Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of turbulent magnetic reconnection in the solar wind

Abstract

Magnetic reconnection in a current sheet is commonly found in astrophysical plasma environments. If it is often bursty, releasing magnetic free energy explosively, in planetary magnetospheres, it instead displays a quasi-steady state in the solar wind, where the energy is dissipated via slow-mode shocks. The reason for this difference is elusive. Here we present a direct observation of bursty and turbulent magnetic reconnection in the solar wind, with its associated exhausts bounded by a pair of slow-mode shocks. We infer that the plasma is more efficiently heated in the magnetic reconnection diffusion region than across the shocks and that the flow enhancement is much higher in the exhausts than in the area around the diffusion region. We detected 75 other, similar diffusion-region events in solar wind data between October 2017 and May 2019, suggesting that bursty reconnection in the solar wind is more common than previously thought and actively contributes to solar wind acceleration and heating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic of the HCS and the reconnection paradigm within it.
Fig. 2: Overview of the reconnection event in the solar wind.
Fig. 3: Measurements of turbulent reconnection.
Fig. 4: Measurements in the reconnection diffusion region.
Fig. 5: Filamentary currents and magnetic flux ropes inside the electron diffusion region.
Fig. 6: Statistical analysis of the reconnection diffusion region in the solar wind.

Similar content being viewed by others

Data availability

All MMS data are available at https://lasp.colorado.edu/mms/sdc/public/.

Code availability

All the figures were made with the SPEDAS software (Space Physics Environment Data Analysis Software), downloaded from http://spedas.org/blog/.

References

  1. Vasyliunas, V. M. Theoretical models of magnetic-field line merging. 1. Rev. Geophys. 13, 303–336 (1975).

    Article  ADS  Google Scholar 

  2. Ji, H. T. et al. Magnetic reconnection in the era of exascale computing and multiscale experiments. Nat. Rev. Phys. 4, 263–282 (2022).

    Article  Google Scholar 

  3. Lu, Q. M., Fu, H. S., Wang, R. S. & Lu, S. Collisionless magnetic reconnection in the magnetosphere. Chin. Phys. B. 31, 089401 (2022).

    Article  ADS  Google Scholar 

  4. Burch, J. L. et al. Electron-scale measurements of magnetic reconnection in space. Science 352, aaf2939 (2016).

    Article  ADS  Google Scholar 

  5. Wang, R. S. et al. Electron-scale quadrants of the hall magnetic field observed by the Magnetospheric Multiscale spacecraft during asymmetric reconnection. Phys. Rev. Lett. 118, 175101 (2017).

    Article  ADS  Google Scholar 

  6. Torbert, R. B. et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 362, 1391–1395 (2018).

    Article  ADS  Google Scholar 

  7. Wei, F. S., Hu, Q., Feng, X. S. & Fan, Q. L. Magnetic reconnection in interplanetary space. Space Sci. Rev. 107, 107–110 (2003).

    Article  ADS  Google Scholar 

  8. Gosling, J. T., Skoug, R. M., McComas, D. J. & Smith, C. W. Direct evidence for magnetic reconnection in the solar wind near 1 au. J. Geophys. Res. Space Phys. 110, A01107 (2005).

    Article  ADS  Google Scholar 

  9. Phan, T. D. et al. A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439, 175–178 (2006).

    Article  ADS  Google Scholar 

  10. Lavraud, B. et al. Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1,800 RE. Sol. Phys. 256, 379–392 (2009).

    Article  ADS  Google Scholar 

  11. Mistry, R., Eastwood, J. P., Phan, T. D. & Hietala, H. Statistical properties of solar wind reconnection exhausts. J. Geophys. Res. Space Phys. 122, 5895–5909 (2017).

    Article  ADS  Google Scholar 

  12. Phan, T. D. et al. Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astron. Astrophys. 650, A13 (2021).

    Article  Google Scholar 

  13. Burch, J. L., Moore, T. E., Torbert, R. B. & Giles, B. L. Magnetospheric Multiscale overview and science objectives. Space Sci. Rev. 199, 5–21 (2016).

    Article  ADS  Google Scholar 

  14. Pollock, C. et al. Fast Plasma Investigation for Magnetospheric Multiscale. Space Sci. Rev. 199, 331–406 (2016).

    Article  ADS  Google Scholar 

  15. Russell, C. T. et al. The Magnetospheric Multiscale magnetometers. Space Sci. Rev. 199, 189–256 (2016).

    Article  ADS  Google Scholar 

  16. Ergun, R. E. et al. The axial double probe and fields signal processing for the MMS Mission. Space Sci. Rev. 199, 167–188 (2016).

    Article  ADS  Google Scholar 

  17. Lindqvist, P. A. et al. The spin-plane double probe electric field instrument for MMS. Space Sci. Rev. 199, 137–165 (2016).

    Article  ADS  Google Scholar 

  18. Bandyopadhyay, R. et al. Solar wind turbulence studies using MMS Fast Plasma Investigation data. Astrophys. J. 866, 81 (2018).

    Article  ADS  Google Scholar 

  19. Roberts, O. W. et al. A study of the solar wind ion and electron measurements from the Magnetospheric Multiscale Mission’s Fast Plasma Investigation. J. Geophys. Res. Space Phys. 126, e2021JA029784 (2021).

    Article  ADS  Google Scholar 

  20. Forbes, T. G. The nature of Petschek-type reconnection. Earth Planets Space 53, 423–429 (2001).

    Article  ADS  Google Scholar 

  21. Phan, T. D. et al. Parker Solar Probe in situ observations of magnetic reconnection exhausts during encounter 1. Astrophys. J. Suppl. Ser. 246, 34 (2020).

    Article  ADS  Google Scholar 

  22. Eriksson, S. et al. Walen and slow-mode shock analyses in the near-Earth magnetotail in connection with a substorm onset on 27 August 2001. J. Geophys. Res. Space Phys. 109, A10212 (2004).

    Article  ADS  Google Scholar 

  23. Sonnerup, B. U. O., Hasegawa, H., Denton, R. E. & Nakamura, T. K. M. Reconstruction of the electron diffusion region. J. Geophys. Res. Space Phys. 121, 4279–4290 (2016).

    Article  ADS  Google Scholar 

  24. Shay, M. A., Drake, J. F., Denton, R. E. & Biskamp, D. Structure of the dissipation region during collisionless magnetic reconnection. J. Geophys. Res. Space Phys. 103, 9165–9176 (1998).

    Article  ADS  Google Scholar 

  25. Wang, R. S. et al. An electron-scale current sheet without bursty reconnection signatures observed in the near-Earth tail. Geophys. Res. Lett. 45, 4542–4549 (2018).

    Article  ADS  Google Scholar 

  26. Egedal, J. et al. Cluster observations of bidirectional beams caused by electron trapping during antiparallel reconnection. J. Geophys. Res. Space Phys. 115, A03214 (2010).

    Article  ADS  Google Scholar 

  27. Zenitani, S., Hesse, M., Klimas, A., Black, C. & Kuznetsova, M. The inner structure of collisionless magnetic reconnection: the electron-frame dissipation measure and Hall fields. Phys. Plasmas 18, 122108 (2011).

    Article  ADS  Google Scholar 

  28. Hesse, M., Aunai, N., Sibeck, D. & Birn, J. On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett. 41, 8673–8680 (2014).

    Article  ADS  Google Scholar 

  29. Shay, M. A. et al. Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection. Geophys. Res. Lett. 43, 4145–4154 (2016).

    Article  ADS  Google Scholar 

  30. Wang, R. et al. Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys. 12, 263–267 (2016).

    Article  Google Scholar 

  31. Slavin, J. A. et al. Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. Space Phys. 108, 1015 (2003).

    Article  ADS  Google Scholar 

  32. Wang, R. S. et al. Electrostatic and electromagnetic fluctuations detected inside magnetic flux ropes during magnetic reconnection. J. Geophys. Res. Space Phys. 121, 9473–9482 (2016).

    Article  ADS  Google Scholar 

  33. Stawarz, J. E. et al. Intense electric fields and electron-scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale Mission. Geophys. Res. Lett. 45, 8783–8792 (2018).

    Article  ADS  Google Scholar 

  34. Moldwin, M. B., Ford, S., Lepping, R., Slavin, J. & Szabo, A. Small-scale magnetic flux ropes in the solar wind. Geophys. Res. Lett. 27, 57–60 (2000).

    Article  ADS  Google Scholar 

  35. Cartwright, M. L. & Moldwin, M. B. Comparison of small-scale flux rope magnetic properties to large-scale magnetic clouds: evidence for reconnection across the HCS? J. Geophys. Res. Space Phys. 113, A09105 (2008).

    Article  ADS  Google Scholar 

  36. Wu, D. J., Feng, H. Q. & Chao, J. K. Energy spectrum of interplanetary magnetic flux ropes and its connection with solar activity. Astron. Astrophys. 480, L9–L12 (2008).

    Article  ADS  Google Scholar 

  37. Fermo, R. L., Drake, J. F. & Swisdak, M. Secondary magnetic islands generated by the Kelvin–Helmholtz instability in a reconnecting current sheet. Phys. Rev. Lett. 108, 255005 (2012).

    Article  ADS  Google Scholar 

  38. Huang, C. et al. Development of turbulent magnetic reconnection in a magnetic island. Astrophys. J. 835, 245 (2017).

    Article  ADS  Google Scholar 

  39. Chen, L. J. et al. Observation of energetic electrons within magnetic islands. Nat. Phys. 4, 19–23 (2008).

    Article  Google Scholar 

  40. Telloni, D., Bruno, R., D’Amicis, R., Pietropaolo, E. & Carbone, V. Wavelet analysis as a tool to localize magnetic and cross-helicity events in the solar wind. Astrophys. J. 751, 19 (2012).

    Article  ADS  Google Scholar 

  41. Zhao, L. L. et al. Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters. Astron. Astrophys. 650, A12 (2021).

    Article  Google Scholar 

  42. Vörös, Z. et al. Magnetic reconnection within the boundary layer of a magnetic cloud in the solar wind. J. Geophys. Res. Space Phys. 126, e2021JA029415 (2021).

    Article  ADS  Google Scholar 

  43. Li, X. M. et al. Three-dimensional network of filamentary currents and super-thermal electrons during magnetotail magnetic reconnection. Nat. Commun. 13, 3241 (2022).

    Article  ADS  Google Scholar 

  44. Shay, M. A. et al. Electron heating during magnetic reconnection: a simulation scaling study. Phys. Plasmas 21, 122902 (2014).

    Article  ADS  Google Scholar 

  45. Daughton, W. et al. Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7, 539–542 (2011).

    Article  Google Scholar 

  46. Zank, G. P., le Roux, J. A., Webb, G. M., Dosch, A. & Khabarova, O. Particle acceleration via reconnection processes in the supersonic solar wind. Astrophys. J. 797, 28 (2014).

    Article  ADS  Google Scholar 

  47. Drake, J. F., Swisdak, M., Schoeffler, K. M., Rogers, B. N. & Kobayashi, S. Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett. 33, L13105 (2006).

    Article  ADS  Google Scholar 

  48. Che, H. & Zank, G. P. Electron acceleration from expanding magnetic vortices during reconnection with a guide field. Astrophys. J. 889, 11 (2020).

    Article  ADS  Google Scholar 

  49. Zhao, L. L. et al. An unusual energetic particle flux enhancement associated with solar wind magnetic island dynamics. Astrophys. J. Lett. 864, L34 (2018).

    Article  ADS  Google Scholar 

  50. Zhao, L. L. et al. Particle acceleration at 5 au associated with turbulence and small-scale magnetic flux ropes. Astrophys. J. 872, 4 (2019).

    Article  ADS  Google Scholar 

  51. Sonnerup, B. U. & Cahill, L. J. Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171–183 (1967).

    Article  ADS  Google Scholar 

  52. Sonnerup, B. U. O., Papamastorakis, I., Paschmann, G. & Luhr, H. Magnetopause properties from Ampte/Irm observations of the convection electric field: method development. J. Geophys. Res. Space Phys. 92, 12137–12159 (1987).

    Article  ADS  Google Scholar 

  53. Matthaeus, W. H., Goldstein, M. L. & Smith, C. Evaluation of magnetic helicity in homogeneous turbulence. Phys. Rev. Lett. 48, 1256–1259 (1982).

    Article  ADS  Google Scholar 

  54. Bruno, R. & Carbone, V. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 2 (2013).

    Article  ADS  Google Scholar 

  55. Bruno, R. et al. The low-frequency break observed in the slow solar wind magnetic spectra. Astron. Astrophys. 627, A96 (2019).

    Article  Google Scholar 

  56. Matthaeus, W. H. et al. Density and magnetic field signatures of interplanetary 1/f noise. Astrophys. J. 657, L121–L124 (2007).

    Article  ADS  Google Scholar 

  57. Tu, C. Y. & Marsch, E. MHD structures, waves and turbulence in the solar-wind: observations and theories. Space Sci. Rev. 73, 1–210 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences (XDB41000000; R.W.), the National Science Foundation of China (NSFC) (grants 41922030 and 42174187; R.W.), the key research programme of frontier sciences CAS (QYZDJ-SSW-DQC010; Q.L.), the Fundamental Research Funds for the Central Universities (R.W.) and the China-Brazil Joint Laboratory for Space Weather and the NSSC/CAS (W.G.). R.W. thanks O. Roberts and R. Nakamura of the Space Research Institute of the Austrian Academy of Sciences for fruitful discussion.

Author information

Authors and Affiliations

Authors

Contributions

R.W. carried out the spacecraft data analysis and interpretation and wrote the manuscript. S.W. and X.L. dealt with part of the spacecraft data and took part in the discussion. Q.L. supervised the work and provided the theoretical analysis. X.L and S.L took part in the discussion and gave valuable suggestions. W.G. gave valuable suggestions and comments. All the authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Rongsheng Wang or Quanming Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Lingling Zhao, Rungployphan Kieokaew and Zoltan Vörös for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, S., Lu, Q. et al. Direct observation of turbulent magnetic reconnection in the solar wind. Nat Astron 7, 18–28 (2023). https://doi.org/10.1038/s41550-022-01818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01818-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing