Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars

Abstract

Although the majority of volcanic and tectonic activity on Mars occurred during the first 1.5 billion years of its geologic history, recent volcanism, tectonism and active seismicity in Elysium Planitia reveal ongoing activity. However, this recent pulse in volcanism and tectonics is unexpected on a cooling Mars. Here we present observational evidence and geophysical models demonstrating that Elysium Planitia is underlain by an ~4,000-km-diameter active mantle plume head. Plume activity provides an explanation for the regional gravity and topography highs, recent volcanism, transition from compressional to extensional tectonics and ongoing seismicity. The inferred plume head characteristics are comparable to terrestrial plumes that are linked to the formation of large igneous provinces. Our results demonstrate that the interior of Mars is geodynamically active today, and imply that volcanism has been driven by mantle plumes from the formation of the Hesperian volcanic provinces and Tharsis in the past to Elysium Planitia today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Martian volcanic resurfacing history.
Fig. 2: Evidence for dynamic uplift of a mantle plume from long-wavelength gravity and topography.
Fig. 3: Plume head centre and InSight marsquake epicentre location.
Fig. 4: Cross-cutting relationships and crater floor slopes.
Fig. 5: Stress field at Elysium Planitia for different loading scenarios and resulting dike models.

Similar content being viewed by others

Data availability

The gravity field model from ref. 52 can be found at https://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-v1/mrors_1xxx/data/shadr/ and the topography model from ref. 60 can be obtained at https://doi.org/10.5281/zenodo.3870922. The colour maps used are from ref. 61 and can be found at https://doi.org/10.5281/zenodo.5501399. Additional data to reproduce Figs. 2 and 5 can be found at https://doi.org/10.5281/zenodo.7191516.

Code availability

The thin-shell flexural model from ref. 27 can be found at https://doi.org/10.5281/zenodo.7196507.

References

  1. Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).

    Article  ADS  Google Scholar 

  2. Redmond, H. L. & King, S. D. A numerical study of a mantle plume beneath the Tharsis Rise: reconciling dynamic uplift and lithospheric support models. J. Geophys. Res. Planets 109, E09008 (2004).

    Article  ADS  Google Scholar 

  3. Tanaka, K. L. et al. Geologic Map of Mars: U.S. Geological Survey Scientific Investigations Map 3292, Scale 1:20,000,000. US Geol. Surv. Geol. Investig. (2014); https://doi.org/10.3133/sim3292

  4. Schumacher, S. & Breuer, D. An alternative mechanism for recent volcanism on Mars. Geophys. Res. Lett. 34, L14202 (2007).

    Article  ADS  Google Scholar 

  5. Platz, T. & Michael, G. Eruption history of the Elysium volcanic province, Mars. Earth Planet. Sci. Lett. 312, 140–151 (2011).

    Article  ADS  Google Scholar 

  6. Nahm, A. L. & Schultz, R. A. Magnitude of global contraction on Mars from analysis of surface faults: implications for Martian thermal history. Icarus 211, 389–400 (2011).

    Article  ADS  Google Scholar 

  7. Andrews-Hanna, J. C., Zuber, M. T. & Hauck, S. A. II Strike-slip faults on Mars: observations and implications for global tectonics and geodynamics. J. Geophys. Res. Planets 113, E08002 (2008).

    Article  ADS  Google Scholar 

  8. Horvath, D. G., Moitra, P., Hamilton, C. W., Craddock, R. A. & Andrews-Hanna, J. C. Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus 365, 114499 (2021).

    Article  Google Scholar 

  9. Giardini, D. et al. The seismicity of Mars. Nat. Geosci. 13, 205–212 (2020).

    Article  ADS  Google Scholar 

  10. Voigt, J. R. C. & Hamilton, C. W. Investigating the volcanic versus aqueous origin of the surficial deposits in eastern Elysium Planitia, Mars. Icarus 309, 389–410 (2018).

    Article  ADS  Google Scholar 

  11. Moitra, P., Horvath, D. G. & Andrews-Hanna, J. C. Investigating the roles of magmatic volatiles, ground ice and impact-triggering on a very recent and highly explosive volcanic eruption on Mars. Earth Planet. Sci. Lett. 567, 116986 (2021).

    Article  Google Scholar 

  12. Kedar, S. et al. Analyzing low frequency seismic events at Cerberus Fossae as long period volcanic quakes. J. Geophys. Res. Planets 126, e2020JE006518 (2021).

    Article  ADS  Google Scholar 

  13. Brinkman, N. et al. First focal mechanisms of marsquakes. J. Geophys. Res. Planets 126, e2020JE006546 (2021).

    Article  ADS  Google Scholar 

  14. Sun, W. & Tkalčić, H. Repetitive marsquakes in Martian upper mantle. Nat. Commun. 13, 1695 (2022).

    Article  ADS  Google Scholar 

  15. Manjón-Cabeza Córdoba, A. & Ballmer, M. D. The role of edge-driven convection in the generation of volcanism—part 1: a 2D systematic study. Solid Earth 12, 613–632 (2021).

    Article  ADS  Google Scholar 

  16. Kiefer, W. S. & Li, Q. Water undersaturated mantle plume volcanism on present-day Mars. Meteorit. Planet. Sci. 51, 1993–2010 (2016).

    Article  ADS  Google Scholar 

  17. Schools, J. W. & Montési, L. G. J. The generation of barriers to melt ascent in the Martian lithosphere. J. Geophys. Res. Planets 123, 47–66 (2018).

    Article  ADS  Google Scholar 

  18. Vaucher, J. et al. The volcanic history of central Elysium Planitia: implications for Martian magmatism. Icarus 204, 418–442 (2009).

    Article  ADS  Google Scholar 

  19. Wieczorek, M. A. et al. InSight constraints on the global character of the Martian crust. J. Geophys. Res. Planets 127, e2022JE007298 (2022).

    Article  ADS  Google Scholar 

  20. Robbins, S. J., Achille, G. D. & Hynek, B. M. The volcanic history of Mars: high-resolution crater-based studies of the calderas of 20 volcanoes. Icarus 211, 1179–1203 (2011).

    Article  ADS  Google Scholar 

  21. Saunders, A. D. et al. Regional uplift associated with continental large igneous provinces: the roles of mantle plumes and the lithosphere. Chem. Geol. 241, 282–318 (2007).

    Article  ADS  Google Scholar 

  22. Smrekar, S. E. Evidence for active hotspots on Venus from analysis of Magellan gravity data. Icarus 112, 2–26 (1994).

    Article  ADS  Google Scholar 

  23. White, R. S. & McKenzie, D. Mantle plumes and flood basalts. J. Geophys. Res. Solid Earth 100, 17543–17585 (1995).

    Article  Google Scholar 

  24. Broquet, A. & Wieczorek, M. A. The gravitational signature of Martian volcanoes. J. Geophys. Res. Planets 124, 2054–2086 (2019).

    Article  ADS  Google Scholar 

  25. Banerdt, W. B. Support of long-wavelength loads on Venus and implications for internal structure. J. Geophys. Res. Solid Earth 91, 403–419 (1986).

    Article  Google Scholar 

  26. Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. The Borealis basin and the origin of the Martian crustal dichotomy. Nature 453, 1212–1215 (2008).

    Article  ADS  Google Scholar 

  27. Broquet, A. Displacement_strain_planet: 0.4. Zenodo https://doi.org/10.5281/zenodo.7196507 (2022).

  28. Griffiths, R. W. & Campbell, I. H. Interaction of mantle plume heads with the Earth’s surface and onset of small-scale convection. J. Geophys. Res. Solid Earth 96, 18295–18310 (1991).

    Article  Google Scholar 

  29. Kim D. et al. Improving constraints on planetary interiors with PPs receiver functions. J. Geophys. Res. Planets 126, e2021JE006983 https://doi.org/10.1029/2021JE006983 (2021)

  30. Phillips, R. J., Sleep, N. H. & Banerdt, W. B. Permanent uplift in magmatic systems with application to the Tharsis region of Mars. J. Geophys. Res. Solid Earth 95, 5089–5100 (1990).

    Article  Google Scholar 

  31. Knapmeyer, M. et al. Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. Planets 111, E11006 (2006).

    Article  ADS  Google Scholar 

  32. Perrin, C. et al. Geometry and segmentation of Cerberus Fossae, Mars: implications for marsquake properties. J. Geophys. Res. Planets 127, e2021JE007118 (2022).

    Article  ADS  Google Scholar 

  33. Hanna, J. C. & Phillips, R. J. Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles, Mars. J. Geophys. Res. Planets 111, E03003 (2006).

    Article  ADS  Google Scholar 

  34. Bryan, S. E. & Ernst, R. E. Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 86, 175–202 (2008).

    Article  ADS  Google Scholar 

  35. Boynton, W. V. et al. Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res. Planets 112, E12S99 (2007).

    Article  ADS  Google Scholar 

  36. Baratoux, D., Toplis, M. J., Monnereau, M. & Gasnault, O. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 472, 338–341 (2011).

    Article  ADS  Google Scholar 

  37. Hamilton, C. W., Fagents, S. A. & Wilson, L. Explosive lava–water interactions in Elysium Planitia, Mars: geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups. J. Geophys. Res. Planets 115, E09006 (2010).

    Article  ADS  Google Scholar 

  38. Fuller, E. R. & Head, J. W. Amazonis Planitia: the role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. J. Geophys. Res. Planets 107, 5081 (2002).

    Article  ADS  Google Scholar 

  39. Campbell, B. et al. SHARAD radar sounding of the Vastitas Borealis Formation in Amazonis Planitia. J. Geophys. Res. Planets 113, E12010 (2008).

    Article  ADS  Google Scholar 

  40. Broquet, A. & Andrews-Hanna, J. C. Plume-induced flood basalts on Hesperian Mars: an investigation of Hesperia Planum. Icarus https://doi.org/10.1016/j.icarus.2022.115338 (2022).

  41. Morschhauser, A., Grott, M. & Breuer, D. Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212, 541–558 (2011).

    Article  ADS  Google Scholar 

  42. Samuel, H., Lognonné, P., Panning, M. & Lainey, V. The rheology and thermal history of Mars revealed by the orbital evolution of Phobos. Nature 569, 523–527 (2019).

    Article  ADS  Google Scholar 

  43. Plesa, A.-C. et al. The thermal state and interior structure of Mars. Geophys. Res. Lett. 45, 12198–12209 (2018).

    Article  ADS  Google Scholar 

  44. Khan, A. et al. Upper mantle structure of Mars from InSight seismic data. Science 373, 434–438 (2021).

    Article  ADS  Google Scholar 

  45. Broquet, A., Wieczorek, M. A. & Fa, W. Flexure of the lithosphere beneath the north polar cap of Mars: implications for ice composition and heat flow. Geophys. Res. Lett. 47, e2019GL086746 (2020).

    Article  ADS  Google Scholar 

  46. Broquet, A., Wieczorek, M. A. & Fa, W. The composition of the south polar cap of Mars derived from orbital data. J. Geophys. Res. Planets 126, e2020JE006730 (2021).

    Article  ADS  Google Scholar 

  47. Grott, M. & Breuer, D. On the spatial variability of the Martian elastic lithosphere thickness: evidence for mantle plumes. J. Geophys. Res. Planets 115, E03005 (2010).

    Article  ADS  Google Scholar 

  48. Kiefer, W. S. & Li, Q. Mantle convection controls the observed lateral variations in lithospheric thickness on present-day Mars. Geophys. Res. Lett. 36, L18203 (2009).

    Article  ADS  Google Scholar 

  49. Robbins, S. J. & Hynek, B. M. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. Planets 117, E05004 (2012).

    ADS  Google Scholar 

  50. Ivanov, B. A. Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001).

    Article  ADS  Google Scholar 

  51. Beuthe, M. Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets. Geophys. J. Int. 172, 817–841 (2008).

    Article  ADS  Google Scholar 

  52. Genova, A. et al. Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016).

    Article  ADS  Google Scholar 

  53. Mueller, S. & Phillips, R. J. On the reliability of lithospheric constraints derived from models of outer-rise flexure. Geophys. J. Int. 123, 887–902 (1995).

    Article  ADS  Google Scholar 

  54. Zuber, M. T. et al. Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science 336, 217–220 (2012).

    Article  ADS  Google Scholar 

  55. Crouch, S. L. & Starfield, A. M. Boundary Element Methods in Solid Mechanics (George Allen & Unwin, 1983).

  56. Goossens, S. et al. High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust. J. Geophys. Res. Planets 125, e2019JE006086 https://doi.org/10.1029/2019JE006086 (2020)

  57. Wilson, L., Mouginis-Mark, P. J., Tyson, S., Mackown, J. & Garbeil, H. Fissure eruptions in Tharsis, Mars: implications for eruption conditions and magma sources. J. Volcanol. Geotherm. Res. 185, 28–46 (2009).

    Article  ADS  Google Scholar 

  58. Wilson, L. & Head, J. W. Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J. Geophys. Res. Planets 107, 5057 (2002).

    Article  ADS  Google Scholar 

  59. Schultz, R. A., Okubo, C. H., Goudy, C. L. & Wilkins, S. J. Igneous dikes on Mars revealed by Mars Orbiter Laser Altimeter topography. Geology 32, 889–892 (2004).

    Article  ADS  Google Scholar 

  60. Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planets 106, 23689–23722 (2001).

    Article  ADS  Google Scholar 

  61. Crameri, F. Scientific colour maps: perceptually uniform and colour-vision deficiency friendly. Zenodo https://doi.org/10.5281/zenodo.1243862 (2018).

  62. Wieczorek, M. A., Beuthe, M., Rivoldini, A. & Van Hoolst, T. Hydrostatic interfaces in bodies with nonhydrostatic lithospheres. J. Geophys. Res. Planets 124, 1410–1432 (2019).

    ADS  Google Scholar 

  63. Edwards, C. S. et al. Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by grant 80NSSC17K0059 from the NASA Solar System Workings programme to J.C.A.-H. We thank S. Smrekar for comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and J.C.A.-H. conceptualized the work and methodology, wrote the manuscript and carried out the data analyses and modelling.

Corresponding author

Correspondence to A. Broquet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Suzanne Smrekar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

Supplementary Information

Supplementary Texts 1–5, Table 1 and Figs. 1–11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broquet, A., Andrews-Hanna, J.C. Geophysical evidence for an active mantle plume underneath Elysium Planitia on Mars. Nat Astron 7, 160–169 (2023). https://doi.org/10.1038/s41550-022-01836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01836-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing