Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Birth of a Relativistic Jet Following the Disruption of a Star by a Cosmological Black Hole

Abstract

A black hole can launch a powerful relativistic jet after it tidally disrupts a star. If this jet fortuitously aligns with our line of sight, the overall brightness is Doppler boosted by several orders of magnitude. Consequently, such on-axis relativistic tidal disruption events have the potential to unveil cosmological (redshift z > 1) quiescent black holes and are ideal test beds for understanding the radiative mechanisms operating in super-Eddington jets. Here we present multiwavelength (X-ray, UV, optical and radio) observations of the optically discovered transient AT 2022cmc at z = 1.193. Its unusual X-ray properties, including a peak observed luminosity of 1048 erg s−1, systematic variability on timescales as short as 1,000 s and overall duration lasting more than 30 days in the rest frame, are traits associated with relativistic tidal disruption events. The X-ray to radio spectral energy distributions spanning 5–50 days after discovery can be explained as synchrotron emission from a relativistic jet (radio), synchrotron self-Compton (X-rays) and thermal emission similar to that seen in low-redshift tidal disruption events (UV/optical). Our modelling implies a beamed, highly relativistic jet akin to blazars but requires extreme matter domination (that is, a high ratio of electron-to-magnetic-field energy densities in the jet) and challenges our theoretical understanding of jets.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: AT 2022cmc’s X-ray evolution on various timescales at different epochs.
Fig. 2: Multiwavelength light curves of AT 2022cmc.
Fig. 3: AT 2022cmc’s multiwavelength SEDs and their best-fit models.
Fig. 4: Schematic of our proposed scenario for AT 2022cmc.

Data availability

All the NICER and Swift data presented here are public and can be found in the NASA archives at: https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl. All the photometry presented in this work is available in Supplementary Data 1. Time-resolved NICER spectra can be downloaded from https://doi.org/10.5281/zenodo.6870587. Swift/XRT photometry is provided in Supplementary Data 2. The data presented in Table 1 are also available in a machine-readable format in Supplementary Data 3. Source data are provided with this paper.

Code availability

Please provide a code availability statement here.

References

  1. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article  ADS  Google Scholar 

  2. Andreoni, I. et al. ZTF22aaajecp/AT2022cmc: Zwicky Transient Facility discovery of a fast and red optical transient. GRB Coord. Netw. Circ. No. 31590 (2022).

  3. Fulton, M. et al. ATLAS observations of the fast and red optical transient ZTF22aaajecp/AT2022cmc. Transient Name Server AstroNote 40 (2022).

  4. Perley, D. A. ZTF22aaajecp/AT2022cmc: VLA radio detection. GRB Coord. Netw. Circ. No. 31592 (2022).

  5. Ahumada, T. et al. ZTF22aaajecp/AT2022cmc: GMOS-N spectroscopy. GRB Coord. Netw. Circ. No. 31595 (2022).

  6. Lundquist, M. J., Alvarez, C. A. & O’Meara, J. ZTF22aaajecp/AT2022cmc: Keck DEIMOS Redshift. GRB Coord. Netw. Circ. No. 31612 (2022).

  7. Tanvir, N. R. et al. ZTF22aaajecp/AT2022cmc: VLT/X-shooter redshift. GRB Coord. Netw. Circ. No. 31602 (2022).

  8. Pizzuto, A. et al. AT2022cmc/ZTF22aaajecpc: IceCube neutrino search. The Astronomer’s Telegram 15239 (2022).

  9. Pasham, D., Gendreau, K., Arzoumanian, Z. & Cenko, B. ZTF22aaajecp/AT2022cmc: NICER X-ray detection. GRB Coord. Netw. Circ. No. 31601 (2022).

  10. Duran, R. B., Nakar, E. & Piran, T. Radius constraints and minimal equipartition energy of relativistically moving synchrotron sources. Astrophys. J. 772, 78 (2013).

    Article  ADS  Google Scholar 

  11. Rees, M. J. Tidal disruption of stars by black holes of 106−108 solar masses in nearby galaxies. Nature 333, 523 (1988).

    Article  ADS  Google Scholar 

  12. Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203 (2011).

    Article  ADS  Google Scholar 

  13. Cenko, S. B. et al. Swift J2058.4+0516: discovery of a possible second relativistic tidal disruption flare? Astrophys. J. 753, 77 (2012).

    Article  ADS  Google Scholar 

  14. Pasham, D. R. et al. A multiwavelength study of the relativistic tidal disruption candidate Swift J2058.4+0516 at late times. Astrophys. J. 805, 68 (2015).

    Article  ADS  Google Scholar 

  15. Brown, G. C. et al. Swift J1112.2-8238: a candidate relativistic tidal disruption flare. Mon. Not. R. Astron. Soc. 452, 4297 (2015).

    Article  ADS  Google Scholar 

  16. van Velzen, S. et al. Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. Astrophys. J. 908, 4 (2021).

    Article  ADS  Google Scholar 

  17. Wevers, T. et al. Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. Mon. Not. R. Astron. Soc. 488, 4816 (2019).

    Article  ADS  Google Scholar 

  18. Nicholl, M. et al. An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Mon. Not. R. Astron. Soc. 499, 482 (2020).

    Article  ADS  Google Scholar 

  19. Pasham, D. R. et al. Optical/UV-to-X-ray echoes from the tidal disruption flare ASASSN-14li. Astrophys. J. Lett. 837, L30 (2017).

    Article  ADS  Google Scholar 

  20. Piran, T., Svirski, G., Krolik, J., Cheng, R. M. & Shiokawa, H. Disk formation versus disk accretion—what powers tidal disruption events? Astrophys. J. 806, 164 (2015).

    Article  ADS  Google Scholar 

  21. Leloudas, G. et al. The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nat. Astron. 1, 0002 (2016).

    Article  ADS  Google Scholar 

  22. McClintock, J. E. & Remillard, R. A. in Compact Stellar X-Ray Sources (Cambridge Astrophysics, Series No. 39) Vol. 39 (eds Lewin, W & van der Klis, M.) 157–213 (Cambridge University Press, 2006).

  23. Giannios, D. & Metzger, B. D. Radio transients from stellar tidal disruption by massive black holes. Mon. Not. R. Astron. Soc. 416, 2102 (2011).

    Article  ADS  Google Scholar 

  24. Romero, G. E., Boettcher, M., Markoff, S. & Tavecchio, F. Relativistic jets in active galactic nuclei and microquasars. Space Sci. Rev. 207, 5 (2017).

    Article  ADS  Google Scholar 

  25. Ghisellini, G. & Tavecchio, F. Canonical high-power blazars. Mon. Not. R. Astron. Soc. 397, 985 (2009).

    Article  ADS  Google Scholar 

  26. Böttcher, M., Reimer, A., Sweeney, K. & Prakash, A. Leptonic and hadronic modeling of Fermi-detected Blazars. Astrophys. J. 768, 54 (2013).

    Article  ADS  Google Scholar 

  27. Tavecchio, F. & Ghisellini, G. On the magnetization of BL Lac jets. Mon. Not. R. Astron. Soc. 456, 2374 (2016).

    Article  ADS  Google Scholar 

  28. Ghisellini, G. Radiative Processes in High Energy Astrophysics, Lecture Notes in Physics Vol. 873 (Springer International Publishing Switzerland, 2013).

  29. Aharonian, F. et al. An exceptional very high energy gamma-ray flare of PKS 2155-304. Astrophys. J. Lett. 664, L71 (2007).

    Article  ADS  Google Scholar 

  30. Hayashida, M. et al. Rapid variability of blazar 3C 279 during flaring states in 2013-2014 with joint Fermi-LAT, NuSTAR, Swift, and ground-based multiwavelength observations. Astrophys. J. 807, 79 (2015).

    Article  ADS  Google Scholar 

  31. Raiteri, C. M. et al. Blazar spectral variability as explained by a twisted inhomogeneous jet. Nature 552, 374 (2017).

    Article  ADS  Google Scholar 

  32. McKinney, J. C. General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. R. Astron. Soc. 368, 1561 (2006).

    Article  ADS  Google Scholar 

  33. Chatterjee, K., Liska, M., Tchekhovskoy, A. & Markoff, S. B. Accelerating AGN jets to parsec scales using general relativistic MHD simulations. Mon. Not. R. Astron. Soc. 490, 2200–2218 (2019).

    Article  ADS  Google Scholar 

  34. Coughlin, E. R. & Begelman, M. C. Structured, relativistic jets driven by radiation. Mon. Not. R. Astron. Soc. 499, 3158 (2020).

    Article  ADS  Google Scholar 

  35. Bromberg, O. & Levinson, A. Hydrodynamic collimation of relativistic outflows: semianalytic solutions and application to gamma-ray bursts. Astrophys. J. 671, 678 (2007).

    Article  ADS  Google Scholar 

  36. Kohler, S., Begelman, M. C. & Beckwith, K. Recollimation boundary layers in relativistic jets. Mon. Not. R. Astron. Soc. 422, 2282 (2012).

    Article  ADS  Google Scholar 

  37. Coughlin, E. R. & Begelman, M. C. Hyperaccretion during tidal disruption events: weakly bound debris envelopes and jets. Astrophys. J. 781, 82 (2014).

    Article  ADS  Google Scholar 

  38. Costamante, L. et al. The NuSTAR view on hard-TeV BL Lacs. Mon. Not. R. Astron. Soc. 477, 4257 (2018).

    Article  ADS  Google Scholar 

  39. EHT MWL Science Working Groupet al. Broadband multi-wavelength properties of M87 during the 2017 Event Horizon Telescope campaign. Astrophys. J. Lett. 911, L11 (2021).

    Article  ADS  Google Scholar 

  40. Crumley, P. et al. Swift J1644+57: an ideal test bed of radiation mechanisms in a relativistic super-Eddington jet. Mon. Not. R. Astron. Soc. 460, 396 (2016).

    Article  ADS  Google Scholar 

  41. Seifina, E., Titarchuk, L. & Virgilli, E. Swift J164449.3+573451 and Swift J2058.4+0516: black hole mass estimates for tidal disruption event sources. Astron. Astrophys. 607, A38 (2017).

    Article  ADS  Google Scholar 

  42. Lu, W. & Kumar, P. External inverse-Compton emission from jetted tidal disruption events. Mon. Not. R. Astron. Soc. 458, 1071 (2016).

    Article  ADS  Google Scholar 

  43. Lacy, J. H., Townes, C. H. & Hollenbach, D. J. The nature of the central parsec of the Galaxy. Astrophys. J. 262, 120 (1982).

    Article  ADS  Google Scholar 

  44. Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013).

    Article  ADS  Google Scholar 

  45. Stone, N., Sari, R. & Loeb, A. Consequences of strong compression in tidal disruption events. Mon. Not. R. Astron. Soc. 435, 1809 (2013).

    Article  ADS  Google Scholar 

  46. Norman, S. M. J., Nixon, C. J. & Coughlin, E. R. Stars crushed by black holes. I. On the energy distribution of stellar debris in tidal disruption events. Astrophys. J. 923, 184 (2021).

    Article  ADS  Google Scholar 

  47. Coughlin, E. R. & Nixon, C. J. Partial stellar disruption by a supermassive black hole: is the light curve really proportional to t−9/4? Astrophys. J. Lett. 883, L17 (2019).

    Article  ADS  Google Scholar 

  48. Nixon, C. J., Coughlin, E. R. & Miles, P. R. Partial, zombie, and full tidal disruption of stars by supermassive black holes. Astrophys. J. 922, 168 (2021).

    Article  ADS  Google Scholar 

  49. Golightly, E. C. A., Nixon, C. J. & Coughlin, E. R. On the diversity of fallback rates from tidal disruption events with accurate stellar structure. Astrophys. J. Lett. 882, L26 (2019).

    Article  ADS  Google Scholar 

  50. Hammerstein, E. et al. The final season reimagined: 30 tidal disruption events from the ZTF-I Survey. Preprint at https://arxiv.org/abs/2203.01461 (2022).

  51. Bricman, K. & Gomboc, A. The prospects of observing tidal disruption events with the Large Synoptic Survey Telescope. Astrophys. J. 890, 73 (2020).

    Article  ADS  Google Scholar 

  52. Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  53. Wright, E. L. A cosmology calculator for the world wide web. Publ. Astron. Soc. Pac. 118, 1711 (2006).

    Article  ADS  Google Scholar 

  54. Singh, K. P. et al. Soft X-ray focusing telescope aboard AstroSat: design, characteristics and performance. J. Astrophys. Astron. 38, 29 (2017).

    Article  ADS  Google Scholar 

  55. Arnaud, K. A. XSPEC: the first ten years. In Astronomical Data Analysis Software and Systems V Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17 (Astronomical Society of the Pacific, 1996).

  56. HI4PI Collaborationet al. HI4PI: A full-sky H I survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

    Article  Google Scholar 

  57. Pasham, D. R. et al. Evidence for a compact object in the aftermath of the extragalactic transient AT2018cow. Nat. Astron. 6, 249 (2021).

    Article  ADS  Google Scholar 

  58. Remillard, R. A. et al. An empirical background model for the NICER X-ray timing instrument. Astron. J. 163, 130 (2022).

    Article  ADS  Google Scholar 

  59. Kaastra, J. S. & Bleeker, J. A. M. Optimal binning of X-ray spectra and response matrix design. Astron. Astrophys. 587, A151 (2016).

    Article  ADS  Google Scholar 

  60. Cenko, B. Swift resumes pointed science observations. GRB Coord. Netw. Circ. No. 31603 (2022).

  61. Gehrels, N. Confidence limits for small numbers of events in astrophysical data. Astrophys. J. 303, 336 (1986).

    Article  ADS  Google Scholar 

  62. Gompertz, B. P., Fruchter, A. S. & Pe’er, A. The environments of the most energetic gamma-ray bursts. Astrophys. J. 866, 162 (2018).

    Article  ADS  Google Scholar 

  63. Evans, P. A. et al. An online repository of Swift/XRT light curves of γ-ray bursts. Astron. Astrophys. 469, 379 (2007).

    Article  ADS  Google Scholar 

  64. Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177 (2009).

    Article  ADS  Google Scholar 

  65. Bloom, J. S., Frail, D. A. & Sari, R. The prompt energy release of gamma-ray bursts using a cosmological k-correction. Astron. J. 121, 2879 (2001).

    Article  ADS  Google Scholar 

  66. Smith, K. W. et al. Lasair: the transient alert broker for LSST:UK. Res. Not. Am. Astron. Soc. 3, 26 (2019).

    ADS  Google Scholar 

  67. Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    Article  ADS  Google Scholar 

  68. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  69. Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    Article  ADS  Google Scholar 

  70. Smith, K. W. et al. Design and operation of the ATLAS Transient Science Server. Publ. Astron. Soc. Pac. 132, 085002 (2020).

    Article  ADS  Google Scholar 

  71. Shingles, L. et al. Release of the ATLAS forced photometry server for public use. Transient Name Server AstroNote 7 (2021).

  72. Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).

    Article  Google Scholar 

  73. Nicholl, M. Photometry-sans-frustration: interactive python wrapper for point-spread fitting (psf) photometry. https://github.com/mnicholl/photometry-sans-frustration

  74. Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  75. Magnier, E. A. et al. Pan-STARRS pixel analysis: source detection and characterization. Astrophys. J. Suppl. Ser. 251, 5 (2020).

    Article  ADS  Google Scholar 

  76. Chen, T. W. et al. Kinder follow-up observations of AT 2021gca (ZTF21aapkbav). Transient Name Server AstroNote 92 (2021).

  77. Brennan, S. J. & Fraser, M. The automated photometry of transients (AutoPhOT) pipeline. Preprint at https://arxiv.org/abs/2201.02635 (2022).

  78. Chen, T. W. et al. Kinder follow-up observations of AT 2022cmc (ZTF22aaajecp). Transient Name Server AstroNote 39 (2022).

  79. Perley, D. A. ZTF22aaajecp/AT2022cmc: VLA radio detection. GRB Coord. Netw. Circ. No. 31592 (2022).

  80. Pankov, N. et al. ZTF22aaajecp/AT2022cmc: Zeiss-1000 of Koshka observatory optical observations. GRB Coord. Netw. Circ. No. 31593 (2022).

  81. Perley, D. A. ZTF22aaajecp/AT2022cmc: Liverpool Telescope photometry. GRB Coord. Netw. Circ. No. 31594 (2022).

  82. Kumar, H. et al. ZTF22aaajecp: GIT optical follow-up observations. GRB Coord. Netw. Circ. No. 31597 (2022).

  83. Pankov, N. et al. ZTF22aaajecp/AT2022cmc: Terskol observatory optical observations. GRB Coord. Netw. Circ. No. 31625 (2022).

  84. Freeburn, J. et al. ZTF22aaajecp/AT2022cmc: DECam photometry. GRB Coord. Netw. Circ. No. 31647 (2022).

  85. Pankov, N. et al. ZTF22aaajecp/AT2022cmc: Mondy optical observations. GRB Coord. Netw. Circ. No. 31652 (2022).

  86. Cenko, S. B., Andreoni, I. & Coughlin, M. ZTF22aaajecp/AT2022cmc: Hubble Space Telescope observations. GRB Coord. Netw. Circ. No. 31729 (2022).

  87. Pankov, N. et al. ZTF22aaajecp/AT2022cmc: continued optical observations (Mondy, TSHAO, AbAO). GRB Coord. Netw. Circ. No. 31798 (2022).

  88. Dimple, P. et al. ZTF22aaajecp/AT2022cmc: 1.3m DFOT optical observations. GRB Coord. Netw. Circ. No. 31805 (2022).

  89. Pankov, N. et al. ZTF22aaajecp/AT2022cmc: continued optical observations (Mondy, SAO RAS, CrAO). GRB Coord. Netw. Circ. No. 31846 (2022).

  90. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95 (2005).

    Article  ADS  Google Scholar 

  91. Bianchi, L. et al. GALEX catalogs of UV sources: statistical properties and sample science applications: hot white dwarfs in the Milky Way. Astrophys. Space Sci. 335, 161 (2011).

    Article  ADS  Google Scholar 

  92. Tandon, S. N. et al. In-orbit calibrations of the ultraviolet imaging telescope. Astron. J. 154, 128 (2017).

    Article  ADS  Google Scholar 

  93. Tandon, S. N. et al. Additional calibration of the ultraviolet imaging telescope on board AstroSat. Astron. J. 159, 158 (2020).

    Article  ADS  Google Scholar 

  94. Singh, K. P. et al. ASTROSAT mission. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 9144, 91441S (SPIE, 2014).

  95. Postma, J. E. & Leahy, D. CCDLAB: a graphical user interface FITS image data reducer, viewer, and Canadian UVIT data pipeline. Publ. Astron. Soc. Pac. 129, 115002 (2017).

    Article  ADS  Google Scholar 

  96. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Article  Google Scholar 

  97. Selsing, J. et al. The X-shooter GRB afterglow legacy sample (XS-GRB). Astron. Astrophys. 623, A92 (2019).

    Article  Google Scholar 

  98. van Dokkum, P. G. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pac. 113, 1420 (2001).

    Article  ADS  Google Scholar 

  99. Goldoni, P. et al. Data reduction software of the X-shooter spectrograph. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 6269 (eds McLean, I. S. & Iye, M.) 62692K (SPIE, 2006).

  100. Modigliani, A. et al. The X-shooter pipeline. In Observatory Operations: Strategies, Processes, and Systems III Conference Series Vol. 7737 (eds Silva, D. R. et al.) 773728 (SPIE, 2010).

  101. van Velzen, S. et al. Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. Astrophys. J. 908, 4 (2021).

    Article  ADS  Google Scholar 

  102. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI Conference Series Vol. 376 (eds Shaw, R. A. et al.) p. 127 (Astronomical Society of the Pacific, 2007).

  103. Zwart, J. T. et al. The Arcminute Microkelvin Imager. Mon. Not. R. Astron. Soc. 391, 1545 (2008).

    Article  ADS  Google Scholar 

  104. Hickish, J. et al. A digital correlator upgrade for the Arcminute MicroKelvin Imager. Mon. Not. R. Astron. Soc. 475, 5677 (2018).

    Article  ADS  Google Scholar 

  105. Anderson, G. E. et al. The Arcminute Microkelvin Imager catalogue of gamma-ray burst afterglows at 15.7 GHz. Mon. Not. R. Astron. Soc. 473, 1512 (2018).

    Article  ADS  Google Scholar 

  106. Sfaradi. I. et al. ZTF22aaajecp/AT2022cmc: AMI-LA radio detection. GRB Coord. Netw. Circ. No. 31667 (2022).

  107. Dobie, D. et al. ZTF22aaajecp/AT2022cmc: ATCA detection. GRB Coord. Netw. Circ. No. 31665 (2022).

  108. Alexander, K. et al. GBT/MUSTANG-2 90 GHz observations of AT2022cmc. The Astronomer’s Telegram 15269 (2022).

  109. Greisen, E. W. in Information Handling in Astronomy – Historical Vistas. Astrophysics and Space Science Library Vol. 285 (ed. Heck, A.) 109–125 (Springer, Dordrecht, 2003).

  110. Leahy, D. A. et al. On searches for pulsed emission with application to four globular cluster X-ray sources : NGC 1851, 6441, 6624 and 6712. Astrophys. J. 266, 160 (1983).

    Article  ADS  Google Scholar 

  111. Fermi GBM Team. GRB 220211A: Fermi GBM final real-time localization. GRB Coord. Netw. Circ. No. 31570 (2022).

  112. Ridnaia, A. et al. IPN triangulation of GRB 220211A (short). GRB Coord. Netw. Circ. No. 31584 (2022).

  113. Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273 (1993).

    Article  ADS  Google Scholar 

  114. MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in "failed supernovae”. Astrophys. J. 524, 262 (1999).

    Article  ADS  Google Scholar 

  115. Kumar, P. & Zhang, B. The physics of gamma-ray bursts & relativistic jets. Phys. Rep. 561, 1 (2015).

    Article  ADS  Google Scholar 

  116. Blandford, R. D. & McKee, C. F. Fluid dynamics of relativistic blast waves. Phys. Fluids 19, 1130 (1976).

    Article  ADS  MATH  Google Scholar 

  117. Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 308, L43 (1986).

    Article  ADS  Google Scholar 

  118. Rees, M. J. & Meszaros, P. Relativistic fireballs - energy conversion and time-scales. Mon. Not. R. Astron. Soc. 258, 41 (1992).

    Article  ADS  Google Scholar 

  119. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. Lett. 497, L17 (1998).

    Article  ADS  Google Scholar 

  120. Granot, J. & Sari, R. The shape of spectral breaks in gamma-ray burst afterglows. Astrophys. J. 568, 820 (2002).

    Article  ADS  Google Scholar 

  121. Pe’er, A. Physics of gamma-ray bursts prompt emission. Adv. Astron. 2015, 907321 (2015).

    Article  ADS  Google Scholar 

  122. Kobayashi, S., Piran, T. & Sari, R. Can internal shocks produce the variability in gamma-ray bursts? Astrophys. J. 490, 92 (1997).

    Article  ADS  Google Scholar 

  123. Levan, A. J. et al. A new population of ultra-long duration gamma-ray bursts. Astrophys. J. 781, 13 (2014).

    Article  ADS  Google Scholar 

  124. Zhang, B.-B., Zhang, B., Murase, K., Connaughton, V. & Briggs, M. S. How long does a burst burst? Astrophys. J. 787, 66 (2014).

    Article  ADS  Google Scholar 

  125. Saxton, C. J., Soria, R., Wu, K. & Kuin, N. P. M. Long-term X-ray variability of Swift J1644+57. Mon. Not. R. Astron. Soc. 422, 1625 (2012).

    Article  ADS  Google Scholar 

  126. Pasham, D. R. et al. A multiwavelength study of the relativistic tidal disruption candidate Swift J2058.4+0516 at late times. Astrophys. J. 805, 68 (2015).

    Article  ADS  Google Scholar 

  127. Duran, R. B., Nakar, E. & Piran, T. Radius constraints and minimal equipartition energy of relativistically moving synchrotron sources. Astrophys. J. 772, 78 (2013).

    Article  ADS  Google Scholar 

  128. Burrows, D. N. et al. Relativistic jet activity from the tidal disruption of a star by a massive black hole. Nature 476, 421 (2011).

    Article  ADS  Google Scholar 

  129. Lucchini, M. et al. Bhjet: a public multi-zone, steady state jet + thermal corona spectral model. MNRAS https://doi.org/10.1093/mnras/stac2904 (2022).

  130. Pushkarev, A. B., Kovalev, Y. Y., Lister, M. L. & Savolainen, T. Jet opening angles and gamma-ray brightness of AGN. Astron. Astrophys. 507, L33 (2009).

    Article  ADS  Google Scholar 

  131. Houck, J. C. & Denicola, L. A. ISIS: an interactive spectral interpretation system for high resolution X-ray spectroscopy. In Astronomical Data Analysis Software and Systems IX Conference Series Vol. 216 (eds Manset, N. et al.) 591 (Astronomical Society of the Pacific, 2000).

  132. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  133. Tavecchio, F., Maraschi, L. & Ghisellini, G. Constraints on the physical parameters of TeV blazars. Astrophys. J. 509, 608 (1998).

    Article  ADS  Google Scholar 

  134. Wen, Z. L. & Han, J. L. Calibration of the optical mass proxy for clusters of galaxies and an update of the WHL12 cluster catalog. Astrophys. J. 807, 178 (2015).

    Article  ADS  Google Scholar 

  135. Mulroy, S. L. et al. LoCuSS: scaling relations between galaxy cluster mass, gas, and stellar content. Mon. Not. R. Astron. Soc. 484, 60 (2019).

    Article  ADS  Google Scholar 

  136. Wright, C. O. & Brainerd, T. G. Gravitational lensing by NFW halos. Astrophys. J. 534, 34 (2000).

    Article  ADS  Google Scholar 

  137. Lin, Y.-T., Mohr, J. J. & Stanford, S. A. K-band properties of galaxy clusters and groups: luminosity function, radial distribution, and halo occupation number. Astrophys. J. 610, 745 (2004).

    Article  ADS  Google Scholar 

  138. Richard, J. et al. LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at z = 0.2. Mon. Not. R. Astron. Soc. 404, 325 (2010).

    ADS  Google Scholar 

  139. Smith, G. P. et al. Discovering gravitationally lensed gravitational waves: predicted rates, candidate selection, and localization with the Vera Rubin Observatory. Preprint at https://arxiv.org/abs/2204.12977 (2022).

Download references

Acknowledgements

D.R.P. would like to thank S. Dicker for sharing details of the GBT observations. D.R.P. was supported by NASA grant number 80NSSC22K0961 for this work. S.J.B. would like to thank Science Foundation Ireland and the Royal Society (grant number RS-EA/3471) for their support. S. Schulze acknowledges support from the G.R.E.A.T. research environment, funded by Vetenskapsrådet, the Swedish Research Council, under project number 2016-06012. F.O. acknowledges support from MIUR, PRIN 2017 (grant number 20179ZF5KS) “The new frontier of the Multi-Messenger Astrophysics: follow-up of electromagnetic transient counterparts of gravitational wave sources” and the support of HORIZON2020: AHEAD2020 grant agreement number 871158. G.L. and P.C. were supported by a research grant (number 19054) from VILLUM FONDEN. N.C.S. acknowledges support from the Science and Technology Facilities Council (STFC), and from STFC grant number ST/M001326/. M.N., B.P.G., A.A., E.J.R. and X.S. are supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 948381). L.R. acknowledges the support given by the Science and Technology Facilities Council through an STFC studentship. T.L. acknowledges support from the Radboud Excellence Initiative. T.M.B. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039501100011033 under the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016 and the I-LINK 2021 LINKA20409 and the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. C.-C.N. thanks the Ministry of Science and Technology (Taiwan) for funding under the contract 109-2112-M-008-014-MY3. M.P.T. acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and through the grant PID2020-117404GB-C21 (MCI/AEI/FEDER, UE). Support for A.C. was provided by ANID through grant number ICN12_12009 awarded to the Millennium Institute of Astrophysics (MAS) and by ANID’s Basal projects AFB-170002 and FB210003. E.R.C. acknowledges support from the National Science Foundation through grant number AST-2006684, and a Ralph E. Powe Junior Faculty Enhancement Award through the Oakridge Associated Universities. Pan-STARRS is a project of the Institute for Astronomy of the University of Hawaii, and is supported by the NASA SSO Near Earth Observation Program under grant numbers 80NSSC18K0971, NNX14AM74G, NNX12AR65G, NNX13AQ47G, NNX08AR22G and 80NSSC21K1572 and by the State of Hawaii. This publication has made use of data collected at Lulin Observatory, partly supported by MoST grant number 108-2112-M-008-001. We thank Lulin staff H.-Y. Hsiao, C.-S. Lin, W.-J. Hou and J.-K. Guo for observations and data management. This work was supported by the Australian government through the Australian Research Council’s Discovery Projects funding scheme (DP200102471). The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under grant number NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation grant number AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory and the Gordon and Betty Moore Foundation. R.R. and D.R.P. acknowledge partial support from the NASA grant number 80NSSC19K1287, for contributions to NICER. The European VLBI Network is a joint facility of independent European, African, Asian, and North American radio astronomy institutes. Scientific results from data presented in this publication are derived from EVN project code RM017A. e-VLBI research infrastructure in Europe is supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number RI-261525 NEXPReS. A.H. is grateful for support by the I-Core Program of the Planning and Budgeting Committee and the Israel Science Foundation, and support under ISF grant number 647/18. This research was supported by grant number 2018154 from the United States-Israel Binational Science Foundation (BSF). We acknowledge the staff who operate and run the AMI-LA telescope at Lord’s Bridge, Cambridge, for the AMI-LA radio data. AMI is supported by the Universities of Cambridge and Oxford, and by the European Research Council under grant number ERC-2012-StG-307215 LODESTONE. NICER is a 0.2–12 keV X-ray telescope operating on the International Space Station. The NICER mission and portions of the NICER science team activities are funded by NASA. The AstroSat mission is operated by the Indian Space Research Organisation (ISRO), the data are archived at the Indian Space Science Data Centre (ISSDC). The SXT data-processing software is provided by the Tata Institute of Fundamental Research (TIFR), Mumbai, India. The UVIT data were checked and verified by the UVIT POC at IIA, Bangalore, India. M.G. is supported by the EU Horizon 2020 research and innovation programme under grant agreement number 101004719. L.S. acknowledges support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Advanced Grant KILONOVA number 885281). M.P.T. acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (grant number SEV-2017-0709) and through grant number PID2020-117404GB-C21 (MCI/AEI/FEDER, UE). Support for this work was provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract number SV3-73016 to MIT for Support of the Chandra X-Ray Center (CXC) and Science Instruments. S.Y. has been supported by the research project grant “Understanding the Dynamic Universe” funded by the Knut and Alice Wallenberg Foundation under Dnr KAW 2018.0067, and the G.R.E.A.T research environment, funded by Vetenskapsrådet, the Swedish Research Council, project number 2016-06012. S.J.S., SS and K.W.S. acknowledge funding from STFC grant numbers ST/T000198/1 and ST/S006109/1. I.A. is a CIFAR Azrieli Global Scholar in the Gravity and the Extreme Universe Program and acknowledges support from that programme, from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 852097), from the Israel Science Foundation (grant number 2752/19), from the United States–Israel Binational Science Foundation (BSF), and from the Israeli Council for Higher Education Alon Fellowship. E.F. is supported by NASA under award number 80GSFC21M0002. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. G.P.S. acknowledges support from The Royal Society, the Leverhulme Trust and the Science and Technology Facilities Council (grant numbers ST/N021702/1 and ST/S006141/1). L.G. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/501100011033, and the European Social Fund (ESF) “Investing in your future” under the 2019 Ramón y Cajal programme RYC2019-027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016 and the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. ECF is supported by NASA under award number 80GSFC21M0002. This work was completed in part using the Discovery cluster, supported by Northeastern University’s Research Computing team.

Author information

Authors and Affiliations

Authors

Contributions

D.R.P. led the overall project, acquired X-ray data, performed the reduction and wrote a large portion of the paper. M.L. performed SED modelling and the subsequent interpretation, and wrote part of the paper. T.L. aided in the interpretation and writing of the paper. B.P.G., S.S., M.N., S.J.S. and M.F acquired optical data and wrote part of the paper. K.G. and E.F. carried out the NICER X-ray observations. G.D. and P.R. acquired and reduced AstroSat data. G.P.S wrote the discussion about gravitational lensing. J.C.A.M.-J., K.D.A., S.v.V., T.L. and A.G. acquired the radio data, performed their reduction and contributed towards the writing of the manuscript. L.R., A.H., I.S. and R.F provided the AMI/radio data and wrote part of the paper. M.G. reduced optical data and wrote part of the paper. N.C.S., A.A., J.P.A., I.A., S.J.B., K.C., P.C., T.-W.C., A.C., T.d.B., M.D., L.G., H.G., J.H.G., M.G., M.H., P.G.J., E.K., T.L.K, P.K., G.L., C.-C.L., R.M., S.O., F.O., Y.-C.P., M.P.T., R.R., E.J.R., S.S., X.S., L.S., K.W.S., J.S., R.W., T.W. and S.Y. facilitated the discussion and contributed to the interpretation of the results. D.K. computed the Fermi upper limits. M.J. aided in SED modelling. C.-C.N., E.R.C., S.M., T.M. and T.M.-B contributed towards the data and interpretation.

Corresponding author

Correspondence to Dheeraj R. Pasham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Neil Gehrels Swift XRT 0.3-8 keV image of NICER’s FoV.

The yellow circle with a radius of 47 and is centered on AT 2022cmc’s radio coordinates of 13:34:43.2, +33:13:00.6 (J2000.0 epoch). The outer/dashed cyan circle shows NICE /XTI’s approximate field of view of \(3.{1}^{\prime}\) radius. There are no contaminating sources within NICER’s FoV. The north and east arrows are each \(20{0}^{\prime}\) long. The color bar shows the number of X-ray counts.

Extended Data Fig. 2 A sample NICER X-ray spectrum.

The orange and the blue data represent the source and the estimated background spectra, respectively. This particular dataset is from the E0 epoch of Table 1. The 1σ uncertainties are smaller than the data points.

Extended Data Fig. 3 AT 2022cmc’s X-ray luminosity and energy spectral slope evolution.

(a) Logarithm of the observed 0.3-5 keV (filled blue circles; left y-axis) and the absorption- corrected 0.3-10 keV luminosities (filled red crosses; right y-axis) in units of ergs s1. The error bars on the luminosities are much smaller than the size of the data points. (b) Evolution of the best-fit power-law index with time. The abrupt changes in index around day 7 (rest-frame) coincide with a hard X-ray (2-5 keV) flare that happened during epoch E21 (the data point with best-fit photon index of ~ 1.3; see Table 1). The neutral Hydrogen column of the host was tied across all epochs and the best-fit value is (9.7 ± 0.3) × 1021 cm2. All the error bars represent 1σ uncertainties. The individual NICER spectra are provided as supplementary data.

Extended Data Fig. 4 VLT/X-shooter spectrum of AT2022cmc, obtained at ≈ 15 days after discovery.

The featureless blue continuum can be modelled with a blackbody with T ≈ 30,000 K (solid blue line), consistent with the optical bump in the broad-band SED from day 25-27 (Fig. 3). The inset shows a zoom in on the region with CaII absorption lines identified by (7).

Extended Data Fig. 5 Pre and post-outburst optical images of AT2022cmc.

Left panel: A colour composite image of the field prior to the outburst, made using data from the Legacy Imaging Surveys (140) using g, r and z filters. There is no emission at the location of AT2022cmc (cross). Nearby catalogued objects with their photometric redshifts are shown (circles). Right panel: A PS2 w-band image of AT2022cmc post outburst. The size of both image cutouts is \(1.{1}^{\prime}\times 1.{1}^{\prime}\). North and the East arrows are each 10.

Extended Data Fig. 6 Average X-ray (0.3-5 keV) power density spectrum of AT2022cmc.

The frequency resolution and the Nyquist frequency are 1/950 Hz and 1/8 Hz, respectively. This power spectrum is an average of 29 individual PDS. The dashed, red curve is the best-fit power-law model. Systematic variability on timescales of ~ 1000 s (lowest frequency bin) is evident. All the frequencies and hence the timescales are as measured in the observer frame. The error bars represent 1σ uncertainties.

Extended Data Fig. 7 Spectral energy distribution of AT2022cmc at ≈ 15.6 days after discovery.

Data at radio (VLA), mm-band (GBT), UV/optical (Swift/UVOT, ZTF, PanSTARRS) and X-ray frequencies (NICER), demonstrate that the SED at this time cannot be explained as a single synchrotron spectrum. The SED at  25 GHz is optically thick (vFvv3), with a spectral break near ≈ 90 GHz. The spectral index from the GBT observation at ≈ 90 GHz to the NICER band is vFvv0.37, which (i) is substantially shallower than the observed NICER spectral index (vFvv0.57) and (ii) over-predicts the UV flux at this time. All the error bars represent 1σ uncertainties.

Extended Data Fig. 8 Best fitting External inverse Compton (EC) model.

The EC model requires a jet that under-predicts the radio flux. Furthermore, EC produces too little soft X-ray flux, and as in model 1 the emission at these frequencies is dominated by SSC. All the error bars represent 1σ uncertainties.

Extended Data Fig. 9 Contour plots for the best-fitting parameters of model 1.

For clarity, we only show the 2d posterior distributions of parameters that are degenerate with each other.

Supplementary information

Supplementary Data 1

Combined photometric data for AT 2022cmc.

Supplementary Data 2

Swift XRT X-ray flux over time.

Supplementary Data 3

Machine-readable version of Table 1.

Source data

Source Data Fig. 1

Data relevant to Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pasham, D.R., Lucchini, M., Laskar, T. et al. The Birth of a Relativistic Jet Following the Disruption of a Star by a Cosmological Black Hole. Nat Astron 7, 88–104 (2023). https://doi.org/10.1038/s41550-022-01820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01820-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing