Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sound experts’ perspectives on astronomy sonification projects


The Audible Universe project aims to create dialogue between two scientific domains investigating two distinct research objects: stars and sound. It has been instantiated within a collaborative workshop that began to mutually acculturate the two communities, by sharing and transmitting respective knowledge, skills and practices. One main outcome of this exchange was a global view on the astronomical data sonification paradigm for observing the diversity of tools, uses and users (including visually impaired people), but also the current limitations and potential methods of improvement. From this viewpoint, here we present basic elements gathered and contextualized by sound experts in their respective fields (sound perception/cognition, sound design, psychoacoustics, experimental psychology), to anchor sonification for astronomy in a more well informed, methodological and creative process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Harrison, C., Zanella, A., Bonne, N., Meredith, K. & Misdariis, N. Audible Universe. Nat. Astron. 6, 22–23 (2021).

    Article  ADS  Google Scholar 

  2. Zanella, A. et al. Sonification and sound design for astronomy research, education and public engagement. Nat. Astron. (2022).

  3. Walker, B. N. et al. Spearcons (speech-based earcons) improve navigation performance in advanced auditory menus. Hum. Factors 55, 157–182 (2013).

    Article  Google Scholar 

  4. Susini, P., Houix, O. & Misdariis, N. Sound design: an applied, experimental framework to study the perception of everyday sounds. N. Soundtrack 4, 103–121 (2014).

    Article  Google Scholar 

  5. Jekosch, U. in Communication Acoustics 193–221 (Springer, 2005).

  6. Robare, P. Sound in Product Design. Doctoral dissertation, master’s thesis, Carnegie Mellon Univ. School of Design (2009).

  7. Noel-Storr, J. & Willebrands, M. Accessibility in astronomy for the visually impaired. Nat. Astron. (2022).

  8. Barrass, S. Physical sonification dataforms. In Proc. 17th International Conference on Auditory Display (ICAD-2011) (International Community for Auditory Display, 2011).

  9. Bregman, A. S. Auditory Scene Analysis: the Perceptual Organization of Sound (MIT Press, 1990).

  10. Truax, B. Acoustic Communication (Ablex, 1984).

  11. Sueur, J. & Farina, A. Ecoacoustics: the ecological investigation and interpretation of environmental sound. Biosemiotics 8, 493–502 (2015).

    Article  Google Scholar 

  12. Plack, C. The Sense of Hearing (Erlbaum, 2005).

  13. Gaver, W. W. What in the world do we hear? An ecological approach to auditory event perception. Ecol. Psychol. 5, 1–29 (1993).

    Article  Google Scholar 

  14. Özcan, E. & van Egmond, R. Basic semantics of product sounds. Int. J. Des. 6, 41–54 (2012).

  15. Özcan, E., Van Egmond, R. & Jacobs, J. J. Product sounds: basic concepts and categories. Int. J. Des. 8, 97–111 (2014).

    Google Scholar 

  16. Grassi, M., Pastore, M. & Lemaitre, G. Looking at the world with your ears: how do we get the size of an object from its sound? Acta Psychol. 143, 96–104 (2013).

    Article  Google Scholar 

  17. Özcan, E. The Harley effect: internal and external factors that facilitate positive experiences with product sounds. J. Sonic Stud. 6, a07 (2014).

    Google Scholar 

  18. Delle Monache, S., Misdariis, N. & Özcan, E. Semantic models of sound-driven design: designing with listening in mind. Des. Stud. 83, 101134 (2022).

  19. Bar, M. Visual objects in context. Nat. Rev. Neurosci. 5, 617–629 (2004).

    Article  Google Scholar 

  20. De Graef, P., Christiaens, D. & d’Ydewalle, G. Perceptual effects of scene context on object identification. Psychol. Res. 52, 317–329 (1990).

    Article  Google Scholar 

  21. Leder, H., Belke, B., Oeberst, A. & Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol. 95, 489–508 (2004).

    Article  Google Scholar 

  22. Grassi, M. Do we hear size or sound? Balls dropped on plates. Percept. Psychophys. 67, 274–284 (2005).

    Article  Google Scholar 

  23. Clément, S., Demany, L. & Semal, C. Memory for pitch versus memory for loudness. J. Acoust. Soc. Am. 106, 2805–2811 (1999).

    Article  ADS  Google Scholar 

  24. Pitteri, M., Marchetti, M., Priftis, K. & Grassi, M. Naturally together: pitch-height and brightness as coupled factors for eliciting the SMARC effect in non-musicians. Psychol. Res. 81, 243–254 (2017).

    Article  Google Scholar 

  25. Susini, P. Le Design Sonore: un Cadre Experimental et Applicatif pour Explorer la Perception Sonore. Dossier d’Habilitation à Diriger des Recherches, Aix-Marseille II (2011).

  26. Selfridge, R. & Pauletto, S. Sound design ideation: comparing four sound designers’ approaches. In Proc. Sound and Music Computing Conference (eds Michon, R. et al.) 92–99 (SMC Network, 2022).

  27. Selfridge, R. & Pauletto, S. Investigating the sound design process: two case studies from radio and film production. In DRS2022: Bilbao (eds Lockton, D. et al.) (Design Research Society, 2022);

  28. Zattra, L., Misdariis, N., Pecquet, F., Donin, N. & Fierro, D. Practices and practitioners: outcomes from the APDS project. In Proc. Sound Design Days (ICRAM, 2019);

  29. Delle Monache, S., Misdariis, N. and Özcan, E. Conceptualising sound-driven design: an exploratory discourse analysis. In Proc. Creativity and Cognition Conference 42 (Association for Computing Machinery, 2021);

  30. Kramer, G. et al. Sonification Report: Status of the Field and Research Agenda (Faculty Publications, Department of Psychology, Univ. Nebraska–Lincoln, 2010).

  31. Schaffert, N., Janzen, T. B., Mattes, K. & Thaut, M. H. A review on the relationship between sound and movement in sports and rehabilitation. Front. Psychol. 10, 244 (2019).

    Article  Google Scholar 

  32. Bevilacqua, F. et al. Sensori-motor learning with movement sonification: perspectives from recent interdisciplinary studies. Front. Neurosci. 10, 385 (2016).

    Article  Google Scholar 

  33. Walus, B. P., Pauletto, S. & Mason-Jones, A. Sonification and music as support to the communication of alcohol-related health risks to young people. J. Multimodal User Interfaces 10, 235–246 (2016).

    Article  Google Scholar 

  34. Barrass, S. Diagnosing blood pressure with Acoustic Sonification singing bowls. Int. J. Hum. Comput. Stud. 85, 68–71 (2016).

    Article  Google Scholar 

  35. Polli, A. Heat and the heartbeat of the city: sonifying data describing climate change. Leonardo Music J. 16, 44–45 (2006).

    Article  Google Scholar 

  36. Sawe, N., Chafe, C. & Treviño, J. Using data sonification to overcome science literacy, numeracy, and visualization barriers in science communication. Front. Commun. 5, 46 (2020).

    Article  Google Scholar 

  37. Tardieu, J., Misdariis, N., Langlois, S., Gaillard, P. & Lemercier, C. Sonification of in-vehicle interface reduces gaze movements under dual-task condition. Appl. Ergon. 50, 41–49 (2015).

    Article  Google Scholar 

  38. Williamson, J., Murray-Smith, R. & Hughes, S. Shoogle: excitatory multimodal interaction on mobile devices. In Proc. SIGCHI Conference on Human Factors in Computing Systems 121–124 (Association for Computing Machinery, 2007);

  39. Ahmetovic, D. et al. Sonification of rotation instructions to support navigation of people with visual impairment. In Proc. IEEE International Conference on Pervasive Computing and Communications 1–10 (IEEE, 2019).

  40. Graham, R. Use of auditory icons as emergency warnings: evaluation within a vehicle collision avoidance application. Ergonomics 42, 1233–1248 (1999).

    Article  Google Scholar 

  41. McNeer, R. R., Horn, D. B., Bennett, C. L., Edworthy, J. R. & Dudaryk, R. Auditory icon alarms are more accurately and quickly identified than current standard melodic alarms in a simulated clinical setting. Anesthesiology 129, 58–66 (2018).

    Article  Google Scholar 

  42. Danna, J. et al. The effect of real-time auditory feedback on learning new characters. Hum. Mov. Sci. 43, 216–228 (2015).

    Article  Google Scholar 

  43. Rovithis, E. & Floros, A. AstroSonic: an educational audio gamification approach. In DCAC Conference, Interdisciplinary Creativity in Arts and Technology (eds Panagopoulos, M. et al.) 116–123 (Ionian University Publications, 2018).

  44. Bardelli, S., Ferretti, C., Ludovico, L. A., Presti, G. & Rinaldi, M. A sonification of the zCOSMOS galaxy dataset. In Culture and Computing. Interactive Cultural Heritage and Arts. HCII 2021 (ed. Rauterberg, M.) 171–188 Lecture Notes in Computer Science Vol. 12794 (Springer, 2021).

  45. Alexander, R. L. et al. Audification as a diagnostic tool for exploratory heliospheric data analysis. In Proc. 17th International Conference on Auditory Display (ICAD-2011) (International Community for Auditory Display, 2011);

  46. Cooke, J., Díaz-Merced, W., Foran, G., Hannam, J. & Garcia, B. Exploring data sonification to enable, enhance, and accelerate the analysis of big, noisy, and multi-dimensional data: workshop 9. Proc. Int. Astron. Union 14, 251–256 (2017).

    Article  Google Scholar 

  47. Riber, A. G. Planethesizer: Approaching Exoplanet Sonification (Georgia Institute of Technology, 2018).

  48. Barrass, S. Digital fabrication of acoustic sonifications. J. Audio Eng. Soc. 60, 709–715 (2012).

    Google Scholar 

  49. Barrass, S. & Best, V. Stream-based sonification diagrams. In Proc. 14th International Conference on Auditory Display (International Community for Auditory Display, 2008);

  50. Barrass, S. Acoustic sonification of blood pressure in the form of a singing bowl. In Proc. Workshop on Sonification in Health and Environmental Data (2014).

  51. Gaver, W. W. How do we hear in the world? Explorations in ecological acoustics. Ecol. Psychol. 5, 285–313 (1993).

    Article  Google Scholar 

  52. Barrass, S. & Zehner, B. Responsive sonification of well-logs. In Proc. International Conference on Auditory Display 72–80 (International Community for Auditory Display, 2000).

  53. Thaut, M. H. Musical echoic memory training (MEM). In Handbook of Neurologic Music Therapy (eds Thaut, M. H. & Hoemberg, V.) 311–313 (Oxford Univ. Press, 2014).

  54. Alexander, R. L., O’Modhrain, S., Roberts, D. A., Gilbert, J. A. & Zurbuchen, T. H. The bird’s ear view of space physics: audification as a tool for the spectral analysis of time series data. J. Geophys. Res. Space Phys. 119, 5259–5271 (2014).

    Article  ADS  Google Scholar 

  55. Sturm, B. L. Ocean buoy spectral data sonification: research update. In Proc. International Conference on Auditory Display (International Community for Auditory Display, 2003).

  56. Sturm, B. L. Pulse of an ocean: sonification of ocean buoy data. Leonardo 38, 143–149 (2005).

    Article  Google Scholar 

  57. Newbold, J. W., Hunt, A. & Brereton, J. Chemical spectral analysis through sonification. In Proc. 21th International Conference on Auditory Display (ICAD–2015) (International Community for Auditory Display, 2015);

  58. Hermann, T. in The Sonification Handbook (eds Hermann, T. et al.) 399–425 (Logos, 2011).

  59. Barrass, S. Sonic information design. J. Sonic Stud. (2018).

  60. Lenzi, S., Terenghi, G. & Moreno-Fernandez-de-Leceta, A. A design-driven sonification process for supporting expert users in real-time anomaly detection: towards applied guidelines. EAI Endorsed Trans. Creative Technol. 7, e4 (2020).

    Google Scholar 

  61. Lenzi, S. & Ciuccarelli, P. Data Sonification Canvas (Data Sonification Archive, 2022);

  62. Allen, E. J. & Oxenham, A. J. Symmetric interactions and interference between pitch and timbre. J. Acoust. Soc. Am. 135, 1371–1379 (2014).

    Article  ADS  Google Scholar 

  63. Fechner, G. T. Elements of Psychophysics (Holt, Reinehart and Winston, 1966).

  64. Stevens, S. S. The measurement of loudness. J. Acoust. Soc. Am. 27, 815–829 (1955).

    Article  ADS  Google Scholar 

  65. Grey, J. M. Multidimensional perceptual scaling of musical timbres. J. Acoust. Soc. Am. 61, 1270–1277 (1977).

    Article  ADS  Google Scholar 

  66. McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G. & Krimphoff, J. Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes. Psychol. Res. 58, 177–192 (1995).

    Article  Google Scholar 

  67. Misdariis, N. et al. Environmental sound perception: metadescription and modeling based on independent primary studies. EURASIP J. Audio Speech Music Process. 2010, 362013 (2010).

  68. Guastavino, C. in Sensory Experiences: Exploring Meaning and the Senses (eds Dubois, D. et al.) 139–167 (Benjamins, 2021).

  69. Susini, P., Lemaitre, G. & McAdams, S. in Measurement With Persons 241–268 (Psychology, 2013).

  70. Giordano, B., Susini, P. & Bresin, R. in Sonic Interaction Design Book (eds Franinović, K. & Serafin, S.) (MIT Press, 2013).

  71. Edwards, A. D. Auditory display in assistive technology. Sonification Handb. 1, 431–453 (2011).

    Google Scholar 

  72. Diaz Merced, W. L. Sound for the Exploration of Space Physics Data. Doctoral dissertation, Univ. Glasgow (2013).

  73. Gibney, E. How one astronomer hears the Universe. Nature 577, 155–156 (2020).

    Article  ADS  Google Scholar 

Download references


We are grateful to the Lorentz Center for supporting the organization of the Audible Universe workshop in September 2021 and to the workshop participants for valuable and insightful discussions.

Author information

Authors and Affiliations



N.M. led the initiation, structuring and editing of this Perspective, the management of co-authors’ contributions and the writing of Context of this Perspective, Introduction and Conclusion. E.Ö. and M.G. led the writing of From sound perception to sound experience, S.P. and S.B. led the writing of From sound design to sonic information design and R.B. and P.S. led the writing of From psychoacoustics to sonification evaluation. All co-authors participated in discussions about the content, and provided comments on the initial manuscript and feedback for the revised versions.

Corresponding author

Correspondence to N. Misdariis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misdariis, N., Özcan, E., Grassi, M. et al. Sound experts’ perspectives on astronomy sonification projects. Nat Astron 6, 1249–1255 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing