 (1993).

    Article  ADS  Google Scholar 

  26. Pieters, C., Shkuratov, Y., Kaydash, V., Stankevich, D. & Taylor, L. Lunar soil characterization consortium analyses: pyroxene and maturity estimates derived from Clementine image data. Icarus 184, 83–101 (2006).

    Article  ADS  Google Scholar 

  27. Xiao, Z., Zeng, Z., Ding, N. & Molaro, J. Mass wasting features on the Moon—how active is the lunar surface? Earth Planet. Sci. Lett. 376, 1–11 (2013).

    Article  ADS  Google Scholar 

  28. Schultz, P. & Gault, D. Seismically induced modification of lunar surface features. Proc. Lunar Planet. Sci. Conf. 6, 2845–2862 (1975).

    ADS  Google Scholar 

  29. Hou, X. et al. Absolute model ages of three craters in the vicinity of the Chang’e-5 landing site and their geologic implications. Icarus 372, 114730 (2022).

    Article  Google Scholar 

  30. Morris, R. Surface exposure indices of lunar soils—a comparative FMR study. Proc. Lunar Planet. Sci. Conf. 7, 315–335 (1976).

    ADS  Google Scholar 

  31. Funkhouser, J. Noble gas analysis of KREEP fragments in lunar soil 12033 and 12070. Earth Planet. Sci. Lett. 12, 263–272 (1971).

    Article  ADS  Google Scholar 

  32. Stettler, A., Eberhardt, P., Geiss, J., Grögler, N. & Maurer, P. Ar39–Ar40 ages and Ar37–Ar38 exposure ages of lunar rocks. Proc. Lunar Planet. Sci. Conf. 4, 1865–1888 (1973).

  33. Qian, Y. et al. Copernican-aged (<200 Ma) impact ejecta at the Chang’e‐5 landing site: statistical evidence from crater morphology, morphometry, and degradation models. Geophys. Res. Lett. 48, e2021GL095341 (2021).

    Article  ADS  Google Scholar 

  34. Cisowski, C., Dunn, J., Fuller, M., Rose, M. & Wasilewski, P. Impact processes and lunar magnetism. Proc. Lunar Planet. Sci. Conf. 5, 2841–2858 (1974).

    ADS  Google Scholar 

  35. El Goresy, A. & Ramdohr, P. Subsolidus reduction of lunar opaque oxides—textures, assemblages, geochemistry, and evidence for a late-stage endogenic gaseous mixture. Proc. Lunar Planet. Sci. Conf. 6, 729–745 (1975).

    ADS  Google Scholar 

  36. Rouleau, F. Electromagnetic scattering by compact clusters of spheres. Astron. Astrophys. 310, 686–698 (1996).

    ADS  Google Scholar 

  37. Wohlfarth, K. S., Wöhler, C. & Grumpe, A. Space weathering and lunar OH/H2O—insights from ab initio Mie modeling of submicroscopic iron. Astron. J. 158, 80 (2019).

    Article  ADS  Google Scholar 

  38. Guo, Z. et al. Nanophase iron particles derived from fayalitic olivine decomposition in Chang’e‐5 lunar soil: implications for thermal effects during impacts. Geophys. Res. Lett. 49, e2021GL097323 (2022).

    Article  ADS  Google Scholar 

  39. Gu, L. et al. Space weathering of the Chang’e‐5 lunar sample from a mid‐high latitude region on the Moon. Geophys. Res. Lett. 49, e2022GL097875 (2022).

    Article  ADS  Google Scholar 

  40. Xu, J. Y. et al. Characteristics and spectral effects of iron nanoparticles during space weathering of iron-rich olivine. LPI Contrib. 2678, 1889 (2022).

    ADS  Google Scholar 

  41. Papike, J., Taylor, L. & Simon, S. Lunar Minerals. In Lunar Sourcebook: A User’s Guide to the Moon (eds Heiken, G. H. et al.) 121–181 (Cambridge Univ. Press, 1991).

  42. Day, J. M. Metal grains in lunar rocks as indicators of igneous and impact processes. Meteorit. Planet. Sci. 55, 1793–1807 (2020).

    Article  ADS  Google Scholar 

  43. Reid, A. M., Meyer, C. Jr., Harmon, R. S. & Brett, R. Metal grains in Apollo 12 igneous rocks. Earth Planet. Sci. Lett. 9, 1–5 (1970).

  44. Matsumoto, T. et al. Space weathering of iron sulfides in the lunar surface environment. Geochim. Cosmochim. Acta 299, 69–84 (2021).

    Article  ADS  Google Scholar 

  45. Tai Udovicic, C., Costello, E., Ghent, R. & Edwards, C. New constraints on the lunar optical space weathering rate. Geophys. Res. Lett. 48, e2020GL092198 (2021).

    Article  ADS  Google Scholar 

  46. Isaacson, P. J. et al. Development, importance, and effect of a ground truth correction for the Moon Mineralogy Mapper reflectance data set. J. Geophys. Res. Planets 118, 369–381 (2013).

    Article  ADS  Google Scholar 

  47. Lucey, P. G. Model near‐infrared optical constants of olivine and pyroxene as a function of iron content. J. Geophys. Res. Planets 103, 1703–1713 (1998).

    Article  ADS  Google Scholar 

  48. Xu, J. et al. In‐situ photometric properties of lunar regolith revealed by lunar mineralogical spectrometer on board Chang’e‐5 lander. Geophys. Res. Lett. 49, e2021GL096876 (2022).

    ADS  Google Scholar 

  49. Hapke, B. Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect. Icarus 67, 264–280 (1986).

    Article  ADS  Google Scholar 

  50. Sun, L. & Lucey, P. G. Unmixing mineral abundance and Mg# with radiative transfer theory: modeling and applications. J. Geophys. Res. 126, e2020JE006691 (2021).

    ADS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the China National Space Administration (CNSA) for providing the scientific data and the precious CE-5 soil samples. This research was funded by National Natural Science Foundation of China Grant Nos. 41972322 and 11941001, CNSA Pre-research project on Civil Aerospace Technologies Grant Nos. D020102 and D020204, National Key Research and Development Program of China Grant Nos. 2020YFE0202100 and 2022YFF0711400, Strategic Priority Research Program of Chinese Academy of Sciences Grant No. XDB 41000000 (Z.L.), National Natural Science Foundation of China Grant No. 42102280, Natural Science Foundation of Shandong Province Grant No. ZR2021QD016, China Postdoctoral Science Foundation Grant No. 2020M682164 (J.C.), CNSA Pre-research project on Civil Aerospace Technologies Grant No. D020201 (X.F.), CNSA Pre-research project on Civil Aerospace Technologies Grant No. D020204 (L.Q.) and National Key Research and Development Program of China Grant No. 2019YFE0123300 (J.Z.). This is the SDU-CPS publication #106.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. conceptualized this research. X.L. and J.C. contributed equally to the data analyses and wrote the manuscript. C.L., H.C. and X.L. contributed to the spectral measurements of CE-5 samples. X.F., L.Q., J.Z. and J.L. contributed to the reduction of orbital datasets and geological interpretations of the data. Z.H and R.X. are team members of the CE5-LMS instrument and helped with LMS in situ data preprocessing.

Corresponding authors

Correspondence to Zongcheng Ling or Jianzhong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Jeffrey Gillis-Davis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1 and 2.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Chen, J., Ling, Z. et al. Mature lunar soils from Fe-rich and young mare basalts in the Chang’e-5 regolith samples. Nat Astron 7, 142–151 (2023). https://doi.org/10.1038/s41550-022-01838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01838-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing