Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Astrophysical constraints from the SARAS 3 non-detection of the cosmic dawn sky-averaged 21-cm signal


Observations of the redshifted 21-cm line of atomic hydrogen have provided several upper limits on the 21-cm power spectrum and a tentative detection of the sky-averaged signal at redshift z ≈ 17. Made with the Experiment to Detect the Global EoR Signature (EDGES) low-band antenna, this claim was recently disputed by the SARAS 3 experiment, which reported a non-detection and is the only available upper limit strong enough to constrain cosmic dawn astrophysics. We use these data to constrain a population of radio-luminous galaxies ~200 million years after the Big Bang (z ≈ 20). We find, using Bayesian data analysis, that the data disfavour (at 68% confidence) radio-luminous galaxies in dark-matter haloes with masses of 4.4 × 105MM 1.1 × 107M (where M is the mass of the Sun) at z = 20 and galaxies in which >5% of the gas is converted into stars. The data disfavour galaxies with a radio luminosity per star formation rate of Lr/SFR  1.549 × 1025 W Hz−1M−1 yr at 150 MHz, around 1,000 times brighter than today, and, separately, a synchrotron radio background in excess of the cosmic microwave background by 6% at 1.42 GHz.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SARAS 3 constraints on high-redshift radio galaxies.
Fig. 2: The relationship between the astrophysical parameters and the noise.
Fig. 3: The relationship between the foreground and astrophysical parameters.

Data availability

The SARAS 3 data are available upon reasonable request from S.S. (

Code availability

GLOBALEMU is available at and MARGARINE at The nested sampling tool POLYCHORD is available at and the nested sampling post-processing codes ANESTHETIC and FGIVENX are available at and, respectively. All other codes used are available upon reasonable request from the corresponding author.


  1. Windhorst, R. A., Cohen, S. H., Jansen, R. A., Conselice, C. & Yan, H. How JWST can measure first light, reionization and galaxy assembly. New Astron. Rev. 50, 113–120 (2006).

    Article  ADS  Google Scholar 

  2. Nandra, K. et al. The hot and energetic Universe: a white paper presenting the science theme motivating the Athena+ mission. Preprint at (2013).

  3. The Lynx Team The Lynx mission concept study interim report. Preprint at (2018).

  4. Mushotzky, R. AXIS: a probe class next generation high angular resolution x-ray imaging satellite. In Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray SPIE Conference Series Vol. 10699 (eds den Herder, J.-W. A. et al.) 1069929 (SPIE, 2018).

  5. Madau, P., Meiksin, A. & Rees, M. J. 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429–444 (1997).

    Article  ADS  Google Scholar 

  6. Mesinger, A. (ed.) The Cosmic 21-cm Revolution (IOP Publishing, 2019).

  7. Monsalve, R. A., Rogers, A. E. E., Bowman, J. D. & Mozdzen, T. J. Calibration of the EDGES high-band receiver to observe the global 21 cm signature from the epoch of reionization. Astrophys. J. 835, 49 (2017).

    Article  ADS  Google Scholar 

  8. Singh, S. et al. SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal. Exp. Astron. 45, 269–314 (2018).

    Article  ADS  Google Scholar 

  9. DeBoer, D. R. et al. Hydrogen Epoch of Reionization Array (HERA). Publ. Astron. Soc. Pac. 129, 045001 (2017).

    Article  ADS  Google Scholar 

  10. Koopmans, L. V. E. Current status of the LOFAR EoR Key Science Project. Proc. IAU 12, 71–76 (2017).

    Article  Google Scholar 

  11. Price, D. C. et al. Design and characterization of the Large-aperture Experiment to Detect the Dark Age (LEDA) radiometer systems. Mon. Not. R. Astron. Soc. 478, 4193–4213 (2018).

    ADS  Google Scholar 

  12. Trott, C. M. et al. Deep multiredshift limits on epoch of reionization 21 cm power spectra from four seasons of Murchison Widefield Array observations. Mon. Not. R. Astron. Soc 493, 4711–4727 (2020).

    Article  ADS  Google Scholar 

  13. Gehlot, B. K. et al. The first power spectrum limit on the 21-cm signal of neutral hydrogen during the cosmic dawn at z = 20–25 from LOFAR. Mon. Not. R. Astron. Soc. 488, 4271–4287 (2019).

  14. Singh, S. et al. First results on the epoch of reionization from first light with SARAS 2. Astrophys. J. Lett. 845, L12 (2017).

    Article  ADS  Google Scholar 

  15. Singh, S. et al. SARAS 2 constraints on global 21 cm signals from the epoch of reionization. Astrophys. J. 858, 54 (2018).

    Article  ADS  Google Scholar 

  16. Monsalve, R. A. et al. Results from EDGES high-band. III. New constraints on parameters of the early Universe. Astrophys. J. 875, 67 (2019).

    Article  ADS  Google Scholar 

  17. Mondal, R. et al. Tight constraints on the excess radio background at z = 9.1 from LOFAR. Mon. Not. R. Astron. Soc. 498, 4178–4191 (2020).

  18. Ghara, R., Giri, S. K., Ciardi, B., Mellema, G. & Zaroubi, S. Constraining the state of the intergalactic medium during the epoch of reionization using MWA 21-cm signal observations. Mon. Not. R. Astron. Soc. (2021).

  19. Greig, B. et al. Interpreting LOFAR 21-cm signal upper limits at z ≈ 9.1 in the context of high-z galaxy and reionization observations. Mon. Not. R. Astron. Soc. 501, 1–13 (2020).

  20. Abdurashidova, Z. et al. HERA Phase I limits on the cosmic 21-cm signal: constraints on astrophysics and cosmology during the epoch of reionization. Astrophys. J. 924, 51 (2022).

  21. Bevins, H. T. J. et al. A comprehensive Bayesian reanalysis of the SARAS2 data from the epoch of reionization. Mon. Not. R. Astron. Soc. 513, 4507–4526 (2022).

  22. Mesinger, A. Was reionization complete by z ~ 5−6? Mon. Not. R. Astron. Soc. 407, 1328–1337 (2010).

    Article  ADS  Google Scholar 

  23. Schroeder, J., Mesinger, A. & Haiman, Z. Evidence of Gunn–Peterson damping wings in high-z quasar spectra: strengthening the case for incomplete reionization at z ~ 6−7. Mon. Not. R. Astron. Soc. 428, 3058–3071 (2012).

  24. Ouchi, M. et al. Systematic identification of LAEs for visible exploration and reionization research using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ~2000 Lyα emitters at z = 6-7 over the 0.3-0.5 Gpc2 survey area. Publ. Astron. Soc. Jpn 70, S13 (2018).

  25. Morales, A. M. et al. The evolution of the lyman-alpha luminosity function during reionization. Astrophys. J. 919, 120 (2021).

    Article  ADS  Google Scholar 

  26. Greig, B. et al. IGM damping wing constraints on reionization from covariance reconstruction of two z 7 QSOs. Mon. Not. R. Astron. Soc. 512, 5390–5403 (2022).

  27. Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J. & Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67–70 (2018).

    Article  ADS  Google Scholar 

  28. Cohen, A., Fialkov, A., Barkana, R. & Lotem, M. Charting the parameter space of the global 21-cm signal. Mon. Not. R. Astron. Soc. 472, 1915–1931 (2017).

    Article  ADS  Google Scholar 

  29. Reis, I., Fialkov, A. & Barkana, R. The subtlety of Ly α photons: changing the expected range of the 21-cm signal. Mon. Not. R. Astron. Soc. 506, 5479–5493 (2021).

  30. Feng, C. & Holder, G. Enhanced global signal of neutral hydrogen due to excess radiation at cosmic dawn. Astrophys. J. Lett. 858, L17 (2018).

    Article  ADS  Google Scholar 

  31. Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71–74 (2018).

    Article  ADS  Google Scholar 

  32. Girish, B. S. et al. SARAS CD/EoR radiometer: design and performance of the digital correlation spectrometer. J. Astron. Instrum. 9, 2050006–70 (2020).

    Article  Google Scholar 

  33. Raghunathan, A. et al. A floating octave bandwidth cone-disc antenna for detection of cosmic dawn. IEEE Trans. Antennas Propag. 69, 6209–6217 (2021).

  34. Nambissan T., J. et al. SARAS 3 CD/EoR radiometer: design and performance of the receiver. Exp. Astron. (2021).

  35. Singh, S. et al. On the detection of a cosmic dawn signal in the radio background. Nat. Astron. 6, 607–617 (2022).

  36. Hills, R., Kulkarni, G., Meerburg, P. D. & Puchwein, E. Concerns about modelling of the EDGES data. Nature 564, E32–E34 (2018).

    Article  ADS  Google Scholar 

  37. Singh, S. & Subrahmanyan, R. The redshifted 21 cm signal in the EDGES low-band spectrum. Astrophys. J. 880, 26 (2019).

    Article  ADS  Google Scholar 

  38. Bradley, R. F., Tauscher, K., Rapetti, D. & Burns, J. O. A ground plane artifact that induces an absorption profile in averaged spectra from global 21 cm measurements, with possible application to EDGES. Astrophys. J. 874, 153 (2019).

    Article  ADS  Google Scholar 

  39. Sims, P. H. & Pober, J. C. Testing for calibration systematics in the EDGES low-band data using Bayesian model selection. Mon. Not. R. Astron. Soc. 492, 22–38 (2020).

    Article  ADS  Google Scholar 

  40. Mellema, G. et al. Reionization and the cosmic dawn with the Square Kilometre Array. Exp. Astron. 36, 235–318 (2013).

    Article  ADS  Google Scholar 

  41. Zarka, P. et al. The low-frequency radiotelescope NenuFAR. In 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC) 1 (IEEE, 2018).

  42. Gehlot, B. K. et al. The AARTFAAC Cosmic Explorer: observations of the 21-cm power spectrum in the EDGES absorption trough. Mon. Not. R. Astron. Soc. 499, 4158–4173 (2020).

    Article  ADS  Google Scholar 

  43. de Lera Acedo, E. REACH: Radio experiment for the analysis of cosmic hydrogen. In 2019 International Conference on Electromagnetics in Advanced Applications 0626 (IEEE, 2019).

  44. Mirocha, J. & Furlanetto, S. R. What does the first highly redshifted 21-cm detection tell us about early galaxies? Mon. Not. R. Astron. Soc. 483, 1980–1992 (2019).

    Article  ADS  Google Scholar 

  45. Reis, I., Fialkov, A. & Barkana, R. High-redshift radio galaxies: a potential new source of 21-cm fluctuations. Mon. Not. R. Astron. Soc. 499, 5993–6008 (2020).

    Article  ADS  Google Scholar 

  46. Ewall-Wice, A. et al. Modeling the radio background from the first black holes at cosmic dawn: implications for the 21 cm absorption amplitude. Astrophys. J. 868, 63 (2018).

    Article  ADS  Google Scholar 

  47. Jana, R., Nath, B. B. & Biermann, P. L. Radio background and IGM heating due to Pop III supernova explosions. Mon. Not. R. Astron. Soc. 483, 5329–5333 (2019).

    Article  ADS  Google Scholar 

  48. Fialkov, A. & Barkana, R. Signature of excess radio background in the 21-cm global signal and power spectrum. Mon. Not. R. Astron. Soc. 486, 1763–1773 (2019).

    Article  ADS  Google Scholar 

  49. Mirocha, J. ARES: accelerated reionization era simulations. Astrophysics Source Code Library ascl:2011.010 (2020).

  50. Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D. & Hirata, C. M. The signature of the first stars in atomic hydrogen at redshift 20. Nature 487, 70–73 (2012).

    Article  ADS  Google Scholar 

  51. Fialkov, A., Barkana, R., Visbal, E., Tseliakhovich, D. & Hirata, C. M. The 21-cm signature of the first stars during the Lyman-Werner feedback era. Mon. Not. R. Astron. Soc. 432, 2909–2916 (2013).

    Article  ADS  Google Scholar 

  52. Fialkov, A. & Barkana, R. The rich complexity of 21-cm fluctuations produced by the first stars. Mon. Not. R. Astron. Soc. 445, 213–224 (2014).

    Article  ADS  Google Scholar 

  53. Fialkov, A., Barkana, R. & Visbal, E. The observable signature of late heating of the Universe during cosmic reionization. Nature 506, 197–199 (2014).

    Article  ADS  Google Scholar 

  54. Fialkov, A., Barkana, R., Tseliakhovich, D. & Hirata, C. M. Impact of the relative motion between the dark matter and baryons on the first stars: semi-analytical modelling. Mon. Not. R. Astron. Soc. 424, 1335–1345 (2012).

    Article  ADS  Google Scholar 

  55. Klessen, R. in Formation of the First Black Holes (eds Latif, M. & Schleicher, D.) Ch. 4 (World Scientific, 2019).

  56. Wouthuysen, S. A. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31–32 (1952).

    Article  Google Scholar 

  57. Field, G. B. The spin temperature of intergalactic neutral hydrogen. Astrophys. J. 129, 536 (1959).

    Article  ADS  Google Scholar 

  58. Bevins, H. T. J., Handley, W. J., Fialkov, A., de Lera Acedo, E. & Javid, K. GLOBALEMU: a novel and robust approach for emulating the sky-averaged 21-cm signal from the cosmic dawn and epoch of reionization. Mon. Not. R. Astron. Soc. 508, 2923–2936 (2021).

    Article  ADS  Google Scholar 

  59. Skilling, J. Nested sampling. AIP Conf. Proc. 735, 395–405 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  60. Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  61. Fixsen, D. J. et al. ARCADE 2 measurement of the absolute sky brightness at 3-90 GHz. Astrophys. J. 734, 5 (2011).

    Article  ADS  Google Scholar 

  62. Dowell, J. & Taylor, G. B. The radio background below 100 MHz. Astrophys. J. 858, L9 (2018).

    Article  ADS  Google Scholar 

  63. Subrahmanyan, R. & Cowsik, R. Is there an unaccounted for excess in the extragalactic cosmic radio background? Astrophys. J. 776, 42 (2013).

    Article  ADS  Google Scholar 

  64. Anstey, D., de Lera Acedo, E. & Handley, W. A general Bayesian framework for foreground modelling and chromaticity correction for global 21 cm experiments. Mon. Not. R. Astron. Soc. 506, 2041–2058 (2021).

    Article  ADS  Google Scholar 

  65. de Lera Acedo, E. et al. The REACH radiometer for detecting the 21-cm hydrogen signal from redshift z ≈ 7.5−28. Nat. Astron. 6, 984–998 (2022).

  66. Handley, W. J., Hobson, M. P. & Lasenby, A. N. POLYCHORD: nested sampling for cosmology. Mon. Not. R. Astron. Soc. 450, L61–L65 (2015).

    Article  ADS  Google Scholar 

  67. Handley, W. J., Hobson, M. P. & Lasenby, A. N. POLYCHORD: next-generation nested sampling. Mon. Not. R. Astron. Soc. 453, 4385–4399 (2015).

    Article  ADS  Google Scholar 

  68. Chuzhoy, L. & Shapiro, P. R. Heating and cooling of the early intergalactic medium by resonance photons. Astrophys. J. 655, 843–846 (2007).

    Article  ADS  Google Scholar 

  69. Venumadhav, T., Dai, L., Kaurov, A. & Zaldarriaga, M. Heating of the intergalactic medium by the cosmic microwave background during cosmic dawn. Phys. Rev. D 98, 103513 (2018).

    Article  ADS  Google Scholar 

  70. Fragos, T., Lehmer, B. D., Naoz, S., Zezas, A. & Basu-Zych, A. Energy feedback from X-ray binaries in the early Universe. Astrophys. J. 776, L31 (2013).

    Article  ADS  Google Scholar 

  71. Barkana, R. & Loeb, A. In the beginning: the first sources of light and the reionization of the Universe. Phys. Rep. 349, 125–238 (2001).

  72. Schauer, A. T. P., Glover, S. C. O., Klessen, R. S. & Clark, P. The influence of streaming velocities and Lyman–Werner radiation on the formation of the first stars. Mon. Not. R. Astron. Soc. 507, 1775–1787 (2021).

  73. Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).

    Article  ADS  Google Scholar 

  74. Bevins, H. T. J. et al. Removing the fat from your posterior samples with margarine. Preprint at (2022).

  75. Bevins, H. et al. Marginal Bayesian statistics using masked autoregressive flows and kernel density estimators with examples in cosmology. Phys. Sci. Forum 5, 1 (2022).

  76. Handley, W. anesthetic: nested sampling visualisation. J. Open Source Softw. 4, 1414 (2019).

    Article  ADS  Google Scholar 

  77. Handley, W. fgivenx: a Python package for functional posterior plotting. J. Open Source Softw. 3, 849 (2018).

    Article  ADS  Google Scholar 

Download references


H.T.J.B. acknowledges the support of the Science and Technology Facilities Council (STFC) through grant number ST/T505997/1. W.J.H. and A.F. were supported by Royal Society University Research Fellowships. E.d.L.A. was supported by the STFC through the Ernest Rutherford Fellowship. R.B. acknowledges the support of the Israel Science Foundation (grant number 2359/20), The Ambrose Monell Foundation and the Institute for Advanced Study, as well as the Vera Rubin Presidential Chair in Astronomy and the Packard Foundation.

Author information

Authors and Affiliations



H.T.J.B. performed the data analysis and led the writing of the paper. A.F. initiated the project, supervised it and helped write and revise the article. E.d.L.A. supervised the project and the analysis and helped write and revise the article. W.J.H. provided technical support and advice regarding the Bayesian methodology. R.S. and S.S. provided the non-public data used in the analysis. The astrophysical signal models were provided by A.F. and R.B. All authors provided comments and contributed to the structure of the article.

Corresponding author

Correspondence to H. T. J. Bevins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bevins, H.T.J., Fialkov, A., de Lera Acedo, E. et al. Astrophysical constraints from the SARAS 3 non-detection of the cosmic dawn sky-averaged 21-cm signal. Nat Astron 6, 1473–1483 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing